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Abstract In this paper, we consider the problem of the mean square optimal estimation of linear functionals which depend
on unknown values of a stationary stochastic sequence based on observations of the sequence with a stationary noise.
Formulas for calculating the mean-square error and the spectral characteristic of the optimal linear estimate of the functional
are derived under the condition of spectral certainty, where spectral densities of the sequences are exactly known. The
minimax (robust) method of estimation is applied in the case of spectral uncertainty, where spectral densities of the sequences
are not known exactly while sets of admissible spectral densities are given. Formulas that determine the least favorable
spectral densities and the minimax spectral characteristics are proposed for some special sets of admissible densities.
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1. Introduction

The problem of estimation of unknown values of stochastic processes is of great interest both in the theory of
stochastic processes and applications of this theory to the data analysis in such fields of science as oceanography,
meteorology, astronomy, radio physics, statistical hydromechanics etc. Efficient solution methods of estimation
problems (interpolation, extrapolation and filtering) of stationary sequences were developed by Kolmogorov
(see selected works by Kolmogorov [15]). Constructive methods of solution of the estimation problems for
stationary stochastic processes were proposed by Wiener [43] and Yaglom [44, 45]. Detailed description and further
development of the methods can be found in the books by Rozanov [41], Hannan [10], Brockwell and Davis [3],
Pourahmadi [37].

The crucial assumption of most of the methods of estimation of the unobserved values of stochastic processes is
that the spectral densities of the stochastic processes considered are exactly known. However, in practice, complete
information on the spectral densities is impossible in most cases. To solve the problem in this case one usually
finds parametric or nonparametric estimates of the unknown spectral densities and then, under assumption that
the estimated densities are the true ones, one applies the traditional estimation methods. This procedure can result
in significant increasing of the value of error as Vastola and Poor [42] have demonstrated with the help of some
examples. To avoid this effect it is reasonable to search estimates which are optimal for all densities from a certain
class of admissible spectral densities. These estimates are called minimax since they minimize the maximum value
of the error. This method was first proposed in the paper by Grenander [9] where this approach was applied to
extrapolation problem for stationary processes. In the survey paper by Kassam and Poor [14] the minimax-robust
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methods of data processing are described and several models of spectral uncertainty are analysed. A method of
solution of problems of minimax extrapolation and interpolation of stationary sequences which is based on convex
optimization methods is proposed in the works by Franke [5], Franke and Poor [6]. This approach makes it possible
to find equations that determine the least favorable spectral densities for different classes of densities.

In the papers by Moklyachuk [23]-[27] the problem of optimal estimation of the functionals which depend on
the unknown values of stationary processes were investigated. Solution methods of interpolation, extrapolation and
filtering problems for periodically correlated stochastic processes are described in the book by Moklyachuk and
Golichenko [28]. The corresponding estimation problems for vector-valued stationary processes are described in
the book by Moklyachuk and Masyutka [29]. Estimation problems for functionals which depend on the unknown
values of stochastic sequences with stationary increments were investigated by Luz and Moklyachuk [17]-[22].
The problems of estimation of stationary sequences and processes with missing values were investigated by
Moklyachuk and Sidei [30]-[35]. Prediction problems for stationary processes with missing observations were
investigated in works by Cheng et al. [4], Bondon [1, 2], Kasahara et al. [13], Pourahmadi et al. [38], Pelagatti
[36].

In this paper we present results of investigation of the problem of the mean-square optimal estimation of the linear

functional Aξ =
∞∑
j=0

a(j)ξ(j) which depends on the unknown values of a stationary sequence {ξ(j), j ∈ Z} from

observations of the sequence ξ(j) + η(j) at points j ∈ Z−\S = {. . . ,−2,−1}\S, S =
s∪

l=1

{−Ml −Nl,−Ml −

Nl + 1, . . . ,−Ml}, Ml =
l∑

k=0

(Nk +Kk), N0 = 0, K0 = 0. The problem is investigated in the case of spectral

certainty where the spectral densities of the sequences {ξ(j), j ∈ Z} and {η(j), j ∈ Z} are exactly known and in
the case of spectral uncertainty where the spectral densities are not exactly known while a set of admissible spectral
densities is given.

2. Hilbert space projection method of extrapolation

Let {ξ(j), j ∈ Z} and {η(j), j ∈ Z} be stationary stochastic sequences with zero mean values:Eξ(j) = 0,Eη(j) =
0 and correlation functions which admit the spectral decomposition (see Gikhman and Skorohod [8])

Rξ(k) = Eξ(j + k)ξ(j) =
1

2π

π∫
−π

eikλf(λ)dλ, Rξη(k) = Eξ(j + k)η(j) =
1

2π

π∫
−π

eikλfξη(λ)dλ,

Rηξ(k) = Eη(j + k)ξ(j) =
1

2π

π∫
−π

eikλfηξ(λ)dλ, Rη(k) = Eη(j + k)η(j) =
1

2π

π∫
−π

eikλg(λ)dλ,

where f(λ), fξη(λ), fηξ(λ), g(λ) are spectral densities of the stationary sequences such that the minimality
condition holds true

π∫
−π

1

f(λ) + fξη(λ) + fηξ(λ) + g(λ)
dλ <∞. (1)

This condition guarantees that the mean-square error of the mean-square optimal estimate of the functional is
nonzero (see Rozanov [41]).

Stationary sequences ξ(j) and η(j) admit spectral decomposition (see Gikhman and Skorohod [8]; Karhunen
[12])

ξ(j) =

π∫
−π

eijλZξ(dλ), η(j) =

π∫
−π

eijλZη(dλ), (2)
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214 EXTRAPOLATION PROBLEM FOR SEQUENCES WITH MISSING OBSERVATIONS

where Zξ(dλ) and Zη(dλ) are orthogonal stochastic measures such that the following relations hold true

EZξ(∆1)Zξ(∆2) =
1

2π

∫
∆1∩∆2

f(λ)dλ, EZξ(∆1)Zη(∆2) =
1

2π

∫
∆1∩∆2

fξη(λ)dλ,

EZη(∆1)Zξ(∆2) =
1

2π

∫
∆1∩∆2

fηξ(λ)dλ, EZη(∆1)Zη(∆2) =
1

2π

∫
∆1∩∆2

g(λ)dλ.

Consider the problem of mean-square optimal linear estimation of the functional

Aξ =

∞∑
j=0

a(j)ξ(j)

which depends on the unknown values of the sequence {ξ(j), j ∈ Z} from observations of the sequence ξ(j) + η(j)

at points j ∈ Z−\S, where S =
s∪

l=1

{−Ml −Nl, . . . ,−Ml}.

Making use of the spectral decomposition (2) of the sequence ξ(j) we can represent the functional Aξ in the
form

Aξ =

π∫
−π

A(eiλ)Zξ(dλ), A(eiλ) =

∞∑
j=0

a(j)eijλ.

We will suppose that the coefficients {a(j), j = 0, 1, . . .} which determine the functional Aξ are such that the
following conditions

∞∑
k=0

|a(k)| <∞,

∞∑
k=0

(k + 1) |a(k)|2 <∞ (3)

are satisfied.The first condition ensures that the functional Aξ has a finite second moment since E|Aξ|2 ≤

Rξ(0)

( ∞∑
k=0

|a(k)|
)2

. The second condition ensures the compactness in ℓ2 of the operators that will be defined

below.
Denote by Âξ the optimal linear estimate of the functional Aξ from the known observations of the sequence

ξ(j) + η(j) at points j ∈ Z−\S. Since the spectral densities of the stationary sequences ξ(j) and η(j) are known,
we can use the Hilbert space method proposed by A. N. Kolmogorov (see selected works by Kolmogorov [15]) to
find the estimate Âξ.

