A Quartic Subdomain Finite Element Method for the Modified KdV Equation

  • Seydi Battal Gazi Karakoc Department of Maths. Faculty of Science
Keywords: Modified Korteweg-de Vries equation, finite element method, subdomain, quartic B-spline, soliton.

Abstract

In this article, we have obtained numerical solutions of the modified KortewegdeVries (MKdV) equation by a numerical technique attributed on subdomain finiteelement method using quartic B-splines. The proposed numerical algorithm is controlled by applying three test problems including single solitary wave, interaction of two and three solitary waves. To inspect the performance of the newly applied method, the error norms, L2 and L1, as well as the four lowest invariants, I1,I2; I3 and I4, have been computed. Linear stability analysis of the algorithm is also examined.

References

D. J. Korteweg, and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and a new type of long stationary wave, Philosophical Magazine, vol. 39, pp. 422-443, 1895.

N. J. Zabusky, A synergetic approach to problem of nonlinear dispersive wave propagation and interaction, in: W. Ames (Ed.),Proc. Symp. Nonlinear Partial Diff. Equations, Academic Press, pp. 223–258, 1967.

B. Fornberg, and G.B. Whitham, A numerical and theoretical study of certain nonlinear wavephenomena, Philos. Trans. Roy. Soc.vol. 289, pp. 373–404, 1978.

N. J. Zabusky, and M. D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev.Lett., vol. 5, no. 6, pp. 240–243, 1965.

C. S Gardner, J. M. Green, M. D. Kruskal, and R. M. Miura, Method for solving Korteweg- de Vries equation, Phys. Rev., vol. 19, pp. 1095-1100, 1967.

K. Goda, On instability of some finite difference schemes for Korteweg–de Vries equation, J.Phys. Soc. Japan, vol. 39, pp. 229–236, 1975.

A. C. Vliengenthart, On finite difference methods for the Korteweg–de Vries equation, J. Eng. Math., vol. 5, pp. 137–155, 1971.

A. A. Soliman, Collocation solution of the Korteweg-De Vries equation using septic splines, Int. J. Comput. Math. vol. 81, pp.325-331, 2004.

D. Irk, I. Da˘ g, and B. Saka, A small time solutions for the Korteweg–de Vries equation using spline approximation, Appl. Math. Comput., vol. 173, no. 2, pp. 834-846, 2006.

A. Canıvar, M. Sarı and I. Da˘ g,, A Taylor-Galerkin finite element method for the KdV equation using cubic B-splines, Physica B,vol. 405, pp. 3376-3383, 2010.

A. Korkmaz, Numerical algorithms for solutions of Korteweg-de Vries Equation, Numerical Methods for Partial Differential Equations, vol. 26, no. 6, pp. 1504–1521, 2010.

O. Ersoy, and I. Da˘ g, Cubic B-Spline Algorithm for Korteweg-de Vries Equation, Advances in Numerical Analysis, vol. 2015, pp.1-8, 2015.

E. N. Aksan, and A. Ozdes, Numerical solution of Korteweg–de Vries equation by Galerkin B-spline finite element method, Applied Mathematics and Computation, vol. 175, pp. 1256–1265, 2006.

D. Irk, Quintic B-spline Galerkin method for the KdV equation, Anadolu University Journal of Science and Technology B-Theoritical Sciences, vol. 5, no. 2, pp. 111-119, 2017.

B. Saka, Cosine expansion-based differential quadrature method for numerical solution of the KdV equation, Chaos Soliton Fract. vol. 40, pp. 2181-2190, 2009.

S. B.G. Karakoc, and H. Zeybek, A cubic B-spline Galerkin approach for the numerical simulation of the GEW equation, Stat.,Optim. Inf. Comput., Vol. 4, 2016, pp 30–41.

B.G. Karakoc, H. Zeybek, and T. Ak, Numerical solutions of the Kawahara equation by the septic B-spline collocation method Stat., Optim. Inf. Comput., Vol. 2, 2014, pp 211–221.

J. M. Heris, and I. Zamanpour, Exact travelling wave solutions of the symmetric regularized long wave (SRLW) using analytical methods, Stat., Optim. Inf. Comput., Vol. 2, March 2014, pp 47–55.

S. Kutluay, A. R. Bahadır, and A. Ozdes, A small time solutions for the Korteweg–de Vries equation, Appl. Math. Comput. vol. 107,pp. 203 210, 2000.

D. Kaya, An application for the higher order modified KdV equation by decomposition method, Commun. in Nonlinear Science and Num. Simul., vol. 10, pp. 693-702, 2005.

A. Biswas, and K. R .Raslan, Numerical simulation of the modified Korteweg-de Vries Equation, Physics of Wave Phenomena, vol.19, no. 2, pp. 142-147, 2011.

K. R. Raslan, and H. A. Baghdady, A finite difference scheme for the modified Korteweg-de Vries equation, General Mathematics Notes, vol. 27, no. 1, pp. 101-113, 2015.

K. R. Raslan, and H. A. Baghdady, New algorithm for solving the modified Korteweg-de Vries (mKdV) equation, International Journal of Research and Reviews in Applied Sciences, vol. 18, no. 1, pp. 59-64, 2014.

A. M. Wazwaz, A variety of (3+1)-dimensional mKdV equations derived by using the mKdV recursion operator, Computers and Fluids, vol. 93, no. 10, pp. 41-45, 2014.

A. M. Wazwaz, New (3+1)-dimensional nonlinear evolution equations with mKdV equation constituting its main part: multiple soliton solutions, Chaos, Solitons and Fractals, vol. 76, pp. 93-97, 2015.

T. Ak, S. B. G. Karakoc, and A. Biswas, A New Approach for Numerical Solution of Modified Korteweg-de Vries Equation, Iran J. Sci. Technol. Trans. Sci., vol. 41, pp. 1109–1121, 2017.

T. Ak, S. B. G. Karakoc, and A. Biswas, Application of Petrov-Galerkin nite element method to shallow water waves model: Modified Korteweg-de Vries equation, Scientia Iranica B., vol. 24, no. 3, pp. 1148-1159, 2017.

P. M. Prenter, Splines and Variational Methods, John Wiley & Sons, New York, NY.USA, 1975.

R. M. Miura, C. S. Gardner, and M. D. Kruskal, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys., vol. 9, no. 8,1204, 1968.

R. M. Miura, The Korteweg-de Vries equation: a survey of results, SIAM Rev., vol.18, no.3, pp. 412–459, 1976.

Published
2018-11-02
How to Cite
Gazi Karakoc, S. B. (2018). A Quartic Subdomain Finite Element Method for the Modified KdV Equation. Statistics, Optimization & Information Computing, 6(4), 609-618. https://doi.org/10.19139/soic.v6i4.485
Section
Research Articles