Stochastic differential equations mixed model for individual growth with the inclusion of genetic characteristics

  • Nelson T. Jamba Centro de Investigação em Matemática e Aplicações, Instituto de Investigação e Formação Avançada, Universidade de Évora, Portugal and Liceu nº 918 do município dos Gambos, Angola https://orcid.org/0000-0003-3270-0928
  • Patrícia A. Filipe Iscte-Instituto Universitário de Lisboa, Iscte Business School, Quantitative Methods for Management and Economics Department, Lisboa and Centro de Investigação em Matemática e Aplicações, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal https://orcid.org/0000-0003-3664-7239
  • Gonçalo Jacinto Departamento de Matemática, Escola de Ciências e Tecnologia, Universidade de Évora and Centro de Investigação em Matemática e Aplicações, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal https://orcid.org/0000-0002-3292-2208
  • Carlos A. Braumann Departamento de Matemática, Escola de Ciências e Tecnologia, Universidade de Évora and Centro de Investigação em Matemática e Aplicações, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal https://orcid.org/0000-0003-2721-9750
Keywords: Genetic traits, Individual Growth, Mixed Models, Stochastic Differential Equations

Abstract

In early work we have studied a class of stochastic differential equation (SDE) models, for which the Gompertz and the Bertalanffy-Richards stochastic models are particular cases, to describe individual growth in random environments, and applied it to model cattle weight evolution using real data. We have started to work on these type of models considering that the model parameters are fixed, i.e. the same for all the animals. Aiming to incorporate variability among individuals, we consider that the model parameters can be random variables, resulting in SDE mixed models. In additon, here we consider SDE mixed models, allowing the parameters to be random and propose to incorporate each animal's genetic characteristics considering the transformed animal's weight at maturity to be a function of its genetic values. The main objective is to extend the SDE mixed model to the more realistic case where the individual genetic value becomes an important component in the estimated growth curve. For the estimation of the model parameters we have used maximum likelihood estimation theory. Estimates and asymptotic confidence intervals of the parameters are presented. A comparison with SDE non-mixed model and SDE mixed model without the inclusion of genetic characteristics is shown with the conclusion that the incorporation of some genetic characteristics in the model parameters improves the estimation of the animal's growth curve.

References

C. A. Braumann, Introduction to stochastic differential equations with applications to modelling in biology and finance, John Wiley & Sons, 2019.

N. Carolino, and L. T. Gama, Indicators of genetic erosion in an endangered population: The Alentejana cattle breed in Portugal, Journal of Animal Science, vol. 86, no. 1, pp. 47-56, 2008.

N. Carolino, A. Vitorino, I. Carolino, J. Pais, N. Henriques, M. Silveira, and A. Vicente, Genetic diversity in the Portuguese

Mertolenga cattle breed assessed by pedigree analysis, Animals, vol. 10, no. 11, pp. 1990, 2020.

D. Charlotte, S. Adeline and H. Simone, Mixedsde: estimation methods for stochastic differential mixed effects models, R package version 5.0, 2018.

M. Delattre, V. Genon-Catalot, and A. Samson, Estimation of population parameters in stochastic differential equations with random effects in the diffusion coefficient, ESAIM: Probability and Statistics, vol. 19, pp. 671–688, 2015.

M. Delattre, V. Genon-Catalot, and C. Lar´edo, Parametric inference for discrete observations of diffusion processes with mixed effects, Stochastic Processes and Their Applications, vol. 128, no. 6, pp. 1929–1957, 2018.

M. Delattre, V. Genon-Catalot, and A. Samson, Maximum likelihood estimation for stochastic differential equations with random effects, Scandinavian Journal of Statistics, vol. 40, no. 2, pp. 322–343, 2013.

P. A. Filipe, C. A. Braumann and C. J. Roquete, Modelos de crescimento de animais em ambiente aleat´orio. In: M. E. Ferr˜ao, C. Nunes and C. A. Braumann (Editores), Estat´ıstica Ciˆencia Interdisciplinar. Actas do XIV Congresso Anual da Sociedade Portuguesa de Estat´ıstica, Edic¸˜oes SPE, pp. 401–410, 2007.

