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Locating Direction Finders Optimally under Risk of Detection
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Abstract The military uses direction finders (DFs) to determine the location of enemy forces by estimating the positions
of their transmitters, which emit radio frequencies. This paper considers the problem of locating DFs with the goal of
maximizing the accuracy with which transmitter positions can be estimated in a target area while managing the expected
number of DFs that will not be detected by the enemy. Once detected, a DF is subject to jamming or attack by the enemy. This
paper presents six models, each appropriate for a different battlefield situation. It casts three models as network flow problems
and presents an efficient label-setting algorithm to solve them. The remaining formulations represent novel applications of
the Conditional Value at Risk (CVaR) to deal with the probability of DF detection. Computational tests compare model
solutions.
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1. Introduction

A direction finder (DF) can estimate the direction from which a radio wave arrives at a location. This capability
finds many applications, including locating downed aircraft or disabled ships. In the military, a DF system with
multiple DFs can be used to identify the locale of enemy forces by estimating the position from which an enemy
transmitter emits radio frequencies (for a description of how a DF system operates, see [9]). It is important to
estimate enemy positions as accurately as possible while locating DFs to avoid detection by the enemy.

The research objectives of this study are threefold. The first is to formulate six models to locate DFs under
diverse battlefield situations, each of which deals explicitly with the probability that the enemy will detect a DF
in a different way. The second is to present an efficient label-setting algorithm to solve the models, each cast
as a constrained shortest-path problem with one equality and one greater-than-or-equal-to inequality. The third
objective is to perform computational tests to compare solutions prescribed by our formulations, to identify trade-
offs between the accuracy with which enemy transmitter positions can be estimated and the likelihood that the
enemy will detect DF locations, and to reveal insights that commanders can use as guidelines.

This work is motivated by the critical role that DFs play in the modern, electronic battlefield. The U.S. Army
field manual, FM 34-40-9 [1], which prescribes the use of DFs, emphatically states the need to assure that they
are located in such a manner as to avoid detection by the enemy. If the enemy is able to detect the location of a
DF, it may degrade DF capabilities by electronically jamming it or seek to destroy it, for example, by attacking it
using special forces, aircraft or artillery. Some prior research has proposed methods to locate DFs to maximize the
detection of enemy transmitters, but none has considered the possibility of DFs being detected by the enemy. This
paper, therefore, addresses a troublesome deficiency.
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Throughout this paper, we associate the term location uniquely with a DF and the term position uniquely with
an enemy transmitter. We assume that the DF system operator can identify potential locations for DFs; our models
prescribe a subset of them to locate DFs. We borrow several terms from U.S. Army field manuals FM 34-40-9 and
FM 101-5-1 [1, 2]. The forward line of own troops (FLOT) indicates the locus of the most forward friendly forces in
an Army operation. The expected target area (ETA) designates the area occupied by enemy forces. We use the term
locale to designate where enemy forces are within the ETA. DFs can be located on the side of the FLOT controlled
by friendly forces. Upon detecting an emission, a DF indicates the approximate direction, commonly called a line
of bearing (LOB), in which the transmitter (t) lies. Figure 1 depicts an example with the FLOT separating the
ETA and its likely transmitter positions from the area controlled by friendly forces, which includes potential DF
locations, the true LOBi from DF location ℓi to actual transmitter position t, and a LOBi that might actually be
reported by the DF at ℓi.

Figure 1. Conceptual depiction of a battlefield

Research on locating DFs is meager. Kennedy and Woolsey [6] suggested empirical strategies, recommending
that each pair of DFs be separated by at least the distance between the centroids of the ETA and of the DF locations
and that the locations of three or more DFs should not be co-linear. Lee et al. [10] contributed the first quantitative
method, a heuristic called the line method, which is based on simulation to maximize a measure of performance
they called the probability of coverage (POC) of likely transmitter positions. They defined POC as the probability
that the position t′ estimated by the line method will be within distance r of actual transmitter position t.

Lee et al. [10] and Kim and Wilhelm [8] argued that the accuracy with which a transmitter position is estimated is
highly dependent upon the locations of DFs relative to the position of a transmitter. That is, the DF system operator
must locate DFs so that the positions of transmitters within the ETA can be most accurately estimated. In this study,
we focus on locating DFs with the goal of accurately estimating the positions of enemy radio transmitters, while
managing the expected number of DFs that will not be detected by the enemy.

The body of this paper is organized in four sections. Section 2 briefly explains the deterministic version of the DF
deployment problem studied by Kim and Wilhelm [8]. Section 3 presents our six models of the DF location problem
and the solution methods we propose. Section 4 presents our computational tests and compares solutions prescribed
by our models. Finally, section 5 relates our conclusions and outlines fertile directions for future research.

