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Abstract There is a vast literature on Bonus-Malus System (BMS), in which a policyholders responsible for positive claims
will be penalised by a malus and the policyholders who had no claim will be rewarded by a bonus. In this paper, we present
an optimal BMS using finite mixture models. We conduct a numerical study to compare the new model with the current
BMS that use finite mixture models.
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1. Introduction

A Bonus-Malus System (BMS) penalize policyholders responsible for one or more claims by a premium surcharge
(malus) and rewards the policyholders who had a claim-free year by awarding a discount on the premium (bonus),
see Frangos and Vrontos (2001). Up to this day, many studies have been published with extensions and applications
of the BMS, see Tzougas et al., (2014), Mahmoudvand et al. (2017) and references therein.

According to Frangos and Vrontos (2001), the premiums of the generalized BMS will be derived using the
following multiplicative tariff formula:

Premium = GBMF × GBMS (1)

where GBMF denotes the generalized BMS obtained when only the frequency component is used and GBMS

denotes the generalized BMS obtained when only the severity component is used, see also Mahmoudvand and
Hassani (2009).

It is popular in the BMS literature to use Bayes theory for finding GBMF and GBMS . In the view of Bayesian
theory, we have to determine the structure function of the risk parameters for both frequency and severity
components. In order to do that, Tzougas et al. (2014) have used finite mixture models. This choice may be better
suited for modelling risk, since in a collective there are several types of risks such as very good risks, good risks,
bad risks, very bad risks and so on. However, a very few studies used finite mixture prior distribution in the field
of actuarial statistics, see Denuit and Lambert (2001), Gomez-Deniz et al. (2004) and Tzougas et al. (2014). In this
paper, we generalise the model by Tzougas et al. (2014).
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2. Design BMS Using Finite Mixture Models

We use the following proposition as the main theorem for this study.

Theorem 1
Let L|θ ∼ f(ℓ|θ) and probability distribution of θ is given by a mixture of probability density functions
ψ1(θ), . . . , ψn(θ) with weights w1, . . . , wn where wi ≥ 0 such that

∑n
i=1 wi = 1. Then we have:

ψ(θ|ℓ) =
n∑
i=1

w̃iψi(θ|ℓ), (2)

where ψi(θ|ℓ) is a posterior distribution function with respect to prior ψi(θ) and adjusted weight w̃i is defined as
below:

w̃i =
fi(ℓ)

n∑
i=1

wifi(ℓ)

wi (3)

with fi(ℓ) =
∫
ψi(θ)f(ℓ|θ)dθ.

Proof
Using Bayes theorem, we have:

ψ(θ|ℓ) =
f(ℓ|θ)ψ(θ)

f(ℓ)
=

n∑
i=1

wif(ℓ|θ)ψi(θ)
n∑
i=1

wi
∫
f(ℓ|θ)ψi(θ)dθ

=

n∑
i=1

wifi(ℓ)
f(ℓ|θ)ψi(θ)

fi(ℓ)

n∑
i=1

wi
∫
f(ℓ|θ)ψi(θ)dθ

=

n∑
i=1

wifi(ℓ)ψi(θ|ℓ)
n∑
i=1

wifi(ℓ)

=

n∑
i=1

w̃iψi(θ|ℓ).

Corollary 1
Bayes estimator for θ under the condition of Proposition 1 with respect to the quadratic error loss function is:

θ̂ =

n∑
i=1

w̃iµi(θ|ℓ), (4)

where µi(θ|ℓ) is the posterior mean for posterior distribution ψi(θ|ℓ).

Denote by k the number of claims with the underlying risk parameter θF and by x the severity of claims with the
underlying risk parameter θS . Then Corollary 2.1 and equation (1) imply that the premium for optimal BMS using
finite mixture model can be obtained by:

Premium =

nF∑
i=1

w̃Fi µ
F
i (θF |k)×

nS∑
i=1

w̃Si µ
S
i (θS |x), (5)

where the notations are defined similar to Proposition 1 and Corollary 2.1.
In the next two sections, we focus on the particular cases in which the distribution of the frequency and severity

components are known.
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3. BMS based on the a posteriori criteria

Notations

t: number of insurance period, usually in year, that policyholder is under study,

kj : number of claims in period j,

λ: underlying risk parameter of the random variable kj ,

xj,k: Severity of the claim k in period j,

yj : underlying risk parameter of the random variable xj,k.