P. A. Filipe, C. A. Braumann, N. M. Brites, and C. J. Roquete, Modelling animal growth in random environments: an application using nonparametric estimation, Biometrical Journal, vol. 52, no. 5, pp. 653–666, 2010.

P. A. Filipe, C. A. Braumann, N. M. Brites, and C. J. Roquete, Prediction for individual growth in a random environment. In: I. Morlini, P. E. Oliveira, M. G. Temido, C. Henriques, and M. Vichi (eds), Recent Developments in Modeling and Applications in Statistics. Studies in Theoretical and Applied Statistics, Springer, Berlin, Heidelberg, pp. 193–201, 2022.

O. Garcia, A stochastic differential equation model for the height growth of forest stands, Biometrics, vol. 39, no. 4, pp. 1059–1072, 1983.

S. Infante, L. Sanchez and A. Hern´andez, Stochastic models to estimate population dynamics, Statistics, Optimization & Information Computing, vol. 7, no. 2, pp. 311–328, 2019.

G. Jacinto, P. A. Filipe, and C. A. Braumann, Profit optimization of cattle growth with variable prices, Methodology and Computing in Applied Probability, pp. 1–36, 2021.

N. T. Jamba, G. Jacinto, P. A. Filipe, and C. A. Braumann, Likelihood function through the delta approximation in mixed SDE models, Mathematics, vol. 10, no. 3, pp. 385, 2022.

N. T. Jamba, G. Jacinto, P. A. Filipe, and C. A. Braumann, Estimation for stochastic differential equations mixed models using approximation methods, Submitted, 2023.

D. Maud and D. Charlotte, MsdeParEst: parametric estimation in mixed-effects stochastic differential equations, R package version 1.7, 2017.

R. V. Overgaard, N. Jonsson, C. W. Tornøe, and H. Madsen, Non-Linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, Journal of Pharmacokinetics and Pharmacodynamics, vol. 32, pp. 85–107, 2005.

U. Picchini, and S. Ditlevsen, Practical estimation of high dimensional stochastic differential mixed-effects models, Computational Statistics & Data Analysis, vol. 55, no. 3, pp. 1426–1444, 2011.

U. Picchini, S. Ditlevsen, and A. D. Gaetano, Modeling the euglycemic hyperinsulinemic clamp by stochastic differential equations, Journal of Mathematical Biology, vol. 53, pp. 771–796, 2006.

U. Picchini, S. Ditlevsen, and A. D. Gaetano, Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics, Mathematical Medicine and Biology: A Journal of the IMA, vol. 25, no. 2, pp. 141–55, 2008.

U. Picchini, A. D. Gaetano, and S. Ditlevsen, Stochastic differential mixed-effects models, Scandinavian Journal of Statistics, vol. 37, no. 1, pp. 67–90, 2010.

Quiming Lv and J. W. Pitchford, Stochastic von Bertalanffy models, with applications to fish recruitment, Journal of Theoretical Biology, vol. 244, no. 4, pp. 640–655, 2007.

K. Rennolls, Forest height growth modelling, Forest Ecology and Management, vol. 71, no. 3, pp. 217–225, 1995.

J. Ruane, and J. J. Colleau, Marker assisted selection for genetic improvement of animal populations when a single QTL is marked, Genetics Research, vol. 66, no. 1, pp. 71–83, 1995.

J. Soto, and S. Infante, Ensemble Kalman filter and extended Kalman filter for state-parameter dual estimation in mixed effects models defined by a stochastic differential equation. In: A. Basantes-Andrade, M. Naranjo-Toro, M. Zambrano Vizuete, and M. Botto-Tobar (eds), Technology, Sustainability and Educational Innovation (TSIE), Springer, Warsaw, Poland, pp. 285–300, 2020.

R. Wolfinger Laplace’s approximation for nonlinear mixed models, Biometrika, 80(4), pp. 791–795, 1993.

Published
2023-12-19
How to Cite
Jamba, N. T., Filipe, P. A., Jacinto, G., & Braumann, C. A. (2023). Stochastic differential equations mixed model for individual growth with the inclusion of genetic characteristics. Statistics, Optimization & Information Computing, 12(2), 298-309. https://doi.org/10.19139/soic-2310-5070-1829
Section
Research Articles