2. Deterministic DF deployment problem

So that this paper is self-contained for reader convenience, we begin by describing the deterministic version of the
DF location problem. Kim and Wilhelm [8] proposed three methods that optimize a surrogate measure for POC
(see Lee et al, [10]) that is easier to compute. We briefly introduce one of the Kim-and-Wilhelm methods, which
we extend in this paper (see Kim and Wilhelm [8] for details). We explain how a DF system operates, supposing
a transmitter is positioned at t and DFs are deployed at locations l1, l2, and l3, numbered left to right, as shown
in Figure 2. Upon detecting an emission, DF i indicates the approximate direction, LOBi (i = 1, 2, 3). The LOBi
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includes an angular error (ϵi) that is typically assumed to follow a normal distribution with mean 0 and standard
deviation σi (i = 1, 2, 3) (Lee et al, [10], Stansfield [13]).

Figure 2. Error cones C1 and C2 formed by LOB1 ± σ1 and LOB2 ± σ2

Under the assumption that angular measurement error is normally distributed, the true LOBi plus and minus one
σi (i.e., LOBi ± 1σi) forms an error cone Ci that includes 68.2% of the bearing estimates that DF i would report.
Kim and Wilhelm [8] used the area of a quadrilateral formed by the intersection of the error cones generated by
two DFs as their surrogate measure and prescribed DF locations to minimize the sum of the surrogate measures
associated with adjacent pairs (i.e., l1 and l2, l2 and l3) of DFs.

By exploiting these surrogate measures, they cast the DF location problem as a resource constrained shortest-
path problem (CSPP) on the network in Figure 3, in which each node (except start and end nodes) represents a
potential DF location; and each arc, the selection of a pair of locations. Figure 3 illustrates such a network with
m = 6 potential DF locations; nodes s and e are dummy start and end nodes, respectively.

Figure 3. Network for DF location problem

A feasible path with n+ 2 nodes, including start and end nodes, prescribes the locations of n DFs. Based
on this network, Kim and Wilhelm [8] formulated the DF location problem as a CSPP, using the following notation:

Indices
i, j nodes: i < j
s start node
e end node
t likely transmitter position

Index sets
A arcs
N nodes N = 0, 1, ,m,m+ 1
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T likely transmitter positions
Parameters

m number of potential DF locations
n number of DFs to be located
rt probability that a transmitter is actually positioned at t
a(t, li, lj) area of the quadrilateral (i.e., the surrogate measure) formed by error cones associated with DFs

at locations li and lj and an enemy transmitter at position t

Decision variables
xij 1 if arc (i, j) ∈ A is selected, 0 otherwise.

The deterministic DF location problem (P) can be stated as

Model P:

Z∗
P = max

∑
(i,j)∈A

∑
t∈T

rta(t, li, lj)xij (1)

s.t.
∑
j∈N

xij −
∑
j∈N

xji =


1, i = s

0 i ̸= s, e

−1 i = e

(2)

∑
(i,j)∈A

xij = n+ 1 (3)

xij ∈ {0, 1}, (i, j) ∈ A (4)

The objective (1) is to maximize the sum of weighted surrogate measures with the goal of estimating the positions
of enemy transmitters as accurately as possible where ever they are among the set T of likely positions within the
ETA. Constraints (2) represent shortest-path constraints. Equality (3) is a side (i.e., resource) constraint, which
requires that exactly n nodes will be selected from among potential DF locations (the corresponding n+ 1 arcs
prescribed are also incident from the start, and to the end, nodes). Constraints (4) require all decision variables to
be binary. Because the network is acyclic, this problem can be solved as a minimization problem after multiplying
the objective function by -1. In this paper, we extend model P, incorporating uncertainty associated with the enemy
detecting DF locations.

Throughout this paper, we assume that likely transmitter positions within the ETA and potential DF locations
within the friendly area can be identified by the DF system operator. Positions are likely and locations are potential
if they are physically feasible and meet military requirements. Our models allow the probability of DF detection
to be specified for each potential location so that the distance from the FLOT as well as natural concealments can
be taken into consideration simply by assigning the appropriate probability. In our computational tests, we assume
that the probability that a DF will be detected by the enemy depends on its location relative to the FLOT. That is,
the probability that the enemy will detect a DF decreases as the distance from the FLOT increases.

3. Models and Solution Methods

This section presents our models in three sections. The first section describes two models based on expected values
and describes the solution method we propose; the second formulates two CVaR models; and the third gives a
scaled version of each type of model. Collectively, these models provide the battlefield commander the capability
to deal with a variety of battlefield situation.
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3.1. Expected Value Models

In this section, we present two formulations of the stochastic DF location problem, each of which uses the surrogate
measure of Kim and Wilhelm [8], and propose efficient solution methods.

