Optimality of Reinsurance Treaties under a Mean - Ruin Probability Criterion

Abderrahim EL ATTAR, Mostafa EL HACHLOUFI, Zine El Abidine GUENNOUN

Abstract


The minimization of the probability of ruin is a crucial criterion for determining the effect of the form of reinsurance on the wealth of the cedant and is a very important factor in choosing optimal reinsurance. However, this optimization criterion alone does not generally lead to a rational decision to choose an optimal reinsurance plan. This criterion acts only on the risk (minimizing it via the probability of ruin), but does not affect the technical benefit, that is to say, the insurer should not choose the optimal reinsurance treaty, it is not beneficial.We propose a new reinsurance optimization strategy that maximizes the technical benefit of an insurance company while maintaining a minimal level for the probability of ruin. The objective is to optimize with precision and ease of computation using Genetic algorithms.


Keywords


Genetic algorithms; Probability of ruin; Optimization; Technical benefit; Reinsurance;

References


Aase (2002), Perspectives of risk sharing, Scandinavian Actuarial Journal, Vol 2, 2002.

Abderrahim El Attar1, Mostafa Elhachloufi2et Z. A. Guennoun3, “An Inclusive Criterion For An Optimal Choice Of Reinsurance”, Annals of Financial Economics (World Scientific), Vol. 12, Issue 04, 2017.

Abderrahim El Attar1, Mostafa Elhachloufi2et Z. A. Guennoun3, “Optimal reinsurance through minimizing new risk measures under technical benefit constraints”, International Journal of Engineering Research in Africa, Vol. 34, 2018.

Abderrahim El Attar1, Mostafa Elhachloufi2et Z. A. Guennoun3, “Optimization of surplus reinsurance treaty using the Conditional Tail Expectation”, Pakistan Journal of Statistics and Operation Research, Vol. 14, Issue 01, 2018.

Abderrahim El Attar1, Mostafa Elhachloufi2et Z. A. Guennoun3, “Optimal Choice of Security Loading and The Parameters of Reinsurance Treaties for Maximizing the Technical Benefits of Insurance Company”, International Journal of Applied Mathematics and Statistics, Vol. 55, Issue 2, 2016.

Abderrahim El Attar1, Mostafa Elhachloufi2et Z. A. Guennoun3, “Optimizing the Technical Benefits of the Insurance Company Using Genetic Algorithms”, Applied Mathematical Sciences, Vol. 9, No 150, 2015.

Abderrahim El Attar1, Mostafa Elhachloufi2et Z. A. Guennoun3, “Optimal Reinsurance Under CTV Risk Measure“.Innovations in Smart Cities and Applications. SCAMS 2017. Lecture Notes in Networks and Systems, vol 37. Springer,Cham, 2018.

Abderrahim El Attar1, Mostafa Elhachloufi2et Z. A. Guennoun3, “The Optimization of Reinsurance by the Maximization of Technical Benefits and Minimization of Probability of Ruin Using Genetic Algorithms”, International Review on Modelling and Simulations (IREMOS), Vol. 9, No 1, 2016.

Alex Bellos (2011), Alex au pays des chiffres, Robert Laffont, 2011.

Andreani & al (2007), On Augmented Lagrangian methods with general lower-level constraint. SIAM Journal on Optimization, 18, 1286–1302.

Arthur Charpentier (2014), Approches statistiques du risque, chapitre 3: Mesures de risque,Éditions Technip, Paris.

Asmussen & Abrehcer (2010), Ruin probabilities, vol 14, World scientific.

Asmussen (1992), Ruin probabilities, Vol. 2, World Scientific Publishing Co. Ltd. London, 11, 86.

Asmussen.S (2000), Ruin Probabilities, World Scientic, Singapure.

Ben Dbabis (2012), Modèles et méthodes actuarielles pour l’évaluation quantitative des risques en environnement Solvabilité II, (PhD Thesis), Université Paris Dauphine.

Birgin, Castillo & Mart´ınez (2005), Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems, Computational Optimization and Applications, 31.

Cai and Tan (2007), Optimal Retention for a Stop-Loss Reinsurance Under the VaR and CTE Risk Measures, Astin Bulletin 37(1), 93–112.

