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Abstract The Cauchy representation formula enables to obtain a solution to a nonhomogeneous equation with the help of
the linear homogeneous part solution and nonhomogeneities. In case of known asymptotics of the linear homogeneous part
solution, we can establish some properties of behavior of a solution to nonhomogeneous equation. For diffusion equations
the Cauchy formula was ascertained and successfully applied for different cases. In this paper, the Cauchy representation
formula for a solution to a multidimentional affine stochastic differential equation with the Skorohod integral is established.
Conditions for inclusion of the solution into generalized Wiener functional spaces are given.
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1. Introduction

The Cauchy representation formula is an efficient tool in research of an affine stochastic differential equation
(ASDE). In the diffusion case it was established in [11]. It gives possibility to connect behavior of the stochastic
semigroup generated by the homogenous equation with behavior of nonhomogeneities. The case of the stable
stochastic semigroup and different types of nonhomogeneities is considered in [5]-[8]. In the case of bounded
nonhomogeneities the solution of ASDE is stochastically bounded as has been shown in [5, 6]. If nonhomogeneities
are periodic then the solution of ASDE is periodic too (see [8]). If nonhomogeneities vanish quite quickly when
t→ ∞ then the solution of ASDE vanishes as well (see [7]).

In the paper [1] R. Buckdahn and D. Nualart obtained explicit form of the solution to anticipating linear SDEs
with the Skorohod integral and proved, specifically, inclusion of this solution into spaces of generalized Wiener
functionals. These results open perspectives in constructing solutions of other kinds of SDEs.

This paper deals with multidimensional anticipative ASDEs with the Skorohod integral. In a way analogous to
that used in [1] the Cauchy formula is proved, that is, the solution to the ASDE is represented explicitly with the
help of the Cauchy matrix of the corresponding linear equation and additive summands of the initial equation. To
describe this solution, some proper stochastic spaces are introduced.

The one-dimensional case is considered in [9] by means of the Girsanov transform.
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2. Preliminaries

Let L(V ) be a set of linear operators in a vector space V ; I - the identical operator; T : = [0, 1]; |f |p - the usual
norm of f ∈ Lp(T), p ≥ 1.

We denote bywt, t ∈ T, a one-dimensional standard Brownian motion defined on the canonical probability space
(Ω,F ,P). That is, Ω = C0(T) is a set of continuous functions, t ∈ T, such that x(0) = 0 and P is a probability
measure on F . Here F = BP

(Ω) is the Borel σ−algebra B(Ω) completed with respect to P. In this context
wt(ω) ≡ ωt is the Brownian motion path. Put ∥F∥ = (E|F |2 )1/2.

Let us denote by Dom δ the domain of definition of the definite Skorohod integral (see [4, 12]). Let 1[0,t]u ∈
Dom δ for each t ∈ T. Then the Skorohod integral process

∫ t

0
u(s) dws =

∫ 1

0
1[0,t](s)u(s) dws is defined correctly.

By L2
s(Tn) we mean a subspace of L2(Tn) that consists of symmetric functions. Let fn ∈ L2(Tn) and

gm ∈ L2(Tm). Then, fn⊗̃gm is the symmetrized tensor product of fn⊗gm.
Denote by In(fn) =

∫ 1

0
· · ·

∫ 1

0
fn(s1, . . . , sn) dws1 . . . dwsn , fn ∈ L2(Tn), the multiple stochastic integral. If

F ∈ L2(Ω), then the Wiener chaos expansion F =
∑∞

n=0 In(fn), fn ∈ L2
s

(
Tn

)
, holds true, where I0(f0) = EF .

For such F we have ∥F∥2 = E|F |2 =
∑∞

n=0 n! |fn|22. Let Dt, t ∈ T, denote the stochastic derivative.
Put ε(h) = exp

{
i
∫ 1

0
hs dws +

1
2

∫ 1

0
h2s ds

}
=

∑∞
n=0

in

n! In(h
⊗n), h ∈ L2(T), i =

√
−1. So, ε(h) is a complex

version of stochastic exponent.