3.1.1. Expected value constraint model

We propose an additional side constraint in problem P to incorporate the (perhaps) unique probability that
a DF will be detected at each potential location, assuming that these probabilities can be estimated by the military
commander or system operator. We now define some additional notation.

Parameters
pl probability that a DF at location l will remain undetected over the planning horizon
d minimum desirable expected number of DFs that remain undetected over the planning horizon.

DF deployment model P can be augmented by constraint (6), which requires that an expected number of at
least d DFs remains undetected over the planning horizon:

Model E1:

Z∗
E1 = max

∑
(i,j)∈A

∑
t∈T

rta(t, li, lj)xij (5)

s.t. (2)− (4)∑
(i,j)∈A

1

2
(pi + pj)xij ≥ d (6)

Given decision vector x, the left-hand-side of constraint (6) computes the expected number of DFs that remain
undetected over the planning horizon. Here, the term (pi + pj) is multiplied by 1/2 because, on a feasible path (i.e.,
in Figure 3), each node representing a DF location is counted twice, once at the head of an incoming arc and once
at the tail of an outgoing arc.

Kim and Wilhelm [8] modified the label-setting algorithm (LSA) of Desrochers and Soumis [4] to solve problem
P. Each label on a node represents a different path from the start node to that node and consists of a pair of numbers
representing the cost and the weight of the corresponding path. Dumitrescu and Boland [5] used LSA to solve the
weight-constrained shortest path problem (WCSPP) with one “≤” side constraint. Zhu and Wilhelm [16] extended
the LSA of Dumitrescu and Boland [5] to solve the multiple resource constrained shortest path problem (MRCSP),
which has more than one “≤” side constraints.

Note that model E1 has two side constraints: one “≥” constraint (6) and one equality (3). To deal with these
constraints, we modify certain definitions used by Dumitrescu and Boland [5]. We let Li denote the index set of
labels associated with node i; Ei, the index set of labels associated with node i; and Ti ⊆ Ei, the index subset of
labels associated with node i that have been treated. For each k ∈ Ei, let P k

i denote the path from the start node
to node i; W k

i,= (W k
i,≥), its cumulative weight corresponding to the “=” (“≥”) constraint; and Ck

i , its cumulative
objective function value. We use the following definitions.

Definition 1. For two different paths, P k
i and P l

i , into node i, label (W k
i,=,W

k
i,≥, C

k
i ) dominates (W l

i,=,W
l
i,≥, C

l
i)

if and only if W k
i,= ≥ W l

i,=,W
k
i,≥ ≥ W l

i,≥, C
k
i ≤ Cl

i and at least one of the inequalities holds at strict inequality.
Definition 2. If label (W k

i,=,W
k
i,≥, C

k
i ) is not dominated by any other label at node i, the label is said to be efficient

and the corresponding path P k
i is said to be efficient.

With these definitions, our modified LSA identifies all efficient labels for every node so that a solution can
be found by processing the end node. We now detail our modified LSA for model E1.
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STEP 0. Set L0 = {(0, 0, 0)}, E0 = {1} and Li = Ei = ∅ for all i ∈ N \ {0}
Set Ti = ∅ for each i ∈ N and U = ∞

STEP 1. for i = 0, 1, . . . ,m
(i) while Ei \ Ti ̸= ∅

choose k = argmink′∈Ei\Ti

(
W k′

i,=

)
(ii) for all (i, j) ∈ A with W k

i,= + wij= ≤ n+ 1 and Ck
i + cij ≤ U

(iii) if (W k
i,= + wij=,W

k
i,≥ + wij≥, C

k
i + cij) is not dominated

by (W l
i,=,W

l
i,≥, C

l
i) for any l ∈ Ej

then set Lj = Lj ∪ {(W k
i,= + wij=,W

k
i,> + wij>, Ck

i + cij)}
and add a corresponding index to Ej

(iv) if W k
i,= + wij= = n+ 1,W k

i,> + wij> ≥ d and Ck
i + cij < U

then U = Ck
i + cij

set Ti = Ti ∪ {k}

STEP 0 initializes labels L0 and E0 for the start node, assuming its index number is 1 (i.e., E0 = {1}). STEP 1
(i) selects a label associated with node i that is minimal with respect to W k

i,=. STEP 1 (ii) treats the selected label,
dealing with arc (i, j), which is incident from node i with W k

i,= + wij= ≤ n+ 1 and Ck
i + cij ≤ U . STEP 1 (iii)

adds a new label at the selected node j only if it is not dominated by any other label on node j. If the W= and W≥
associated with the added label are feasible with respect to side constraints (3) and (6), respectively, and, further,
associated cost C is less than the current objective function value, STEP 1 (iv) updates upper bound U . Unlike
other label-setting algorithms [4, 16], our algorithm can update the upper bound without preprocessing, because
the structure of our network assures that the equality constraint is satisfied at each node that is directly connected
to the end node.