Consider values ξ(j) and η(j) of the sequences as elements of the Hilbert space H = L2(Ω,F , P ) generated
by random variables ξ with 0 mathematical expectations, Eξ = 0, finite variations, E|ξ|2 <∞, and inner product
(ξ, η) = Eξη. Denote by Hs(ξ + η) the closed linear subspace generated by elements {ξ(j) + η(j) : j ∈ Z−\S}
in the Hilbert space H = L2(Ω,F , P ). Let L2(f + g) be the Hilbert space of complex-valued functions that
are square-integrable with respect to the measure whose density is f(λ) + fξη(λ) + fηξ(λ) + g(λ). Denote by
Ls
2(f + g) the subspace of L2(f + g) generated by functions {eijλ, j ∈ Z−\S}.
The mean-square optimal linear estimate Âξ of the functional Aξ from observations of the sequence ξ(j) + η(j)

is of the form

Âξ =

π∫
−π

h(eiλ)(Zξ(dλ) + Zη(dλ)), (4)

where h(eiλ) ∈ Ls
2(f + g) is the spectral characteristic of the estimate.
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The mean-square error of the estimate Âξ is given by the formula

∆(h;F ) = E
∣∣∣Aξ − Âξ

∣∣∣2 =

=
1

2π

π∫
−π

∣∣A(eiλ)− h(eiλ)
∣∣2 f(λ)dλ+

1

2π

π∫
−π

∣∣h(eiλ)∣∣2 g(λ)dλ
− 1

2π

π∫
−π

(
A(eiλ)− h(eiλ)

)
h(eiλ)fξη(λ)dλ− 1

2π

π∫
−π

(A(eiλ)− h(eiλ))h(eiλ)fηξ(λ)dλ

=
1

2π

π∫
−π

(
A(eiλ)− h(eiλ),−h(eiλ)

)
F (λ)

(
A(eiλ)− h(eiλ),−h(eiλ)

)⊤
dλ,

(5)

where F (λ) =
(

f(λ) fξη(λ)
fηξ(λ) g(λ)

)
is the spectral density matrix.

According to the Hilbert space orthogonal projection method the optimal linear estimate of the functional Aξ
is a projection of the element Aξ of the subspace H on the space Hs(ξ + η). The projection is determined by the
following conditions:

1)Âξ ∈ Hs(ξ + η),

2)Aξ − Âξ⊥Hs(ξ + η).

It follows from the second condition that the spectral characteristic h(eiλ) of the optimal linear estimate Âξ for
any j ∈ Z−\S satisfies equations

E
[(
Aξ − Âξ

)(
ξ(j) + η(j)

)]
=

=
1

2π

π∫
−π

(
A(eiλ)− h(eiλ)

)
e−ijλf(λ)dλ− 1

2π

π∫
−π

h(eiλ)e−ijλfηξ(λ)dλ+

+
1

2π

π∫
−π

(
A(eiλ)− h(eiλ)

)
e−ijλfξη(λ)dλ− 1

2π

π∫
−π

h(eiλ)e−ijλg(λ)dλ = 0.

The last relation can be written in the form

1

2π

π∫
−π

[
A(eiλ)(f(λ) + fξη(λ))− h(eiλ)(f(λ) + fξη(λ) + fηξ(λ) + g(λ))

]
e−ijλdλ = 0, j ∈ Z−\S.

Hence the function
[
A(eiλ)(f(λ) + fξη(λ))− h(eiλ)(f(λ) + fξη(λ) + fηξ(λ) + g(λ))

]
is of the form

A(eiλ)(f(λ) + fξη(λ))− h(eiλ)(f(λ) + fξη(λ) + fηξ(λ) + g(λ)) = C(eiλ),

C(eiλ) =
∑
j∈T

c(j)eijλ,

where T = S ∪ {0, 1, . . .}, and c(j), j ∈ T are unknown coefficients that should be determined.
From the last relation we deduce that the spectral characteristic of the optimal linear estimate Âξ is of the form

h(eiλ) = A(eiλ)
f(λ) + fξη(λ)

fζ(λ)
− C(eiλ)

1

fζ(λ)
, (6)
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216 EXTRAPOLATION PROBLEM FOR SEQUENCES WITH MISSING OBSERVATIONS

where fζ(λ) = f(λ) + fξη(λ) + fηξ(λ) + g(λ).

From the first condition, Âξ ∈ Hs(ξ + η), which determines the optimal estimate of the functionalAξ, it follows
that

1

2π

π∫
−π

h(eiλ)e−ijλdλ = 0, j ∈ T,

namely

1

2π

π∫
−π

(
A(eiλ)

f(λ) + fξη(λ)

fζ(λ)
− C(eiλ)

1

fζ(λ)

)
e−ijλdλ = 0, j ∈ T.

Disclose brackets and write the last equation in the form

∞∑
k=0

a(k)
1

2π

π∫
−π

ei(k−j)λ(f(λ) + fξη(λ))

fζ(λ)
dλ−

∑
l∈T

c(l)
1

2π

π∫
−π

ei(l−j)λ

fζ(λ)
dλ = 0, j ∈ T. (7)

Let us introduce the Fourier coefficients of the functions

bk−j =
1

2π

π∫
−π

e−i(k−j)λ 1

f(λ) + fξη(λ) + fηξ(λ) + g(λ)
dλ;

rk−j =
1

2π

π∫
−π

e−i(k−j)λ f(λ) + fξη(λ)

f(λ) + fξη(λ) + fηξ(λ) + g(λ)
dλ;

qk−j =
1

2π

π∫
−π

e−i(k−j)λ f(λ)g(λ)− fξη(λ)fηξ(λ)

f(λ) + fξη(λ) + fηξ(λ) + g(λ)
dλ.

(8)

Denote by a⃗ = (0, 0, . . . , 0, a⃗) vector with zero first |S| =
s∑

k=1

(Nk + 1) components, and the last component

a⃗ = (a(0), a(1) . . .) is constructed from coefficients which define the functional Aξ.
Now we can represent relation (7) in the form

Ra⃗ = Bc⃗, (9)

where c⃗ is the vector constructed from the unknown coefficients c(k), k ∈ T , and the linear operator B in the space
ℓ2 is defined by the matrix

B =


Bs,s Bs,s−1 . . . Bs,1 Bs,n

Bs−1,s Bs−1,s−1 . . . Bs−1,1 Bs−1,n

...
...

. . .
...

...
B1,s B1,s−1 . . . B1,1 B1,n

Bn,s Bn,s−1 . . . Bn,1 Bn,n

 ,

where elements in the last column and the last row are the matrices with the elements

Bl,n(k, j) = bk−j , l = 1, 2, . . . , s; k = −Ml −Nl, . . . ,−Ml; j = 0, 1, 2, . . . ,

Bn,m(k, j) = bk−j , m = 1, 2, . . . , s; k = 0, 1, 2, . . . ; j = −Mm −Nm, . . . ,−Mm,

Bn,n(k, j) = bk−j , k, j = 0, 1, 2, . . . ,
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and other elements of matrix B are matrices with elements of the form

Bl,m(j, k) = bk−j , l,m = 1, 2, . . . , s; k = −Ml −Nl, . . . ,−Ml; j = −Mm −Nm, . . . ,−Mm,

The linear operator R in the space ℓ2 is defined by the corresponding matrix in the same manner.
The unknown coefficients c(k), k ∈ T , which are determined by equation (9) can be calculated by the formula

c(k) = (B−1Ra⃗)k,

where (B−1Ra⃗)k is the k component of the vector B−1Ra⃗. Hence the spectral characteristic h(eiλ) of the estimate
Âξ can be calculated by the formula

h(eiλ) = A(eiλ)
f(λ) + fξη(λ)

f(λ) + fξη(λ) + fηξ(λ) + g(λ)
−

∑
k∈T

(B−1Ra⃗)ke
ikλ

f(λ) + fξη(λ) + fηξ(λ) + g(λ)
. (10)

The mean-square error of the estimate Âξ can be calculated by the formula (5) which can be represented in the
form

∆(h;F ) = ∆(h; f, g, fξη, fηξ) = E
∣∣∣Aξ − Âξ

∣∣∣2 =

=
1

2π

π∫
−π

∣∣∣∣A(eiλ)fηξ(λ) + g(λ)

fζ(λ)
+ C(eiλ)

