### Approximated Function Based Spectral Gradient Algorithm for Sparse Signal Recovery

#### Abstract

#### References

J. Barzilai, J.M. Borwein, Two point step size gradient method, IMA J. Numer. Anal. 8 (1988), 141-148.

E. Candès, J. Romberg, and T. Tao, Stable signal recovery from imcomplete and inaccurate information, Commun. Pure Appl. Math., 59 (2005), 1207-1233.

E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequence information, IEEE Trans. Inform. Theory, 52 (2006), 489-509.

X. Chen, D. Ge, Z. Wang, and Y. Ye, Complexity of unconstrained L2− Lp minimization, Math. Program., DOI 10.1007/s10107-012-0613-0.

X. Chen, F. Xu, and Y. Ye, Lower bound theory of nonzero entries in solutions of ℓ2-ℓp Minimization, SIAM J. Sci. Comput., 32 (2010), 2832-2852.

D.L. Donoho, For most large underdetermined systems of linear equations, the minimal l1-norm solution is also the sparsest solution, Comm. Pure Appl. Math., 59 (2006), 907-934.

D.L. DONOHO, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), 1289-1306.

Y.H. Dai, W.W. Hager, K. Schittkowski, H. Zhang, The cyclic Barzilai-Borwein method for unconstrained optimization, IMA J. Numer. Anal., 26 (2006), 604-627.

D. Ge, X. Jiang, and Y. Ye, A note on the complexity of Lp minimization, Math. Program.,129(2011), 285-299.

R. Gribnoval and M. Nielsen, Sparse decompositions in unions of bases, IEEE Trans. Info. Theory, 49(2003), 3320-3325.

E.T. Hale, W. Yin and Y. Zhang, Fixed-point continuation for ℓ1-minimization: Methodology and convergence, SAIM Journal on Optimization., 19 (2008), 1107-1130.

M. Raydan, On the Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, IMA J. Numer. Anal., 13 (1993), 321-326.

M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM J. Optim., 7 (1997), 26-33.

S.J. Wright, R.D. Nowak and M.A.T. Figueuredo, Sparse reconstruction by separable approximation, in proceedings of the International Conference on Acoustics, Speech, and Signal Processing, 2008, 3373-3376.

A.S. Weigend, D.E. Rumelhart, and B. A. Huberman (1991), Generalization by weight-elimination with application to forecasting, in Advances in Neural Information Processing Systems 3 (Denver 1990), R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Editors, 875-882. Morgan Kaufmann, San Mateo, CA.

Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang, A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation, SIAM Journal on Scientific Computing, 32 (2010), 1832-1857.

Z. Wen, W. Yin, H. Zhang and D. Goldfarb, On the convergence of an active-set method for ℓ1-minimization, Optimization Method and Software, 27 (2012), 1127-1146.

Y. Xiao, S.-Y. Wu and L. Qi, Nonmonotone Barzilai-Borwein Gradient Algorithm for ℓ1-Regularized Nonsmooth Minimization in Compressive Sensing, avaiable at http://arxiv.org/abs/1207.4538.

DOI: 10.19139/soic.v2i1.33

### Refbacks

- There are currently no refbacks.