3.1.2. Expected value objective model

Model E1 includes constraint (6), which may lead to infeasibility if the right-hand side value d is large.
Thus, we also propose model E2, which incorporates the expected number of undetected DFs in the objective
function, allowing the commander to locate DFs so that the optimal number of DFs remain undetected over the
planning horizon. Kim and Wilhelm [8] demonstrated that model P locates DFs as closely as possible to FLOT to
enhance the accuracy with which transmitter positions can be estimated. However, as DFs approach the FLOT, the
risk posed by the enemy may increase as the likelihood of DF detection may increase. Therefore, this model can
evaluate the trade-off between position-estimation accuracy and the number of DFs that remain undetected over
the planning horizon.

Model E2:

Z∗
E2 = max

∑
(i,j)∈A

∑
t∈T

rta(t, li, lj)xij +
∑

(i,j)∈A

1

2
(pi + pj)xij (7)

s.t. (2)− (4)

Objective function (7) maximizes the sum of the surrogate measures and the expected number of undetected DFs.
Model E2 incorporates constraints (2)-(4) as does model P. Thus, we propose that it be solved using the modified
LSA discussed by Kim and Wilhelm [8].

3.2. CVaR models

In actual situations, it may not be possible to estimate probability pi accurately. To compensate, we formulate
robust DF location models based on the CVaR measure. One way to cope with risk caused by uncertainty is to plan
for the worst-case scenario.
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Value at risk (VaR) is a measure of risk that is a widely used in finance; it prescribes the maximum loss by
specifying a confidence level (CL). Although VaR is a popular measure of risk, it has shortcomings in optimization
problems; in particular, it is not a convex measure. CVaR, an alternative measure of risk that satisfies convexity
(Artzner et al, [3]), has been applied successfully in a number of areas, including investment portfolios (Rockafellar
et al, [12]), target assignment to weapons (Krokhmal et al, [9]), and hazardous material transportation (Toumazis
et al, [14]). In many military applications, a decision must not only be effective on average, but also safe enough
under a wide range of possible scenarios. In this sense, CVaR can be an appropriate measure. Formal definitions of
VaR and CVaR can be found in [12, 15].

3.2.1. CVaR constraint model

We now incorporate function CVaR in the DF location problem, using the following additional notation.
Scenarios may be constructed based on historical data of detection in different environments, simulated data,
commanders assessment, or experts views (e.g., Delphi method).

Index
s scenario

Index set
S scenarios

Parameters
pls probability that a DF at location l will remain undetected over the planning horizon under enemy attack

scenario s
Ps probability that attack scenario s is realized

VaR and CVaR were proposed to cope with risk in the financial industry and are widely used to measure the
risk associated with portfolios. In general, risk management in this industry aims to reduce, if not prevent, high
losses caused by bad decisions. A loss function, which depends on decisions and vectors of uncertain parameters,
is used to quantify the loss. Because we consider the expected number of undetected DFs as a loss, we multiply
this number by -1 so that the loss is actually beneficial. Letting g(x, s) be the loss function related to decision x
under scenario s, we have

g(x, s) =
∑

(i,j)∈A

1

2
(pis + pjs)xij ,

so that the corresponding CVaR measure (or β-CVaR) is

α+
1

1− β

∑
s∈S

Ps[g(x, s)− α]+, α ∈ R.

By restricting CVaR ≤ −d, requiring the expected number of undetected DFs in the (1-β)100% worst cases to be
greater than or equal to d, we obtain the following CVaR model :

Z∗
C1 = max

∑
(i,j)∈A

∑
t∈T

rta(t, li, lj)xij (8)

s.t. (2)− (4)

α+
1

1− β

∑
s∈S

Ps[g(x, s)− α]+ ≤ −d (9)

α ∈ R. (10)
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Constraint (9) imposes CVaR≤ −d. Constraint (10) indicates that α is not sign restricted. By introducing an
auxiliary, nonnegative variable associated with scenario s ∈ S, zs, constraint (9) can be linearized as follows:

α+
1

1− β

∑
s∈S

Pszs ≤ −d (11)

g(x, s)− α− zs ≤ 0 s ∈ S (12)
zs ≥ 0 s ∈ S (13)

3.2.2. CVaR objective model

Constraint (9) forces the expected number of undetected DFs to be more than d, even in the (1− β)100%
worst cases. This implies that model C1 is quite conservative and, therefore, more likely to be infeasible than
model E1, assuming that both models are applied to the same instance. Thus, we also propose a model that
incorporates CVaR along with the surrogate measure in the objective function so that trade-offs between the
accuracy with which enemy transmitter positions are estimated and the risk of DF detection can be assessed as
with (7).