1

fζ(λ)

∣∣∣∣2 f(λ)dλ
+

1

2π

π∫
−π

∣∣∣∣A(eiλ)f(λ) + fξη(λ)

fζ(λ)
− C(eiλ)

1

fζ(λ)

∣∣∣∣2 g(λ)dλ
− 1

2π

π∫
−π

(
A(eiλ)

fηξ(λ) + g(λ)

fζ(λ)
+ C(eiλ)

1

fζ(λ)

)(
A(eiλ)

f(λ) + fηξ(λ)

fζ(λ)
− C(eiλ)

1

fζ(λ)

)
fξη(λ)dλ

− 1

2π

π∫
−π

(
A(eiλ)

fξη(λ) + g(λ)

fζ(λ)
+ C(eiλ)

1

fζ(λ)

)(
A(eiλ)

f(λ) + fξη(λ)

fζ(λ)
− C(eiλ)

1

fζ(λ)

)
fηξ(λ)dλ

=
1

2π

π∫
−π

∣∣A(eiλ)∣∣2 f(λ)g(λ)− fξη(λ)fηξ(λ)

fζ(λ)
dλ+

1

2π

π∫
−π

∣∣C(eiλ)∣∣2 1

fζ(λ)
dλ

=
1

2π

π∫
−π

∣∣∣∣∣
∞∑
j=0

a(j)eijλ

∣∣∣∣∣
2
f(λ)g(λ)− fξη(λ)fηξ(λ)

fζ(λ)
dλ+

1

2π

π∫
−π

∣∣∣∣∣∑
k∈T

(B−1Ra⃗)ke
ikλ

∣∣∣∣∣
2

1

fζ(λ)
dλ

= ⟨Ra⃗,B−1Ra⃗⟩+ ⟨Qa⃗, a⃗⟩,

(11)

where ⟨a, c⟩ =
∑
k

akck is the inner product in the space ℓ2.

The linear operator Q in the space ℓ2 is defined by the corresponding matrix in the same manner as operator B
is defined.

Thus we obtain the following theorem.

Theorem 2.1
Let {ξ(j), j ∈ Z} and {η(j), j ∈ Z} be stationary stochastic sequences with the spectral density matrix F (λ) =(

f(λ) fξη(λ)
fηξ(λ) g(λ)

)
and let the minimality condition (1) be satisfied. The spectral characteristic h(eiλ) and the
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218 EXTRAPOLATION PROBLEM FOR SEQUENCES WITH MISSING OBSERVATIONS

mean-square error ∆(h;F ) of the optimal linear estimate of the functional Aξ which depends on the unknown
values of the sequence ξ(j) based on observations of the sequence ξ(j) + η(j), j ∈ Z−\S can be calculated by
formulas (10), (11).

The corresponding results can be obtained for the uncorrelated sequences. In this case the spectral densities
fξη(λ) = 0, fηξ(λ) = 0 and we get the following corollary.

Corollary 2.1
Let {ξ(j), j ∈ Z} and {η(j), j ∈ Z} be uncorrelated stationary stochastic sequences with spectral densities f(λ)
and g(λ) which satisfy the minimality condition

π∫
−π

(f(λ) + g(λ))−1dλ <∞. (12)

The spectral characteristic h(eiλ) and the mean-square error ∆(f, g) of the optimal linear estimate of the functional
Aξ which depends on unknown values of the sequence ξ(j) based on observations of the sequence ξ(j) + η(j),
j ∈ Z−\S can be calculated by the formulas

h(eiλ) = A(eiλ)
f(λ)

f(λ) + g(λ)
−

∑
k∈T

(B−1Ra⃗)ke
ikλ

f(λ) + g(λ)
, (13)

∆(h; f, g) = E
∣∣∣Aξ − Âξ

∣∣∣2 =
1

2π

π∫
−π

∣∣∣∣A(eiλ)g(λ) + ∑
k∈T

(B−1Ra⃗)ke
ikλ

∣∣∣∣2
(f(λ) + g(λ))2

f(λ)dλ

+
1

2π

π∫
−π

∣∣∣∣A(eiλ)f(λ)− ∑
k∈T

(B−1Ra⃗)ke
ikλ

∣∣∣∣2
(f(λ) + g(λ))2

g(λ)dλ

= ⟨Ra⃗,B−1Ra⃗⟩+ ⟨Qa⃗, a⃗⟩,

(14)

where B,R,Q are linear operators in the space ℓ2 with elements bk−j , rk−j , qk−j respectively which are defined
by the Fourier coefficients of the functions

bk−j =
1

2π

π∫
−π

e−i(k−j)λ 1

f(λ) + g(λ)
dλ;

rk−j =
1

2π

π∫
−π

e−i(k−j)λ f(λ)

f(λ) + g(λ)
dλ;

qk−j =
1

2π

π∫
−π

e−i(k−j)λ f(λ)g(λ)

f(λ) + g(λ)
dλ.

(15)

Consider the case where stationary sequence {ξ(j), j ∈ Z} is observed without noise. Since in this case g(λ) = 0,
the spectral characteristic of the estimate Âξ is of the form

h(eiλ) = A(eiλ)− C(eiλ)f−1(λ),

C(eiλ) =
∑
j∈T

c(j)eijλ, (16)
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and the system of equations (9) can be represented in the form

a⃗ = Bc⃗, (17)

where B is the linear operator in the space ℓ2 which is constructed with the help of the Fourier coefficients of the
function (f(λ))−1 and is of the similar form as operators defined before.

Hence, the unknown coefficients c(j), j ∈ T, can be calculated by the formula

c(j) =
(
B−1a⃗

)
j
,

where
(
B−1a⃗

)
j

is the j component of the vector B−1a⃗, and the spectral characteristic of the estimate Âξ is defined
by the formula

h(eiλ) =

( ∞∑
j=0

a(j)eijλ

)
−

(∑
j∈T

(
B−1a⃗

)
j
eijλ

)
f−1(λ). (18)

The mean-square error of the estimate Âξ is determined by the formula

∆(h; f) = ⟨B−1a⃗, a⃗⟩. (19)

Let us summarize the obtained result in the form of corollary.

Corollary 2.2
Let {ξ(j), j ∈ Z} be a stationary stochastic sequence with the spectral density f(λ) which satisfy the minimality
condition

π∫
−π

f−1(λ)dλ <∞. (20)

The spectral characteristic h(eiλ) and the mean-square error ∆(h, f) of the optimal linear estimate Âξ of the

functional Aξ from observations of the sequence ξ(j) at points j ∈ Z−\S, where S =
s∪

l=1

{−Ml −Nl, . . . ,−Ml},

can be calculated by formulas (18), (19).

Let ξ(j) and η(j) be uncorrelated stationary sequences. Consider the problem of the mean-square optimal linear
extrapolation of the functional

ANξ =

N∑
j=0

a(j)ξ(j)

which depends on unknown values of the sequence ξ(j) from observations of the sequence ξ(j) + η(j) at points of

time j ∈ Z−\S, where S =
s∪

l=1

{−Ml −Nl,−Ml −Nl + 1, . . . , −Ml}. In order to find the spectral characteristic

hN (eiλ) of the estimate

ÂNξ =

π∫
−π

hN (eiλ)(Zξ(dλ) + Zη(dλ))

and the mean-square error ∆(hN ; f, g) of the estimate of the functional ANξ, we define the vector

a⃗N = (0, 0, . . . , 0, a⃗N ) which has zero first |S| =
s∑

k=1

(Nk + 1) components and the last component is a⃗N =

(a(0), a(1), . . . , a(N), 0, 0, . . .).
Consider the linear operator RN in the space ℓ2 which is defined as follows RN (k, j) = R(k, j), j ≤ N ,

RN (k, j) = 0, j > N .
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Thus the spectral characteristic of the optimal estimation ÂNξ can be calculated by the formula

hN (eiλ) = AN (eiλ)
f(λ)

f(λ) + g(λ)
−

∑
k∈T

(B−1RN a⃗N )ke
ikλ

f(λ) + g(λ)
. (21)

The mean-square error of the estimate ÂNξ is defined by the formula

∆(hN ; f, g) = E
∣∣∣ANξ − ÂNξ

∣∣∣2 =
1

2π

π∫
−π

∣∣∣∣AN (eiλ)g(λ) +
∑
k∈T

(B−1RN a⃗N )ke
ikλ

∣∣∣∣2
(f(λ) + g(λ))2

f(λ)dλ

+
1

2π

π∫
−π

∣∣∣∣AN (eiλ)f(λ)−
∑
k∈T

(B−1RN a⃗N )ke
ikλ

∣∣∣∣2
(f(λ) + g(λ))2

g(λ)dλ

= ⟨RN a⃗N ,B
−1RN a⃗N ⟩+ ⟨QN a⃗N , a⃗N ⟩,

(22)

where QN is the linear operator in the space ℓ2, QN (k, j) = Q(k, j), k, j ≤ N , QN (k, j) = 0, k, j > N . Notice
that linear operators B, R, Q are defined in Corollary 2.1.