3.1. Frequency component

Assume kj |λ is distributed as Poisson(λ), independently for all j, and that the structure function follows an n-
components mixture of Gamma distribution with the following density:

u(λ) =

n∑
z=1

πz
ταz
z λαz−1e−τzλ

Γ(αz)
. (6)

Equation (6) means that we have considered n risk categories. Consider a policyholder with claim history k1, ..., kt
and denote by K the total number of claims in t years. Then, the posterior structure function, u(λ|k1, ..., kt), for a
policyholder or a group of policyholders, is given by (see Proposition 1):

u(λ|k1, . . . , kt) =

t∏
j=1

f(kj |λ)u(λ)

∫∞
0

t∏
j=1

f(kj |λ)u(λ)dλ
=

n∑
z=1

π̃z
(t+ τz)

K+αzλK+αz−1e−(t+τz)λ

Γ(K + αz)
, (7)

where,

π̃z = πz
P (K; τz, αz)

n∑
z=1

πzP (K; τz, αz)

,

in which:

P (K; τz, αz) =
Γ(K + αz)

K!Γ(αz)

(
τz

τz + t

)αz
(

t

τz + t

)K
.

Consequently, using the quadratic error loss function, the optimal choice of λi for a policyholder with claim history
k1, ..., kt is the mean of the posterior structure function, that is:

λ̂t+1 =

n∑
z=1

π̃z
K + αz
τz + t

. (8)

3.2. Severity component

Assume xj,k|y, the size of claim k in period j, is distributed as Exp(y), independently for all j, and that the structure
function follows an n-components mixture of Inverse Gamma distribution with below density:

g(y) =

n∑
z=1

ρz

1
mz
e−

mz
y

Γ(sz)
(

y
mz

)sz+1 , (9)
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Denote by K =
t∑

j=1

kj the total number of claims in t years and by X =
t∑

j=1

kj∑
k=1

xj,k the total amount of claims,

the posterior structure function, g(y|x1,1, ..., xt,kt), for a policyholder or a group of policyholders, is given by (see
Proposition 1):

g(y|x1,1, . . . , xt,kt) =
n∑
z=1

ρ̃z

1
X+mz

e−
X+mz

y

Γ(K + sz)
(

y
X+mz

)K+sz+1
, (10)

where,

ρ̃z = ρz
P (X;K,mz, sz)

n∑
z=1

ρzP (X;K,mz, sz)

,

in which:

P (X;K,mz, sz) =
Γ(K + sz)

K!Γ(sz)

(
mz

mz +X

)sz ( X

mz +X

)K
.

Using the quadratic error loss function, the optimal choice of y for a policyholder with claim history k1, ..., kt and
claim sizes x1,1, . . . , xt,kt is the mean of the posterior structure function, that is:

ŷt+1 =

n∑
z=1

ρ̃z
X +mz

sz +K − 1
. (11)

Applying equations (8) and (11) in equation (1) results in the premiums of the BMS based on the a posteriori
criteria as below:

Premium =

n∑
z=1

π̃z
K + αz
τz + t

×
n∑
z=1

ρ̃z
X +mz

sz +K − 1
. (12)

3.3. Parameter estimation

In order to use equation (12), we need first to obtain estimates of parameters πz, αz, τz, ρz,mz, sz for z = 1, . . . , n.
Using our assumptions we can get easily that:

fkj (k) =

n∑
z=1

πz
Γ(k + αz)

k!Γ(αz)

(
τz

1 + τz

)αz
(

1

1 + τz

)k
, k = 0, 1 . . . , (13)

fxjk
(x) =

n∑
z=1

ρz
szm

sz
z

(mz + x)sz+1
, x > 0. (14)

Equation (13) and (14) shows that the number of claims and the amount of each claims assumed to be a finite
mixture of negative binomial and Pareto distribution, respectively. For a finite mixture distribution to continue data,
one way is by trial and error. For instance first estimating the centers of the peaks by eye in the density plot (these
become the component means), and adjusting the standard deviations and mixing percentages to approximately
match the peak widths and heights, respectively.