Model C2:

Z∗
C2 = max

∑
(i,j)∈A

∑
t∈T

rta(t, li, lj)xij − (α+
1

1− β

∑
s∈S

Pszs) (14)

s.t. (2)− (4), (10), (12), (13)

Objective function (14) maximizes the sum of the surrogate and revised CVaR measures. Because CVaR is
the conditional expectation of loss, we include CCVaR in the maximizing objective function with the goal of
minimizing CVaR.

3.3. Scaling measures

The objective functions of models E2 and C2 ((7) and (14), respectively) each add two measures, one of which
may be expressed in units that are much larger than the other, artificially ascribing a higher level of importance to
that measure. To rectify this imbalance so that meaningful trade-off analysis of the accuracy of transmitter-position
estimation accuracy vs the expected number of DFs that remain undetected can be undertaken, we scale each
summation.

We scale the first summation in (7) by solving model P (1)-(4) to obtain Z∗
P and solve

max
{∑

(i,j)∈A
1
2 (pi + pj)xij : (2), (3), and(4)

}
to obtain pmax. The resulting, scaled version of E2, SE2, is

Z∗
SE2 = max

w

Z∗
P

∑
(i,j)∈A

∑
t∈T

rta(t, li, lj)xij +
(1− w)

pmax

∑
(i,j)∈A

1

2
(pi + pj)xij (15)

s.t. (2)− (4)

Scaling puts both measures on a common scale between 0 and 1. We also weight the terms with w and (1− w),
respectively, where 0 ≤ w ≤ 1. Similarly, we scale the summations in (14) using Z∗

P and obtain qmax by solving

max
{
−
(
α+ 1

1−β

∑
s∈S Pszs

)
: (2), (3), (4), (10), (12), and (13)

}
. The scaled, weighted version of C2, SC2, is

Z∗
SE2 = max

w

Z∗
P

∑
(i,j)∈A

∑
t∈T

rta(t, li, lj)xij −
(1− w)

qmax
(α+

1

1− β

∑
s∈S

Pszs) (16)

s.t. (2)− (4), (10), (12), (13)
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We test three values of w (w = 0.25, 0.5, or 0.75) to weigh the accuracy of position estimation and DF detection
measures in objective functions (15) and (16) in a sensitivity analysis.

4. Computational evaluation

In this section, we compare solutions obtained computationally from models P, E1, E2, SE2, C1, C2, and SC2. We
implement the algorithms for solving P, E1, E2, and SE2 in C/C++ and use CPLEX to solve C1, C2, and SC2,
performing all computations on a Dell PC running a 2.67 GHz CPU with Windows 7 and 2 GB RAM.

4.1. Test instances

We use test instances generated by Kim and Wilhelm [8]. Because there may be a large number of likely positions
and potential locations, they placed a grid over a military map, defining cells of specified size and considering the
centers of certain cells as likely transmitter positions or potential DF locations. Their tests involved three factors,
each with either two or three levels: the shapes of FLOTs (convex or concave), distributions of likely transmitter
positions (left-skewed, centered, and right-skewed), and sizes of grids (1× 1km2, .5× .5km2, and .25× .25km2).

We select convex and concave shapes of the FLOT to study the effects of different geometries, not because of
their prevalence on actual battlefields. We use instances with large numbers of potential DF locations (i.e., instances
with .5× .5km2 or .25× .25km2 cells). Each instance has 1, 2, or 3 groups of cells (G1, G2, G3) representing likely
transmitter positions. The rows of Table 1 specify these 12 test instances; columns give, respectively, instance
number; cell size; number of DF locations (m) and transmitter positions (|T |); and the rt, which we assume is the
same for each cell in each group.

Table 1. Performance of Random Variable Partition

Inst. Cell Size m |T | rt Inst. Cell Size m |T | rt
(km2) G1 G2 G3 (km2) G1 G2 G3

1 .25× .25 454 731 0.4 0.6 7 .5× .5 114 200 0.4 0.6
2 .25× .25 483 642 0.8 8 .5× .5 124 161 0.8
3 .25× .25 483 836 0.4 0.7 0.5 9 .5× .5 118 198 0.4 0.7 0.5
4 .25× .25 487 690 0.6 0.4 10 .5× .5 137 162 0.6 0.4
5 .25× .25 500 570 0.8 11 .5× .5 126 142 0.8
6 .25× .25 504 744 0.8 0.6 0.4 12 .5× .5 121 187 0.8 0.6 0.4

Two DFs can estimate the position of a transmitter but U.S. Army FM 34-40-9 [1] recommends that at least three
DFs be used to enhance position-estimation accuracy. Thus, we consider systems with either 4 or 5 DFs, requiring
the minimum desirable expected number of undetected DFs to be d = 3. For each instance, we divide the area on
the friendly side of the FLOT into three regions (R1, R2, and R3), each of 1 km width, and assume that all cells
in a given region have the same probability of DF detection. Figure 4 depicts these regions for both convex and
concave FLOTs.