Corollary 2.3
Let ξ(j), η(j) be uncorrelated stationary stochastic sequences with spectral densities f(λ) and g(λ) which satisfy
the minimality condition (1). The spectral characteristic hN (eiλ) and the mean-square error ∆(hN ; f, g) of the
optimal linear estimate of the functional ANξ which depends on unknown values of the sequence ξ(j) based on
observations of the sequence ξ(j) + η(j), j ∈ Z−\S can be calculated by formulas (21), (22).

In the case where the sequence is observed without noise we have the following corollary.

Corollary 2.4
Let ξ(j) be a stationary stochastic sequence with the spectral density f(λ) which satisfy the minimality condition
(20). The spectral characteristic hN (eiλ) and the mean-square error ∆(hN , f) of the optimal linear estimate ÂNξ
of the functional ANξ can be calculated by the formulas (23), (24)

hN (eiλ) =

(
N∑
j=0

a(j)eijλ

)
−

(∑
j∈T

(
B−1a⃗N

)
j
eijλ

)
f−1(λ), (23)

∆(hN ; f) = ⟨B−1a⃗N , a⃗N ⟩. (24)

The linear operator B is defined in Corollary 2.2.

In order to demonstrate the developed techniques we propose the following example.

Example 2.1
Consider the problem of the optimal linear estimation of the functional

A1ξ = a(0)ξ(0) + a(1)ξ(1)

which depends on the unknown values of a stationary sequence ξ(j) from observations of the sequence ξ(j)
at points j ∈ Z−\S, where S = {−3,−2}. Let the spectral density of the sequence ξ(j) be of the form f(λ) =
|1− αe−iλ|−2. In this case the function

f−1(λ) = |1− αe−iλ|2 = b−1e
−iλ + b0 + b1e

iλ,

where b0 = 1 + |α|2, b−1 = −α, b1 = −ᾱ, bp = 0, |p| > 1 are the Fourier coefficients of the function f−1(λ).
According to the Corollary 2.4 the spectral characteristic of the optimal estimate Â1ξ of the functional A1ξ is
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calculated by the formula

h1(e
iλ) =

(
a(0) + a(1)eiλ

)
−

(∑
j∈T

(
B−1a⃗1

)
j
eijλ

)(
b−1e

−iλ + b0 + b1e
iλ
)
,

where vector a⃗1 = (0, 0, a(0), a(1), 0, 0, . . .).
To find the unknown coefficients c(j) =

(
B−1a⃗1

)
j
, j ∈ T = S ∪ {0, 1, 2, . . .}, we use equation (17), where

c⃗ = (c(−3), c(−2), c(0), c(1), c(2), c(3), . . .). The operator B is defined by the matrix

B =



b0 b−1 0 0 0 0 0 . . .
b1 b0 0 0 0 0 0 . . .
0 0 b0 b−1 0 0 0 . . .
0 0 b1 b0 b−1 0 0 . . .
0 0 0 b1 b0 b−1 0 . . .
0 0 0 0 b1 b0 b−1 . . .
0 0 0 0 0 b1 b0 . . .
. . .


.

We have to find the inverse matrix B−1 which defines the inverse operator B−1. We first represent the matrix B
in the form

B =

(
B00 0
0 B11

)
,

where

B00 =

(
b0 b−1

b1 b0

)
,

B11 =


b0 b−1 0 0 0 . . .
b1 b0 b−1 0 0 . . .
0 b1 b0 b−1 0 . . .
0 0 b1 b0 b−1 . . .
0 0 0 b1 b0 . . .
. . .

 .

Making use of the indicated representation we may conclude that the matrix B−1 can be represented in the form

B−1 =

(
B−1

00 0
0 B−1

11

)
,

where B−1
00 , B−1

11 are inverse matrices to matices B00, B11 respectively. The matrix B−1
00 can be found in the form

B−1
00 =

(
b0

b20−b1b−1

−b−1

b20−b1b−1
−b1

b20−b1b−1

b0
b20−b1b−1

)
.

In order to find the matrix (B11)
−1 we use the following method. The matrix B11 is constructed with the help of

the Fourier coefficients of the function f−1(λ)

B11(k, j) = bk−j , k, j = 0, 1, 2, . . . .

The density f−1(λ) = |1− αe−iλ]|2 admits the factorization

1

f(λ)
=

∞∑
p=−∞

bpe
ipλ =

∣∣∣∣∣
∞∑
j=0

ψje
−ijλ

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑
j=0

θje
−ijλ

∣∣∣∣∣
−2

,

b0 = 1 + |α|2, b−1 = −α, b1 = −ᾱ, bp = 0, |p| > 1,

ψ0 = 1, ψ1 = −α,ψj = 0, j > 1,

θj = αj , j ≥ 0.
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Hence bp =
∞∑
k=0

ψkψk+p, p ≥ 0, and b−p = bp, p ≥ 0. Then bi−j =
∞∑

l=max(i,j)

ψl−iψl−j .

Denote by Ψ and Θ linear operators in the space ℓ2 determined by matrices with elements Ψi,j = ψi−j ,
Θi,j = θi−j , for 0 ≤ j ≤ i, Ψi,j = 0, Θi,j = 0, for 0 ≤ i < j. Then elements of the matrix B11 can be represented
in the form B11(i, j) = (Ψ

′
Ψ)i,j . Since ΨΘ = ΘΨ = I , elements of the matrix B−1

11 can be calculated by the

formula B−1
11 (i, j) = (ΘΘ

′
)i,j =

min(i,j)∑
l=0

θi−lθj−l, and the matrix (B11)
−1 is of the form

B−1
11 =


1 α α2 α3 . . .
α αα+ 1 αα2 + α αα3 + α2 . . .

α2 α2α+ α α2α2 + αα+ 1 α2α3 + αα2 + α . . .
. . .

 .

From equation (17) we can find the unknown coefficients c(j), j ∈ T ,

c(−3) = 0,

c(−2) = 0,

c(0) = a(0) + a(1)α,

c(1) = a(0)α+ a(1)(αα+ 1),

c(2) = a(0)α2 + a(1)(α2α+ α),

. . .

c(i) = a(0)αi + a(1)(αiα+ αi−1), i > 2.

Hence the spectral characteristic of the optimal estimate is calculated by the formula

h1(e
iλ) =

(
a(0) + a(1)eiλ

)
− (c(−3)e−i3λ + c(−2)e−i2λ + c(0) + c(1)eiλ + c(2)ei2λ

+
∑
j>2

c(j)eijλ)
(
b−1e

−iλ + b0 + b1e
iλ
)
= −c(0)b−1e

−iλ − c(1)b1e
i2λ

− c(2)b0e
i2λ − c(2)b1e

i3λ −
∑
j>2

c(j)eijλ)
(
b−1e

−iλ + b0 + b1e
iλ
)
.

Since coefficients b1c(j − 1) + b0c(j) + b−1c(j + 1) for j ≥ 2 are zero, the spectral characteristic of the estimate
Â1ξ is of the form

h1(e
iλ) = −c(0)b−1e

−iλ = (a(0) + a(1)α)αe−iλ.