The mixdist package is one of several available packages in R to fit mixture distributions, see Macdonald and
Du (2012). It contain negative binomial distribution. So, we can find estimates of πz, τz and αz by this package.
It should be mentioned that most of the procedures in the mixture fitting are based on the iterative expectation
maximization (EM) algorithm. In MATLAB, function gpfit can be used to fit the Pareto mixture to real data using
maximum likelihood estimation, see Weinberg and Finch (2012).
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4. BMS Based on both the a priori and a posteriori criteria

Notations

Consider a policyholder i with an experience of t periods. We define the following notations:

kji : number of claims in period j,

λjz,i: expected number of claims of an individual i who belongs to the zth category,

cjz,i = (cjz,i,1, ..., c
j
z,i,h): is the vector of h individual characteristics which affect on the the distribution of kji ,

βjz = (βjz,1, ..., β
j
z,h): is the vector of the coefficients,

djz,i = (djz,i,1, ..., d
j
z,i,h): is the vector of h individual characteristics which affect on the the distribution of xji ,

γjz = (γjz,1, ..., γ
j
z,h): is the vector of the coefficients,

xji,k: size of claim k in period j for policyholder i,

yjz,i: underlying risk parameter of the random variable xj,k.

4.1. Frequency component in the presence of a priori criteria

Suppose that kji |λ
j
i ∼ Poisson(λji ) and assume that

λji = exp
(
cjz,iβ

j
z

)
ui, (15)

where ui is a random variable follows an n- component Gamma mixture distribution with pdf

v(ui) =

n∑
z=1

πz

1
αz

1
αz u

1
αz

−1

i e−
ui
αz

Γ( 1
αz

)
, (16)

Similarly to equation (7), posterior distribution is given below (see Proposition 1):

v(λt+1
i |k1i , . . . , kti ; c11,i, . . . , ct+1

n,i ) =

n∑
z=1

π̃z
(Si,z)

K+ 1
αz (λt+1

i )K+ 1
αz

−1e−Si,zλ
t+1
i

Γ(K + 1
αz

)
, (17)

where, Si,z =
1

αz
+φz

exp(ct+1
z,i β

t+1
z )

and

π̃z = πz
P (K;φz, αz, )

n∑
z=1

πzP (K;φz, αz)

,

in which:

P (K;φz, αz) =
Γ(K + αz)

K!Γ(αz)

(
αz

αz + φz

)αz
(

φz
αz + φz

)K
,

and

φz =

t∑
j=1

exp(cjz,iβ
j
z).

Consequently, the optimal choice of λt+1
i for a policyholder with claim history k1, ..., kt under the quadratic

error loss function is the mean of the posterior structure function, that is:

λ̂t+1
i =

n∑
z=1

π̃z exp(c
t+1
z,i β

t+1
z )

αz +K

αz + φz
(18)
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4.2. Severity component in the presence of a priori criteria

Assume that xji,k ∼ Exp(yjz,i) and assume that

yjz,i = exp
(
djz,iγ

j
z

)
wi, (19)

where wi is a random variable follows an n- component Inverse Gamma mixture distribution with pdf

ω(wi) =

n∑
z=1

ρz

1
sz−1e

− sz−1
wi

Γ(sz)
(

wi

sz−1

)sz+1 , (20)

An expression similar to equation (10), under Proposition 1, can also be developed for the posterior distribution as
below:

ω(yt+1
i |x1i,1, . . . , xti,kti ; d

1
1,i, . . . , d

t+1
n,i ) =

n∑
z=1

ρ̃z

1

Cj
i,z

e
−

C
j
i,z

y
j
i

Γ(sz +K)

(
yji
Cj

i,z

)K+sz+1
, (21)

where, Ci,z = [sz − 1 + Ez] exp(d
t+1
z,i γ

t+1
z ) and

ρ̃z = ρz
P (Ez;K, sz)

n∑
z=1

ρzP (Ez;K, sz)

,

in which:

P (Ez;K, sz) =
Γ(K + sz)

K!Γ(sz)

(
sz − 1

sz + Ez − 1

)sz ( Ez
sz + Ez − 1

)K
,

and

Ez =

t∑
j=1

kji∑
k=1

xji,k

exp(djz,iγ
j
z)
.

Using the quadratic error loss function, the optimal choice of yt+1
i for policyholder i is the mean of the posterior

structure function, that is:

ŷt+1
i =

n∑
z=1

ρ̃z

(
sz + Ez − 1

sz +K − 1

)
exp(dt+1

z,i γ
t+1
z ). (22)

Applying equations (18) and (22) in equation (1) results in the premiums of the BMS based on the a priori and the
a posteriori criteria as below:

Premium =

n∑
z=1

π̃z exp(c
t+1
z,i β

t+1
z )

αz +K

αz + φz
×

n∑
z=1

ρ̃z

(
sz + Ez − 1

sz +K − 1

)
exp(dt+1

z,i γ
t+1
z ). (23)