For CVaR models C1 and SC2, we set CL β = 0.9 and use 5 probability scenarios pls : s ∈ S = {1, . . . , 5}. We
assume that all scenarios are equally probable (i.e., Ps = Pq, s, q ∈ S, s ̸= q) and that the probability of detecting a
DF at a location is determined by its proximity to FLOT. Table 2 displays the values we assume for the probability
that a DF will remain undetected in each cell in each region under each scenario. Expected value models E1 and
SE2 use the probabilities that a DF will remain undetected given in the last column; each of these values is averaged
over the five scenarios.
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(a) Convex FLOT (b) Concave FLOT

Figure 4. Probabilities of DF detection by the enemy

Table 2. Probability that a DF will remain undetected in each region under each scenario

Region\Scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Average
R1 0.55 0.60 0.65 0.70 0.75 0.65
R2 0.65 0.70 0.75 0.80 0.85 0.75
R3 0.75 0.80 0.85 0.90 0.95 0.85

4.2. Computational results

We first compare the objective function values and DF locations prescribed by three models P, E1 and C1. Recall
that models, P, E1, and C1 have the same objective function.

Table 3. Results of models P, E1, and C1 (.25× .25km2) cells

(1) (2) (3) (4) (5) (6) (7) (8)

# of DFs Inst. Model P Model E1 Model C1
Z∗
P Locations Z∗

E1 Locations Z∗
C1 Locations

4 DFs

1 201.30 1,1,1,1 185.93 2,1,3,1 142.66 2,3,3,3
2 282.01 1,1,1,1 254.41 2,1,2,1 213.99 3,3,3,3
3 282.26 1,1,1,1 248.50 3,3,1,1 208.38 2,3,3,3
4 204.97 1,1,1,1 185.88 2,1,2,2 150.35 3,3,3,3
5 176.52 1,1,1,1 161.73 2,1,2,2 130.70 3,3,3,3
6 221.05 1,1,1,1 197.24 2,2,1,2 165.33 3,3,3,3

5 DFs

1 210.67 1,1,1,1,1 210.67 2,1,1,1,1 201.38 2,1,1,3,1
2 295.08 1,1,1,1,1 295.08 1,1,1,1,1 279.61 3,2,1,1,1
3 293.04 1,1,1,1,1 293.04 1,1,1,1,1 293.04 1,1,1,1,1
4 216.73 1,1,1,1,1 216.73 1,1,1,1,1 203.82 2,1,1,1,3
5 180.85 1,1,1,1,1 180.85 1,1,1,1,1 172.52 1,1,1,2,3
6 239.69 1,1,1,1,1 239.69 1,1,1,1,1 226.97 3,1,2,1,1

Table 3 displays results of tests on instances with .25× .25km2 cells. Rows 4-9 (10-15) give objective function
values and DF locations for 4 DFs (5 DFs). Columns 1 and 2 give the number of DFs to be located and the
instance number, respectively. Columns 3, 5, and 7 display the objective function values for each of the three
models. Numbers in columns 4, 6, and 8 give the indices of the region (i.e., Ri, i = 1, 2, 3) in which each of the 4,
respectively 5, DFs is located.

We first compare objective function values for 4 DFs. Z∗
E1 and Z∗

C1 are less, respectively, by 12.3% and 24.7%,
on average, than Z∗

P . These decreases in the objective function values result from deploying DFs further away from
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the FLOT, increasing the probability that a DF will remain undetected at the expense of reducing the accuracy with
which transmitter positions can be estimated. Tests conducted by Kim and Wilhelm [8] showed that DFs deployed
in cells adjacent to the FLOT enhance transmitter-position estimation accuracy. As shown in Table 3, models E1
and C1 locate some or all DFs away from the FLOT to satisfy constraints (6) and (9), respectively, increasing the
expected number of DFs that remain undetected. Results indicate that locations prescribed by model P can estimate
transmitter position most accurately and those prescribed by model C1 have the most desirable levels of detection.

With 5 DFs, objective function values Z∗
P , Z

∗
E1 and Z∗

C1 are nearly the same. For each instance, model E1 gives
the same objective function value that model P gives. Z∗

C1 is 3.81% less than Z∗
P , on average. Columns 4, 6, and 8

show that these three models locate most DFs in region R1, which has the highest DF-detection probability. This
seems counter-intuitive but results because it is more likely for 5 DFs to satisfy the requirement that at least d = 3
DFs remain undetected than 4 DFs, even if DFs at forward locations have higher probability of detection. Results
also show that model C1 prescribes the most conservative (i.e., risk adverse) locations with some DFs in regions
R2 and R3.