The mean-square error of the estimate of the functional A1ξ is calculated by the formula

∆(h1; f) = ⟨B−1a⃗1, a⃗1⟩ = (a(0))2 + a(0)a(1)α+ a(0)a(1)α+ (a(1))2|α|2 + (a(1))2.

With the help of the next example we demonstrate the impact of missing values on the mean-square error of the
optimal estimate of the functional.

Example 2.2

Let us investigate the mean-square error of the optimal estimation of the functional Aξ =
∞∑
k=0

a(k)ξ(k) from

observations of the sequence ξ(j):

1. at points j ∈ Z− with no missing observations and
2. at points j ∈ Z−\S, where there are missing observations.
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Thus, we can see the impact of missing values on the mean-square error of the optimal estimate of the functional.
For easy computation, consider the case where only one value, S = {−n}, is missed.
Suppose that the function f−1(λ) admits the factorization

1

f(λ)
=

∞∑
p=−∞

bpe
ipλ =

∣∣∣∣∣
∞∑
j=0

ψje
−ijλ

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑
j=0

θje
−ijλ

∣∣∣∣∣
−2

.

We first find the mean-square error of the extrapolation of the functional Aξ in the case where all observations
of the sequence at points j ∈ Z− are given. In this case by the formula proposed by Moklyachuk [23], [27]

∆1(h; f) = ⟨ B−1
1 a⃗, a⃗⟩ = ⟨ Aθ⃗,Aθ⃗⟩,

where B1 is the linear operator in the space ℓ2 defined by the matrix B1 with elements that are the Fourier
coefficients of the function f−1(λ):

B1 =


b0 b−1 b−2 . . .
b1 b0 b−1 . . .
b2 b1 b0 . . .
. . .

 ,

A is the linear operator in the space ℓ2 defined by the relation

(Aθ⃗)k =

∞∑
l=0

a(k + l)θl,

the vector a⃗ = (a(0), a(1), a(2), . . .), and the vector θ⃗ = (θ0, θ1, . . .). Note, that under condition (3) the operator A
is compact.

Using the introduced in the previous example linear operators Ψ and Θ, we can represent elements of the matrix
B1 in the form

B1(i, j) = (Ψ
′
Ψ)i,j =

∞∑
l=max(i,j)

ψl−iψl−j ,

and elements of the matrix B−1
1 which determines the operator B−1

1 can be calculated by the formula

B−1
1 (i, j) = (ΘΘ

′
)i,j =

min(i,j)∑
l=0

θi−lθj−l = ωi,j .

Hence, the mean-square error of the optimal estimate of the functional Aξ from observations without missing
values is calculated by the formula

∆1(h; f) =

∞∑
k=0

( ∞∑
j=0

ωk,ja(j)

)
a(k) = ⟨ B−1

1 a⃗, a⃗⟩ = ⟨Θ
′
a⃗,Θ

′
a⃗⟩.

Next we find the mean-square error of the optimal estimate of the functional based on observations of the
sequence with one missing observation by the formula ∆2(h̃; f) = ⟨B−1

2 a⃗, a⃗⟩, where B2 is linear operator in the
space ℓ2 defined by the matrix B2 with elements B2(i, j) = bi,j = bi−j that are the Fourier coefficients of the
function f−1(λ):

B2 =


b0 b−n b−n−1 b−n−2 . . .
bn b0 b−1 b−2 . . .
bn+1 b1 b0 b−1 . . .
. . .

 ,
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and the vector a⃗ = (0, a(0), a(1), a(2), . . .).
In order to find the inverse matrix B−1

2 we use the Frobenius formula (see Gantmacher [7]). The matrix B2 can
be represented in the form

B2 =

(
B00 B01

B10 B11

)
,

B00 =
(
b0
)
, B01 =

(
b−n b−n−1 b−n−2 . . .

)
= b⃗

′

n,

B10 =


bn
bn+1

bn+2

. . .

 = b⃗n, B11 =


b0 b−1 b−2 . . .
b1 b0 b−1 . . .
b2 b1 b0 . . .
. . .

 .

So the inverse matrix B−1
2 is of the form

B−1
2 =

(
V −1 −V −1B01B

−1
11

−B−1
11 B10V

−1 B−1
11 +B−1

11 B10V
−1B01B

−1
11

)
,

where V = B00 −B01B
−1
11 B10. The matrix B11 coincides with the matrix B1 from this example.

With the help of the relation

Ψ
′
ψ⃗n =


bn
bn+1

bn+2

. . .

 = b⃗n, ψ⃗n =

 ψn

ψn+1

. . .

 ,

we can represent the value V in terms of operators Ψ and Θ

V = b0 − (⃗bn)
′
ΘΘ

′
b⃗n = b0 − ⟨Θ

′
Ψ

′
ψ⃗n,Θ

′
Ψ

′
ψ⃗n⟩ = b0 − ⟨ψ⃗n, ψ⃗n⟩ =

∞∑
k=0

|ψk|2 −
∞∑

k=n

|ψk|2 =

n−1∑
k=0

|ψk|2.

Denote by ω̃k,j = (B−1
11 +B−1

11 B10V
−1B01B

−1
11 )k,j . Then for k, j > 0,

ω̃k,j = ωk,j + V −1
∞∑
i=0

ωk,ibi,−n

∞∑
l=0

b−n,lωl,j = ωk,j + γk,j . (25)

Making use of the introduced notations we can represent B−1
11 B10V

−1B01B
−1
11 and consequently γk,j in the

following form

B−1
11 B10V

−1B01B
−1
11 =

= V −1
(
ΘΘ

′
b⃗n

)(
ΘΘ

′
b⃗n

)⊤
= V −1

(
ΘΘ

′
Ψ

′
ψ⃗n

)(
ΘΘ

′
Ψ

′
ψ⃗n

)⊤
= V −1

(
Θψ⃗n

)(
Θψ⃗n

)⊤
,

γk,j = V −1

((
Θψ⃗n

)(
Θψ⃗n

)⊤)
k,j

.

Now we calculate the mean-square error of extrapolation of the functional Aξ from observations with one missing
value. In this case T = {−n} ∪ {0, 1, . . .} and we have that

∆2(h̃; f) =
∑
k∈T

(∑
j∈T

ω̃k,ja(j)

)
a(k) =

∑
k∈S

(∑
j∈T

ω̃k,ja(j)

)
a(k) +

∞∑
k=0

(∑
j∈T

ω̃k,ja(j)

)
a(k)

=

∞∑
k=0

(∑
j∈S

ω̃k,ja(j) +

∞∑
j=0

ω̃k,ja(j)

)
a(k) =

∞∑
k=0

( ∞∑
j=0

ω̃k,ja(j)

)
a(k).
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It follows from (25) that

∆2(h̃; f) = ∆1(h; f) +

∞∑
k=0

( ∞∑
j=0

γk,ja(j)

)
a(k) =

= ⟨Θ
′
a⃗,Θ

′
a⃗⟩+ V −1

∣∣∣⟨ψ⃗n,Θ
′
a⃗⟩
∣∣∣2 = ∥Θ

′
a⃗∥2 + V −1∥(ψ⃗n)

′
Θ

′
a⃗∥2.

So we can estimate the impact of the missing values on the mean-square error of the optimal estimate of the
functional Aξ.

In particular, in the case of estimating of the value ξ(0) based on observations ξ(k), k = −1,−2, . . . with one
missing value ξ(−n) the vector a⃗ = (1, 0, 0, . . . ) and the formula for the mean-square error is of the form

∆2(h̃; f) = |θ0|2 + V −1|θ0|2|ψn|2 = |θ0|2

1 +
|ψn|2

n−1∑
k=0

|ψk|2

 .

Note, that the resulting formula for the same problem based on the AR representation of the stationary sequence
was obtained by Bondon (see Bondon [1]). He found that

E|ξ(0)− ξ̂(0)|2 = σ2

1 +
ψ2
n

n−1∑
i=0

ψ2
i

 , σ2 = exp

 π∫
−π

ln f(λ)dλ

 ,
where ψk are the AR parameters of the sequence.