3. Functional spaces, S-transform, Wick product

Set V = Rd or L(Rd). Let {fn}∞n=0 be a sequence of kernels, fn ∈ L2
s

(
Tn; V

)
. Consider now the formal expansion

F =
∑∞

n=0 In(fn). For 0 < λ <∞ we put ∥F∥2λ =
∑∞

n=0 n!λ
2n|fn|22. Let

Hλ = Hλ(V ) = {F : ∥F∥λ <∞}.

Thus, Hλ is a space of such F that the seminorm ∥F∥λ is finite. Let Fλ =
∑∞

n=0 In(λ
nfn). Then F t = F t

1 .
Since ∥Fλ∥2 =

∑∞
n=0 n!λ

2n|fn|22 = ∥F∥2λ, we have F ∈ Hλ if and only if Fλ ∈ L2(Ω). We have Hλ2 ⊂ Hλ1 for
λ1 < λ2. For 1 < λ <∞ the space Hλ ⊆ L2(Ω). That is, Hλ consists of convergent Wiener chaos expansions.
If 0 < λ < 1 the space Hλ is considered as generalized Wiener functionals because it contains divergent Wiener
chaos expansions. Put H∞ =

∩
λ≥1Hλ. The set H∞ is called the space of analytic functionals (see [1]). Put

H0+ =
∪

λ>0Hλ.
Let F =

∑∞
n=0 In(fn) ∈ H0+. We determine S−transform of a generalized Wiener functional F as

Sh(F ) = E
(
Fε(h)

)
=

∞∑
n=0

in
(
fn, h

⊗n
)
L2(Tn)

, h ∈ L2(T).

Since |Sh(F )| ≤ ∥ε(h/λ)∥∥F∥λ, the S−transform is a correct operation. Taking into account that F ∈ Hλ is
equal to Fλ ∈ L2(Ω), the S−transform characterizes the generalized functional F as an element H0+, namely
if Sh(F ) = 0 for all h ∈ L2

(
T
)
, then F = 0 as an element H0+.

For F t ∈ H0+, t ∈ T, with a sequence of kernels {f tn}∞n=0, f tn ∈ L2
s

(
Tn; V

)
, the Skorohod integral is defined as∫ 1

0
F s dws =

∑∞
n=0 In+1(f̃n) and it is shown in [1] that

∫ 1

0
F s dws ∈ H0+.

The Wick product of two multiple stochastic integrals In(fn) and Im(gm), fn ∈ L2
s

(
Tn; V

)
, gm ∈ L2

s

(
Tm; V

)
,

is denoted by ⋄ and determined by means of equality In(fn) ⋄ Im(gm) = In+m(fn⊗̃gm). With the help of linear
property the Wick product can be carried over to the case of finite sums of multiple integrals. The Wick product is
a closed operation in the spaces H0+ and H∞. For the Wick product and the S−transform the following properties
are valid:

(i) if Sh(F ) = Sh(G) for all h ∈ L2(T), then F = G;
(ii) Sh(F ⋄G) = Sh(F )Sh(G);
(iii) Sh

( ∫ 1

0
ψs dws

)
= i

∫ 1

0
Sh(ψs)hs ds;
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(iv) ∥φ ⋄ ψ∥λ 5 ∥φ∥2λ ∥ψ∥2λ for λ > 0 and φ,ψ ∈ H2λ;
(v) F ⋄

∫ 1

0
ψs dws =

∫ 1

0
F ⋄ ψs dws.

Consider a sequence of kernels {f tn}∞n=0, t ∈ T. Let F t
λ =

∑∞
n=0 In(λ

nf tn) be the formal Wiener chaos expansion
for each t and λ > 0. Denote

H1, λ =

{
F : ∥F∥1, λ =

∫ 1

0

∥F s∥λ ds <∞
}
;