Because of space limitations, we show results graphically for only instance 1, which is, however, typical. Figure
5 depicts the 4 DF locations prescribed by each of the three models: P, E1 and C1. Groups of Cells (rectangle-
shaped) above the FLOT represent likely transmitter positions and white and black dots below the FLOT denote
the potential and selected DF locations, respectively.

Figure 5 (b) shows that model E1 does not deploy all DFs in cells adjacent to FLOT; it locates 2 DFs in region
R1, 1 DF in region R2, and 1 DF in region R3. DFs in regions R2 and R3 have high enough probabilities of a
DF remaining undetected to satisfy constraint (6). However, transmitter position-estimation accuracy decreases,
resulting in a decreased objective function value in comparison with model P. Model C1, which incorporates the
CVaR constraint, locates all DFs in region R3 where DF detection probability is the lowest. This shows that the
CVaR-constrained model prescribes DF locations that estimate enemy positions with lesser accuracy but the most
risk adverse set of DF locations.

(a) Model P (b) Model E1 (c) Model C1

Figure 5. DF locations for models P, E1, and C1

We now analyze the sensitivity of weight w, using the results of weighted, scaled models SE2 and SC2. Table
4 displays results for instances with 4 DFs (We have the similar result from 5 DFs). Columns 1 and 2 provide
the number of DFs to be located and the instance number, respectively. Column 3 gives , the weight assigned to
transmitter-positon estimation accuracy each instance. Columns 4 and 6 (5 and 7) display the objective function
values (the region in which each DF is located) for each of the two scaled models.

Objective function values Z∗
SE2 and Z∗

SC2 are nearly the same, as shown in Table 4. Results show that DF
locations depend on w values. As w increases (i.e., transmitter position estimation accuracy is weighted more
heavily than the DF- detection measure), DFs tend to approach FLOT to increase position-estimation accuracy.
When w = 0.50, however, both models tend to deploy some DFs away from FLOT and some DFs close to FLOT.
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Table 4. Results of models SE2 and SC2 (.25× .25km2) cells

(1) (2) (3) (4) (5) (6) (7)

# of DFs Inst. w
Model SE2 Model SC2

Z∗
SE2 Locations Z∗

SC2 Locations

4 DFs

1
0.25 0.93 3,3,3,3 0.93 3,3,3,3
0.50 0.90 2,3,1,1 0.88 2,1,1,1
0.75 0.95 2,3,1,1 0.94 2,1,1,1

2
0.25 0.94 3,3,3,3 0.94 3,3,3,3
0.50 0.89 3,1,1,1 0.88 3,1,3,1
0.75 0.94 1,1,1,1 0.93 1,1,1,1

3
0.25 0.91 3,3,3,1 0.98 2,1,1,1
0.50 0.89 3,1,1,1 0.97 1,1,1,1
0.75 0.94 1,1,1,1 0.98 1,1,1,1

4
0.25 0.93 3,3,3,3 0.93 3,3,3,3
0.50 0.88 3,3,1,1 0.88 3,3,1,1
0.75 0.94 1,1,1,1 0.93 1,1,1,1

5
0.25 0.94 3,3,3,3 0.94 3,3,3,3
0.50 0.89 2,3,1,1 0.88 3,2,2,2
0.75 0.94 2,3,1,1 0.94 3,1,2,3

6
0.25 0.93 3,3,3,3 0.94 2,3,3,3
0.50 0.89 3,1,1,1 0.89 2,3,3,3
0.75 0.94 1,1,1,1 0.93 3,1,3,1

These results show that there is a trade-off between the accuracy of position estimation and the DF detection
measure. Using instances with cell sizes of .5× .5km2, we obtain results that are similar to those discussed in
detail above, which have cell size .25× .25km2 . Thus, we omit the detailed explanation.

Finally, we compare the run times required by our modified label-setting algorithm and CPLEX 12.1.0. We
only test instances with the .25× .25km2 cells because they require longer run times than those with .5× .5km2

cells. Table 5 displays results. In the table, columns 3, 5, and 7 provide the runtimes required by the label-setting
algorithm in application to model P, E1, and E2, respectively. Columns 4, 6, and 8 give the CPLEX runtimes that
correspond to those in columns 3, 5, and 7, respectively.

Results show that the LSA outperforms CPLEX relative to runtimes. Results also show that LSA runtime
increases with the number of constraints (see P vs. E1 and E1 vs. E2). This relationship is due to the fact that
LSA is a pseudo-polynomial time algorithm: its runtime depends on the number of constraints and the magnitude
of right-hand-side values (Desrochers et al, [4]; Zhu et al, [16]).