3. Minimax approach to extrapolation problem for stationary sequences with missing observations

Theorem 2.1 and its corollaries can be applied for finding solutions to extrapolation problem for stationary
sequences with missing observations only in the case of spectral certainty, where spectral densities
f(λ), fξη(λ), fηξ(λ), g(λ), which form the spectral density matrix F (λ), are exactly known. If the complete
information about spectral densities is impossible while a class of admissible spectral density matricesD = {F (λ)}
is given, the minimax(robust) method of extrapolation is reasonable. It consists in finding an estimate which
minimizes the value of the mean-square error for all spectral density matrices from the given class. For description
of the minimax method we introduce the following definitions (see Moklyachuk [23]- [27]).

Definition 3.1
For a given class of spectral density matrices D = {F (λ)} the spectral density matrix F 0(λ) ∈ D is called the least
favorable in the class D for the optimal linear extrapolation of the functional Aξ if the following relation holds true

∆
(
F 0
)
= ∆

(
h
(
F 0
)
;F 0

)
= max

F∈D
∆(h (F ) ;F ) .

Definition 3.2
For a given class of spectral density matrices D = {F (λ)} the spectral characteristic h0(eiλ) of the optimal linear
estimate of the functional Aξ is called minimax-robust if there are satisfied conditions

h0(eiλ) ∈ HD =
∩
F∈D

Ls
2(f + g),

min
h∈HD

max
F∈D

∆(h;F ) = max
F∈D

∆
(
h0;F

)
.
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From the introduced definitions and formulas derived above we can obtain the following statement.

Lemma 3.1
Spectral densities f0(λ), f0ξη(λ), f

0
ηξ(λ), g

0(λ), satisfying the minimality condition (1), form the spectral density
matrix F 0(λ) ∈ D which is least favorable in the class D for the optimal linear extrapolation of the functional Aξ
if the Fourier coefficients (8) of functions

1

f0(λ) + f0ξη(λ) + f0ηξ(λ) + g0(λ)
,

f0(λ) + f0ξη(λ)

f0(λ) + f0ξη(λ) + f0ηξ(λ) + g0(λ)
,

f0(λ)g0(λ)− f0ξη(λ)f
0
ηξ(λ)

f0(λ) + f0ξη(λ) + f0ηξ(λ) + g0(λ)

define operators B0,R0,Q0 which determine a solution to the constrain optimization problem

max
F∈D

⟨Ra⃗,B−1Ra⃗⟩+ ⟨Qa⃗, a⃗⟩ =

= ⟨R0a⃗, (B0)−1R0a⃗⟩+ ⟨Q0a⃗, a⃗⟩.
(26)

The minimax spectral characteristic h0 = h(F 0) is calculated by the formula (10) if h(F 0) ∈ HD.

In the case of uncorrelated stationary sequences the corresponding definitions and lemmas are as follows.

Definition 3.3
For a given class of spectral densities D = Df ×Dg spectral densities f0(λ) ∈ Df , g0(λ) ∈ Dg are called the
least favorable in the class D for the optimal linear extrapolation of the functional Aξ based on observations of the
uncorrelated sequences if the following relation holds true

∆
(
f0, g0

)
= ∆

(
h
(
f0, g0

)
; f0, g0

)
= max

(f,g)∈Df×Dg

∆(h (f, g) ; f, g) .

Definition 3.4
For a given class of spectral densities D = Df ×Dg the spectral characteristic h0(eiλ) of the optimal linear
estimate of the functional Aξ based on observations of the uncorrelated sequences is called minimax-robust if
there are satisfied conditions

h0(eiλ) ∈ HD =
∩

(f,g)∈Df×Dg

Ls
2(f + g),

min
h∈HD

max
(f,g)∈D

∆(h; f, g) = max
(f,g)∈D

∆
(
h0; f, g

)
.

Lemma 3.2
Spectral densities f0(λ) ∈ Df , g

0(λ) ∈ Dg satisfying the minimality condition (12) are the least favorable in
the class D = Df ×Dg for the optimal linear extrapolation of the functional Aξ based on observations of the
uncorrelated sequences if the Fourier coefficients (15) of functions

(f0(λ) + g0(λ))−1, f0(λ)(f0(λ) + g0(λ))−1, f0(λ)g0(λ)(f0(λ) + g0(λ))−1

define operators B0,R0,Q0 which determine a solution to the constrain optimization problem

max
(f,g)∈Df×Dg

⟨Ra⃗,B−1Ra⃗⟩+ ⟨Qa⃗, a⃗⟩ =

⟨R0a⃗, (B0)−1R0a⃗⟩+ ⟨Q0a⃗, a⃗⟩.
(27)

The minimax spectral characteristic h0 = h(f0, g0) is calculated by the formula (13) if h(f0, g0) ∈ HD.

In the case of observations of the sequence without noise we obtain the following corollary.
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Corollary 3.1
Let the spectral density f0(λ) ∈ Df be such that the function (f0(λ))−1 is integrable. The spectal density
f0(λ) ∈ Df is the least favorable in the class Df for the optimal linear extrapolation of the functional Aξ if
the Fourier coefficients of the function (f0(λ))−1 define the operator B0 which determines a solution to the
optimization problem

max
f∈Df

⟨B−1a⃗, a⃗⟩ = ⟨(B0)−1a⃗, a⃗⟩. (28)

The minimax spectral characteristic h0 = h(f0) is calculated by the formula (18) if h(f0) ∈ HDf
.

The least favorable spectral densities f0(λ), g0(λ) and the minimax spectral characteristic h0 = h(f0, g0) form
a saddle point of the function ∆(h; f, g) on the set HD ×D. The saddle point inequalities

∆
(
h; f0, g0

)
≥ ∆

(
h0; f0, g0

)
≥ ∆

(
h0; f, g

)
∀h ∈ HD, ∀f ∈ Df , ∀g ∈ Dg

hold true if h0 = h(f0, g0) and h(f0, g0) ∈ HD, where (f0, g0) is a solution to the constrained optimization
problem

sup
(f,g)∈Df×Dg

∆
(
h(f0, g0); f, g

)
= ∆

(
h(f0, g0); f0, g0

)
, (29)

∆
(
h(f0, g0); f, g

)
=

1

2π

π∫
−π

∣∣A(eiλ)g0(λ) + C0(eiλ)
∣∣2

(f0(λ) + g0(λ))2
f(λ)dλ

+
1

2π

π∫
−π

∣∣A(eiλ)f0(λ)− C0(eiλ)
∣∣2

(f0(λ) + g0(λ))2
g(λ)dλ,

C0(eiλ) =
∑
j∈T

((B0)−1R0a⃗)je
ijλ.

The constrained optimization problem (29) is equivalent to the unconstrained optimization problem (see
Pshenichnyj [39]):

∆D(f, g) = −∆(h(f0, g0); f, g) + δ((f, g) |Df ×Dg ) → inf, (30)

where δ((f, g) |Df ×Dg ) is the indicator function of the set D = Df ×Dg.
A solution of the problem (30) is determined by the condition 0 ∈ ∂∆D(f0, g0), which is the necessary and

sufficient condition under which the pair (f0, g0) belongs to the set of minimums of the convex functional
∆(h(f0, g0); f, g). Here the notion ∂∆D(f0, g0) indicates the subdifferential of the convex functional ∆D(f, g)
at point (f0, g0) which is a set of all linear bounded functionals Λ on L1 × L1 satisfying the inequality (see
Rockafellar [40]).

∆D(f, g)−∆D(f0, g0) ≥ Λ((f, g)− (f0, g0)), ∀(f, g) ∈ Df ×Dg.

The form of the functional ∆(h(f0, g0); f, g) allows us to find derivatives and differentials in the space L1 × L1.
Therefore the complexity of the optimization problem (30) is determined by the complexity of calculating of
the subdifferential of the indicator function δ((f, g)|Df ×Dg) of the set Df ×Dg (see, for example, Ioffe and
Tihomirov [11], Moklyachuk [26]).