5. Numerical Study

Let’s first mention that we have used the same notations that Tzougas et al. (2014) have utilised in their study to
facilitate the comparison. Equations (7) and (8) are equivalent to equations (25) and (26) in Tzougas et al. (2014).
Formulas (7) and (8) have the same structure as equations (25) an (26), but the weights differ: π̃z by our computation
and πz by Tzougas et al. (2014). This comparison is also hold for equation (18) in our study with equation (30) in
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Tzougas et al. (2014). Note that
n∑
z=1

π̃z =
n∑
z=1

πz = 1. It is evident from definition of π̃z that π̃z = πz , for all z, if

the negative binomial probabilities are the same. This condition does not hold in general. In order to illustrate the
difference between the results, a numerical example is given.

Example 1: Let n = 2, π = (0.70, 0.30), α = (0.1, 0.2), τ = (5, 1). We obtained λ̂t+1 by both Tzougas et al (2014)
and by equation (8) forK = 0, 1, 2 and 3 and over nine years, see Figure 1. This figure indicate that the new method
gives more reward to the policyholder who has not positive claim than the Tzougas et al. (2014); whereas it provide
larger malus for the policyholder with positive claims than the method by Tzougas et al. (2014).
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Figure 1. Ratio of posterior mean by equation (26) in Tzougas et al. (2014) over the equation (8) in the current study

Similarly, equations (10)-(11) and equation (22) in this study, which are provided for the severity models, are
equivalent to equations (28), (29) and (31) by Tzougas et al (2014). Our formula is based on weights ρ̃z , whereas

Tzougas et al (2014) used ρz . We observe again that
n∑
z=1

ρ̃z =
n∑
z=1

ρz = 1. In addition, ρ̃z = ρz provided that the

negative binomial probabilities are the same.

Example 2: In this example, we analyse a real data set to illustrate the discrepancy between new method and the
method of Tzougas et al. (2014). Table 1 show the frequency distribution of the number of claim along with the

Stat., Optim. Inf. Comput. Vol. 5, September 2017



186 GENERALISED FORM OF BMS USING FINITE MIXTURE MODELS

mean and variance of it per year for an Iranian insurance company in the period 2009-2011. The data for 2011
shows a very significant increase of over 40% in the number of policy and a very significant decrease of over 50%
in the mean claim frequency compared with 2010. The reason was that the insurance company have tie-ups with
leading automobile manufacturers in Iran in this year.

Table 1. Frequency distribution of claim in an Iranian insurance company

year

2009 2010 2011
0 39645 41447 65461
1 7127 6955 5099

kj 2 998 992 477
3 97 123 29
4 8 9 2

≥ 5 0 1 0
Mean 0.197 0.189 0.087

Variance 0.214 0.211 0.095

We combined all three years and fit mixture NB to this data using mixdist package in R. Table 2 shows the ML
estimates of the parameters for mixture NB distribution. We are now able to compare π̃z with πz in a real data
set. Table 3 indicate the results for t = 3 and for k = 0, . . . , 4. As it shows the difference is very much when k
increases.

Table 2. ML estimates of two-component NB mixture to data of Example 2

π̂1 τ̂1 α̂1 π̂2 τ̂2 α̂2

0.6446 20.8431 1.1247 0.3554 9612.183 3063.787

Table 3. Comparison between ˆ̃π and π̂z for data of Example 2 when t = 3

k

0 1 2 3 4

π̂1 0.6446 0.6446 0.6446 0.6446 0.6446
ˆ̃π1 0.5541 0.0784 0.0105 0.0014 0.0002

Table 4. Ratio of mean by equation (26) in Tzougas et al. (2014) over the equation (8) in the current study for data of Example
2

k

0 1 2 3 4

4 0.8185 0.5682 0.6158 0.6919 0.7723
5 0.7877 0.5681 0.6084 0.6796 0.7564

t 6 0.7605 0.5675 0.6019 0.6684 0.7417
7 0.7364 0.5665 0.5959 0.6582 0.7281
8 0.7150 0.5651 0.5906 0.6488 0.7156
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Let us compare the posterior mean by our method with Tzougas et al. (2014). Table 4 shows the ratio of old
method over the new method. It shows that in all cases the old method produce a much lower rate of number of
claim than the new method.

6. Conclusion

This article present a generalised form for optimal Bonus-Malus systems using finite mixture models. We have
compare the results of new method with the results of Tzougas et al. (2014) which is the most relevant study to the
work. Our results show a big difference between new formulas when those are compared with previous results.
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