5. Conclusions and recommendations for future research

On the battlefield, both friend and foe attempt to seek and destroy the other side. This is the first study to incorporate
the possibility of DF detection by the enemy in the DF location problem, which holds the goal of maximizing the
accuracy of transmitter-position estimation while hedging against the risk of DF detection by the enemy.

Our computational tests identify trade-offs between the accuracy with which enemy transmitter positions are
estimated and the risk of DF detection. These tradeoffs, which have not been identified by previous research,
provide useful guidelines to support a commanders decisions on the battlefield. Our models reveal insights that can
help a field commander in locating DFs whether optimization models are used or not. These insights complement
the information provided by the FM 34-40-9 (Army [1]), a recognized source used by militaries around the world.
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Table 5. Comparison of runtimes (secs.) (.25× .25km2) cells

(1) (2) (3) (4) (5) (6) (7) (8)

# of DFs Inst. Model P Model E1 Model E2
LSA CPLEX LSA CPLEX LSA CPLEX

4 DFs

1 0.00 1.03 0.06 3.29 0.00 1.95
2 0.00 1.11 0.06 6.63 0.02 2.78
3 0.00 1.19 0.06 3.35 0.00 2.25
4 0.01 1.31 0.06 2.79 0.01 3.31
5 0.00 1.40 0.07 3.11 0.01 3.18
6 0.02 2.32 0.06 5.48 0.02 2.46

Avg. 0.005 1.727 0.061 4.108 0.01 2.655

5 DFs

7 0.00 0.97 0.06 4.88 0.00 2.29
8 0.02 1.11 0.07 4.51 0.00 2.84
9 0.00 1.33 0.07 3.18 0.00 3.10
10 0.00 1.28 0.07 3.73 0.02 2.95
11 0.02 3.70 0.08 2.96 0.02 3.43
12 0.02 2.93 0.08 7.92 0.00 2.96

Avg. 0.01 1.887 0.071 4.530 0.007 2.928

If 4 DFs are used, models E1 and C1 tend to locate some or all DFs far from the FLOT to reduce risk. In
particular, model C1 deploys all DFs (except instances 1 and 3) in region R3 which offers the best probability that
a DF will remain undetected (i.e., it is a risk-adverse solution). However, model C1 prescribes DF locations that
estimate enemy positions with lesser accuracy. Results also show that solutions are very different from each other
but objective function values are not, which indicates that the surrogate measure can be used to prescribe optimal
locations but that solutions can give similar objective function values.

If 5 DFs are used, models P and E1 deploy most DFs in region R1; even though the probability that a DF in that
region will be detected by the enemy is high compared with other regions, the expected number of DFs that will
remain undetected will satisfy constraint (6). A system with 5 DFs improves the number of undetected DFs . If
either 4 or 5 DFs are used, model C1 locates some DFs in regions R2 and R3 to hedge against the (1− β)% worst
cases.

Whether 4 or 5 DFs are deployed, Models E2 and C2 are sensitive to weight w. Both models with weight
w = 0.75(w = 0.25) locate most DFs in region R1(R3). With weight w = 0.50, both models locate DFs in regions
R1, R2, and R3 to balance the accuracy of estimating transmitter positions with the number of DFs that will remain
undetected.

The paper offers options for the commander to select a model that best suits battlefield conditions. In particular,
it is often the case that time is of the essence on the battlefield and the label-setting algorithm we propose can solve
any of the E models very quickly, enabling a commander to cope with an imminent enemy attack.

A commander can use an E model if s/he is most interested in the number of DFs that can be expected to remain
undetected and a C model if s/he is risk averse. One might expect an aggressive commander on the offensive to
select an E model and one that is beleaguered or primarily on the defensive to select a C model. If the constraints
in model E1 (C1) cannot be satisfied, the commander can resort to model E2 (C2), essentially to achieve the best
number of undetected DFs possible under battlefield conditions. Including both criteria in the objective allows the
commander to assess tradeoffs between the two (perhaps) conflicting goals. Finally, models SE2 and SC2 allow the
commander to weight each of the two components of the objective function to reflect his/her personal assessment
of battlefield conditions. Our models deploy DFs according to the shape of FLOT, a practice that Army FM 34-40-
9 (Army [1]) recommends. Thus, our results also reveal insights that complement the manual, providing decision
support for the field commander.
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Instead of dealing with risk by considering the expected number of DFs that remain undetected, future research
could work with the probability that 2 or more DFs will remain undetected, corresponding to the fact that at least
2 DFs are needed to estimate a transmitter position. In this and other studies associated with DF location (Kim et
al, [8]; Lee et al, [10]), authors assumed that the probability that a transmitter will actually be in a likely position
is known. However, it may be hard to know this probability on a real battlefield. In addition, at least three DFs are
required to estimate the position of a transmitter accurately. Therefore, future research could address DF location
to maximize the expected number of likely transmitter positions that are covered by at least three DFs.
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