The following statement holds true.

Lemma 3.3
Let (f0, g0) be a solution to the optimization problem (30). The spectral densities f0(λ), g0(λ) are the least
favorable in the class D = Df ×Dg and the spectral characteristic h0 = h(f0, g0) is the minimax of the optimal
linear estimate of the functional Aξ if h(f0, g0) ∈ HD.
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4. Least favorable spectral densities in the class D = DW × D0

Consider the problem of extrapolation of the functional Aξ based on observations of the uncorrelated sequences in
the case where spectral densities of the observed sequences belong to the class D = DW ×D0, where

DW =

f(λ)
∣∣∣∣∣∣ 12π

π∫
−π

f(λ) cos(wλ)dλ = rw, w = 0, 1, . . . ,W

 ,

D0 =

g(λ)
∣∣∣∣∣∣ 12π

π∫
−π

g(λ)dλ ≤ P1

 .

Suppose that the sequence {rw, w = 0, 1, . . . ,W} is strictly positive. In this case the problem of moments has
infinite many solutions and the set DW contains infinite number of densities (see Krein and Nudelman [16]).

Let the densities f0(λ) ∈ DW , g0(λ) ∈ D0 and let the functions defined by formulas

hf (f
0, g0) =

∣∣A(eiλ)g0(λ) + C0(eiλ)
∣∣2

(f0(λ) + g0(λ))2
, (31)

hg(f
0, g0) =

∣∣A(eiλ)f0(λ)− C0(eiλ)
∣∣2

(f0(λ) + g0(λ))2
, (32)

be bounded. In this case the linear functional

∆(h(f0, g0); f, g) =
1

2π

π∫
−π

hf (f
0, g0)f(λ)dλ+

1

2π

π∫
−π

hg(f
0, g0)g(λ)dλ

is continuous and bounded in the space L1 × L1. We can use the method of Lagrange multipliers to solve the
optimization problem (29) and find equations which the least favorable densities satisfy (see Pshenichnyj [39],
Moklyachuk [26]) ∣∣A(eiλ)g0(λ) + C0(eiλ)

∣∣ = ( W∑
w=0

ψwcos(wλ)

)(
f0(λ) + g0(λ)

)
, (33)

∣∣A(eiλ)f0(λ)− C0(eiλ)
∣∣ = α(f0(λ) + g0(λ)), (34)

where constants ψw ≥ 0, α ≥ 0.

Theorem 4.1
Let the spectral densities f0(λ) ∈ DW , g0(λ) ∈ D0 be such that the minimality condition (12) holds true. Let the
functions defined by (31), (32) be bounded. Then the functions f0(λ), g0(λ) determined by equations (33), (34)
are the least favorable spectral densities in the class DW ×D0 if they determine a solution to optimization problem
(27). The function h(f0, g0) determined by formula (13) is the minimax spectral characteristic of the optimal
estimate of the functional Aξ.

Theorem 4.2
Let the spectral densities f0(λ) ∈ D0, g0(λ) ∈ D0 be such that the minimality condition (12) holds true and
functions defined by (31), (32) be bounded. Then functions f0(λ), g0(λ) determined from the following equations∣∣A(eiλ)g0(λ) + C0(eiλ)

∣∣ = α1(f
0(λ) + g0(λ)), (35)∣∣A(eiλ)f0(λ)− C0(eiλ)

∣∣ = α2(f
0(λ) + g0(λ)), (36)
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α1 ≥ 0, α2 ≥ 0, are the least favorable densities in the class D0 ×D0, if they determine a solution to the

optimization problem (27). Note that α1 ̸= 0, if 1
2π

π∫
−π

f0(λ)dλ = P1, and α2 ̸= 0, if 1
2π

π∫
−π

g0(λ)dλ = P1. The

function h(f0, g0) calculated by formula (13) is the minimax spectral characteristic of the optimal estimate of the
functional Aξ.

Corollary 4.1
Suppose that the density f(λ) is known, and the density g0(λ) ∈ D0. Let the function f(λ) + g0(λ) satisfy the
minimality condition (12) and let the function hg(f, g

0) determined by (32) be bounded. The spectral density
g0(λ) is the least favorable in the class D0 for the optimal linear extrapolation of the functional Aξ if

g0(λ) = max
{
0, α−1

∣∣A(eiλ)f(λ)− C0(eiλ)
∣∣− f(λ)

}
,

and the pair (f(λ), g0(λ)) determines a solution to the optimization problem (27). The minimax spectral
characteristic h(f, g0) of the optimal linear estimate of the functional Aξ is calculated by the formula (13).

Corollary 4.2
Let the density g(λ) be known and let f0(λ) ∈ DW . Suppose the function f0(λ) + g(λ) satisfies the minimality
condition (12) and the function hf (f

0, g) defined by (31) is bounded. The spectral density f0(λ) is the least
favorable in the class DW for the optimal linear extrapolation of the functional Aξ if

f0(λ) =

∣∣A(eiλ)g(λ) + C0(eiλ)
∣∣

W∑
w=0

ψwcos(wλ)

− g(λ),

and the pair (f0(λ), g(λ)) determines a solution to the optimization problem (27). The function h(f0, g) calculated
by (13) is the minimax spectral characteristic of the optimal linear estimate of the functional Aξ.

Corollary 4.3
Let the density g(λ) be known and f0(λ) ∈ D0. Let the function f0(λ) + g(λ) satisfy the minimality condition
(12) and let the function hf (f0, g) defined by (31) be bounded. The spectral density f0(λ) is the least favorable in
the class D0 if it is of the form

f0(λ) = max
{
0, α−1

∣∣A(eiλ)g(λ) + C0(eiλ)
∣∣− g(λ)

}
,

and the pair (f0(λ), g(λ)) determines a solution to the optimization problem (27). The function h(f0, g) calculated
by (13) is the minimax spectral characteristic of the optimal linear estimate of the functional Aξ.

Corollary 4.4
Let the sequence f(λ) be known and the spectral density g0(λ) ∈ DW . Suppose that the function f(λ) + g0(λ)
satisfies the minimality condition (12) and the function hg(f, g0) defined by (32) is bounded. The spectral density
g0(λ) is the least favorable in the class DW if

g0(λ) =

∣∣A(eiλ)f(λ)− C0(eiλ)
∣∣

W∑
w=0

ψwcos(wλ)

− f(λ),

and the pair (f(λ), g0(λ)) determines a solution to the optimization problem (27). The function h(f, g0) calculated
by (13) is the minimax spectral characteristic of the optimal linear estimate of the functional Aξ.

Consider the case where stationary sequence is observed without noise, g(λ) = 0. We obtain the following
corollaries.

Corollary 4.5
Let the spectral density f0(λ) ∈ D0 and satisfy the minimality condition (20). The spectral density f0(λ) is the
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least favorable in the class D0 for the optimal extrapolation of the functional Aξ if

f0(λ) = α−1
∣∣C0(eiλ)

∣∣ ,
and f0(λ) determines a solution to the optimization problem (28). The function h(f0) calculated by (18) is the
minimax spectral characteristic of the optimal linear estimate of the functional Aξ.

Corollary 4.6
Let the density f0(λ) ∈ DW and satisfy the minimality condition (20). The spectral density f0(λ) is the least
favorable in the class DW for the optimal extrapolation of the functional Aξ if

f0(λ) =

∣∣C0(eiλ)
∣∣

W∑
w=0

ψwcos(wλ)

,

and f0(λ) determines a solution to the optimization problem (28). The function h(f0) calculated by (18) is the
minimax spectral characteristic of the optimal linear estimate of the functional Aξ.

