COMPLEXITY ANALYSIS OF LARGE-UPDATE INTERIOR-POINT METHODS FOR π“Ÿβˆ—(𝜿)-HLCP BASED ON A NEW PARAMETRIC KERNEL FUNCTION

  • Ibtissam Mokrani Mathematics Department, University of Batna 2, Batna, Algeria
  • Randa Chalekh Mathematics Department, University of Batna 2, Batna, Algeria
  • El Amir Djeffal LEDPA Laboratory, Mathematics Department, University of Batna 2, Batna
Keywords: $\mathcal{P}_*(\kappa)$-Horizontal Linear Complementarity Problem, interior-point methods, kernel function, large-update method

Abstract

This work proposes a primal-dual interior point technique for π’«βˆ—(πœ…)-Horizontal Linear Complementarity Problem (π’«βˆ—(πœ…)-HLCP), based on a novel parameterized kernel function. Our new eligible parametric kernel function’s feature produces the following iteration bound 𝑂(((𝑝+1)(𝑛𝑝)𝑝+22(𝑝+1)β„π‘™π‘œπ‘”(π‘›πœ€))) for the large-update method. Finally, we present numerical results demonstrating the algorithm’s pratical performance among various parameters.
Published
2025-04-24
How to Cite
Mokrani, I., Chalekh, R., & Djeffal, E. A. (2025). COMPLEXITY ANALYSIS OF LARGE-UPDATE INTERIOR-POINT METHODS FOR π“Ÿβˆ—(𝜿)-HLCP BASED ON A NEW PARAMETRIC KERNEL FUNCTION. Statistics, Optimization & Information Computing. https://doi.org/10.19139/soic-2310-5070-2345
Section
Research Articles