Centeno (1995), Excess of loss reinsurance and the probability of ruin in finite time, Astin Bull 27.

Centeno (2002b), Measuring the effects of reinsurance by the adjustment coeffcient in the sparreanderson model, Insurance: Mathematics and Economics 30, 37.

Davis.L (1991), The Genetic Algorithm Handbook, Ed. New- York: Van Nostrand Reinhold, ch.17.

De Finetti (1940), Il problema dei pieni, Giorn. Ist. Ital. Attuari, Vol 1, 1940.

Deestra & Plantin (2004), La réassurance, Economica, 2004.

Denuit (2004), Charpentier, Mathématiques de l’assurance non vie, tome 1: Principes fondamentaux de théorie du risqué,Economica 2004.

Dickson & Waters (1996), Reinsurance and Ruin, Insurance: Mathematics and Economics, Vol 19, 1996.

El hachloufi, Guennoun&F.Hamza (2012), Optimization of Stocks Portfolio Using Genetic Algorithms and Value at Risk,International Journal of Mathematics and Computation, Vol. 20.

G.Willmot & X.Lin (2001), Lundberg Approximations for Compound Distributions with Insurance Applications, Lecture Notes in Statistics, Volume 156 2001, publisher Springer.

Gerber & Dufresnes (1991b), Three methods to calculate the probability of ruin, Astin Bull. 19(1), 71/90.

Gerber & Shiu (1998), On the time value of ruin, North American Actuarial Journal 2, 48.

Goldberg (1989), Genetic Algorithms in search, optimization and Machine learning, Addison-Wesley.

Hald & Schmidli (2004), On the maximisation of the adjustment coefficient under proportional reinsurance, Astin Bulletin,

, 75 - 83.

J.Philippe (2006), Value at Risk: The New Benchmark for Managing Financial Risk A Hardback edition in English (1 Nov 2006).

Krvavych (2005), Insurer Risk Management and Optimal Reinsurance, PhD Thesis, The University Of New South Wales.

Lim & Zhou (2005), Mean-variance portofolio selection with random parameters, Mathematics of Operations Rescarch , vol.27, Iss. 1, p. 101-12l.

Lutton (1999), Algorithmes génétiques et Fractales, Dossier d’habilitation à diriger des recherches, Université Paris XI Orsay, 11 Février 1999.

M.Kaluszka & A.Okolewski (2008), An Extension of Arrow’s Result on Optimal Reinsurance Contract, The Journal of Risk and Insurance, 2008, Vol. 75, No. 2, 275-288.

M.Longué & Y.Darmaillac (2015), Les probabilités de Ruine sous le modèle classique de Gramer-Lundberg et sous le modèle ARMA, Available from: Yves Darmaillac, publications on ResearchGate.

Mathieu Boudreault (2010), Mathématiques du risque, Document de référence, Département de mathématiques,Université du Québec à Montréal.

P.Goffard (2015), Approximations polynomiales de densités de probabilité et applications en assurance, Thèse de doctorat,Université d’Aix-Marseille.

Panjer (2002), Measurement of Risk, Solvency Requirements, and Allocation of Capital within Financial Conglomerates,Research Report 01-14.

Patrick (2004), Reinsurance, Encyclopedia of Actuarial Science, Wiley, 1400-1403.

Petauton, Kessler & Bellando (2002), Théorie et pratique de l’assurance vie : manuel et exercices corrigés, Dunod.

Renders (1995), Algorithmes génétiques et Réseaux de Neurones, Editions HERMES.

Ross (2007), Introduction to Probability Models, 9th edition, Elsevier Inc.

Rytgaard (2004), Stop-loss reinsurance, Encyclopedia of Actuarial Science, Wiley.

S.Amédée & R.Francois (2004), Algorithme génétique, TE de fin d’année Tutorat de Philippe Audebaud.

S.Luoa, M.Taksarb & A.Tsoib (2008), On reinsurance and investment for large insurance portfolios, Insurance: Mathematics and Economics 42 (2008) 434–444.

Schmidli (2004), Asymptotics of Ruin Probabilities for Risk Processes under Optimal Reinsurance and Investment Policies: the Large Claim Case, Scand Actuarial J.


Full Text: PDF

DOI: 10.19139/soic.v7i2.322

Refbacks

  • There are currently no refbacks.