5. Least favorable spectral densities in the class D = Du
v × Dε

Consider the problem of extrapolation of the functional Aξ based on observations of the uncorrelated sequences in
the case where spectral densities of the observed sequences belong to the class D = Du

v ×Dε,

Du
v =

f(λ)
∣∣∣∣∣∣v(λ) ≤ f(λ) ≤ u(λ),

1

2π

π∫
−π

f(λ)dλ ≤ P1

 ,

Dε =

g(λ)
∣∣∣∣∣∣g(λ) = (1− ε)g1(λ) + εw(λ),

1

2π

π∫
−π

g(λ)dλ ≤ P2

 ,

where spectral densities u(λ), v(λ), g1(λ) are known and fixed, densities u(λ) and v(λ) are bounded. The class Du
v

describes the “strip” model of stochastic sequences, while the class Dε describes the “ε - contamination” model
of stochastic sequences.

Suppose that the functions f0(λ) ∈ Du
v , g0(λ) ∈ Dε determine bounded functions hf (f0, g0), hg(f0, g0) by

formulas (31), (32). It follows from the condition 0 ∈ ∂∆D(f0, g0) that the least favorable spectral densities satisfy
equations ∣∣A(eiλ)g0(λ) + C0(eiλ)

∣∣ = (f0(λ) + g0(λ))(γ1(λ) + γ2(λ) + α−1
1 ), (37)∣∣A(eiλ)f0(λ)− C0(eiλ)

∣∣ = (f0(λ) + g0(λ))(φ(λ) + α−1
2 ), (38)

where γ1 ≤ 0 and γ1 = 0 if f0(λ) ≥ v(λ); γ2 ≥ 0 and γ2 = 0 if f0(λ) ≤ u(λ); φ(λ) ≤ 0 and φ(λ) = 0 if g0(λ) ≥
(1− ε)g1(λ).

Hence the following theorem holds true.

Theorem 5.1
Suppose that the spectral densities f0(λ) ∈ Du

v , g0(λ) ∈ Dε are such that the minimality condition (12) holds true.
Let the functions determined by formulas (31), (32) be bounded. Then the functions f0(λ), g0(λ) determined by
(37), (38) are the least favorable densities in the class Du

v ×Dε if they determine a solution to the optimization
problem (27). The function h(f0, g0) calculated by (13) is the minimax spectral characteristic of the optimal linear
estimate of the functional Aξ.

Stat., Optim. Inf. Comput. Vol. 5, September 2017



M. MOKLYACHUK AND M. SIDEI 231

Corollary 5.1
Suppose that we know the form of spectral density f(λ) and spectral density g0(λ) ∈ Dε. Let the function
f(λ) + g0(λ) satisfy the minimality condition (12) and function hg(f, g0) determined by (32) be bounded. The
spectral density g0(λ) is the least favorable in the class Dε for the optimal linear extrapolation of the functional Aξ
if

g0(λ) = max {(1− ε)g1(λ), f1(λ)} ,
f1(λ) = α2

∣∣A(eiλ)f(λ)− C0(eiλ)
∣∣− f(λ),

and the pair (f(λ), g0(λ)) determines a solution to the optimization problem (27). The minimax spectral
characteristic of the optimal linear estimate of the functional Aξ is determined by (13).

Corollary 5.2
Let the spectral density g(λ) be known and the spectral density f0(λ) ∈ Du

v . Suppose that the function f0(λ) +
g(λ) satisfies the minimality condition (12) and the function hf (f0, g) determined by (31) is bounded. The spectral
density f0(λ) is the least favorable in the class Du

v if

f0(λ) = min
{
max

{
α1

∣∣A(eiλ)g(λ) + C0(eiλ)
∣∣− g(λ), v(λ)

}
, u(λ)

}
,

and the pair (f0(λ), g(λ)) determines a solution to the optimization problem (27). The function h(f0, g) calculated
by (10) is the minimax spectral characteristic of the optimal linear estimate of the functional Aξ.

6. Least favorable spectral densities in the class D = D1
ε1

× Dε2

Consider the problem of minimax extrapolation of the functional Aξ based on observations of the uncorrelated
sequences in the case where spectral densities of the observed sequences belong to the class D1

ε1 ×Dε2 ,

D1
ε1 =

f(λ)
∣∣∣∣∣∣ 12π

π∫
−π

|f(λ)− f1(λ)| dλ ≤ ε1

 ,

Dε2 =

g(λ)
∣∣∣∣∣∣g(λ) = (1− ε2)g1(λ) + ε2w(λ),

1

2π

π∫
−π

g(λ)dλ ≤ P1

 ,

where spectral densities f1(λ), g1(λ) are known and fixed. The classD1
ε1 describes the model of “ε-neighbourhood”

in the space L1 of a given bounded spectral density f1(λ).
Suppose that the densities f0(λ) ∈ D1

ε1 , g0(λ) ∈ Dε2 determine the bounded functions hf (f0, g0), hg(f0, g0)
by formulas (31), (32). The condition 0 ∈ ∂∆D(f0, g0) determines equations which the least favorable spectral
densities satisfy ∣∣A(eiλ)g0(λ) + C0(eiλ)

∣∣ = (f0(λ) + g0(λ))Ψ(λ)α1, (39)∣∣A(eiλ)f0(λ)− C0(eiλ)
∣∣ = (f0(λ) + g0(λ))(φ(λ) + α−1

2 ), (40)

where |Ψ(λ)| ≤ 1 and Ψ(λ) = sign(f0(λ)− f1(λ)) if f0(λ) ̸= f1(λ); α1, α2 are constants, φ(λ) ≤ 0, and φ(λ) = 0
if g0(λ) ≥ (1− ε2)g1(λ). Equations (39), (40) together with the extremum condition (27) and normality condition

1

2π

π∫
−π

∣∣f0(λ)− f1(λ)
∣∣ dλ = ε1, (41)

determine the least favorable spectral densities in the class D.
The following theorem and corollaries hold true.
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Theorem 6.1
Let the densities f0(λ) ∈ D1

ε1 , g0(λ) ∈ Dε2 be such that the minimality condition (12) holds true and functions
determined by (31), (32) be bounded. The spectral densities f0(λ), g0(λ) are the least favorable in the class
D1

ε1 ×Dε2 for the optimal linear extrapolation of the functional Aξ if they satisfy equations (39)–(41) and
determine a solution to the optimization problem (27). The function h(f0, g0) calculated by the formula (13) is
the minimax spectral characteristic of the estimate of the functional Aξ.

Corollary 6.1
Let the density g(λ) be known and the density f0(λ) ∈ D1

ε1 . Suppose the function f0(λ) + g(λ) satisfies the
minimality condition (12) and function hf (f0, g) determined by (31) is bounded. The spectral density f0(λ) is
the least favorable in the class D1

ε1 if it is of the form

f0(λ) = max
{
f1(λ), α1

∣∣A(eiλ)g(λ) + C0(eiλ)
∣∣− g(λ)

}
,

and the pair (f0(λ), g(λ)) determines a solution to the optimization problem (27). The function h(f0, g) calculated
by the formula (13) is the minimax spectral characteristic of the estimate of the functional Aξ.

Corollary 6.2
Suppose f(λ) is known and the density g0(λ) ∈ Dε2 . Let the function f(λ) + g0(λ) satisfy the minimality condition
(12) and the function hg(f, g0) determined by (32) be bounded. The spectral density g0(λ) is the least favorable in
the class Dε2 if

g0(λ) = max
{
(1− ε2)g1(λ), α2

∣∣A(eiλ)f(λ)− C0(eiλ)
∣∣− f(λ)

}
,

and the pair (f(λ), g0(λ)) determines a solution to the optimization problem (27). The function h(f, g0) calculated
by the formula (13) is the minimax spectral characteristic of the estimate of the functional Aξ.

7. Conclusions

In the article we propose methods of the mean-square optimal linear extrapolation of functionals which depend on
the unknown values of a stationary sequence based on observations of the sequence with noise and missing values.
In the case of spectral certainty where the spectral densities of stationary sequences are known we derive formulas
for calculating the spectral characteristic and the mean-square error of the estimate of the functional. In the case of
spectral uncertainty where certain sets of admissible densities are given we derive relations which determine the
least favorable spectral densities and minimax spectral characteristics of the extrapolation.
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