H̃1, λ =

{
F : ⟨F ⟩2λ =

∞∑
n=0

n!λ2n
(∫ 1

0

∣∣fsn∣∣2 ds)2

<∞
}
;

H2, λ =

{
F : ∥F∥22, λ =

∫ 1

0

∥F s∥2λ ds <∞
}
;

H1,∞ =
∩

λ≥1H1, λ; H1, 0+ =
∪

λ>0H1, λ; H̃1,∞ =
∩

λ≥1 H̃1, λ; H̃1, 0+ =
∪

λ>0 H̃1, λ; H2,∞ =
∩

λ≥1H1, λ;
H2, 0+ =

∪
λ>0H2, λ.

Lemma 3.1
Let f•n ∈ L1

(
T;L2

s(Tn; V )
)

and F ∈ H1, λ

∩
H̃1, λ. Then∫ 1

0

F s
λ ds =

∞∑
n=0

In

(
λn

∫ 1

0

fsn ds

)
; (1)

∥∥∥∥∫ 1

0

F s ds

∥∥∥∥2

λ

=

∞∑
n=0

n!λ2n
∣∣∣∣ ∫ 1

0

fsn ds

∣∣∣∣2
2

≤ ⟨F ⟩2λ. (2)

Proof
If F ∈ H1, λ, then

∫ 1

0
F s
λ ds ∈ L2(Ω) because of inequality∥∥∥∥∫ 1

0

F s
λ ds

∥∥∥∥ ≤
∫ 1

0

∥∥F s
λ

∥∥ ds = ∫ 1

0

∥∥F s
∥∥
λ
ds <∞.

So, we can obtain the Wiener chaos expansion for
∫ 1

0
F s
λ ds. Now, we must show that∫ 1

0

F s
λ ds =

∞∑
n=0

In

(
λn

∫ 1

0

fsn ds

)
.

It is proved in [10] that under condition f•n ∈ L1
(
T;L2

s

(
Tn

))
the Fubini theorem for multiple stochastic integrals

holds true, namely
∫ 1

0
In
(
fsn

)
ds = In

( ∫ 1

0
fsn ds

)
(P = 1). Next, since F ∈ H1, λ, we have

∥∥F s
∥∥
λ
<∞ for almost

all s ∈ T and as a result

lim
N→∞

∥∥∥∥ ∞∑
n=N+1

In(λ
nfsn)

∥∥∥∥ = 0 for almost all s ∈ T.

Then, if N → ∞ ∥∥∥∥∫ 1

0

∞∑
n=0

In(λ
nfsn) ds−

N∑
n=0

In

(
λn

∫ 1

0

fsn ds

)∥∥∥∥ =

∥∥∥∥∫ 1

0

∞∑
n=N+1

In(λ
nfsn) ds

∥∥∥∥ ≤
∫ 1

0

∥∥∥∥ ∞∑
n=N+1

In(λ
nfsn)

∥∥∥∥ ds→ 0

according to the Lebesgue dominated convergent theorem. Hence, the equality (1) is fulfilled and
∫ 1

0
F s ds =∑∞

n=0 In
( ∫ 1

0
fsn ds

)
. The validity of right-hand side of (2) is obvious because of inequality

∣∣ ∫ 1

0
fsn ds

∣∣
2
≤∫ 1

0

∣∣fsn∣∣2 ds and assumption that F ∈ H̃1, λ.
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Lemma 3.2
If F ∈ H2, λ

√
2, then

∥∥ ∫ 1

0
F s dws

∥∥2

λ
≤ λ2∥F∥2

2, λ
√
2

.

Proof
Lemma 3.2 is actually proved in [1].

Remark 3.1
Spaces Hλ and H2, λ are made good use in [1].

Remark 3.2
A future application of the S−transform is admissible operation because of Lemma 3.1 and Lemma 3.2.

Definition 3.1
Let A ∈ L

(
(L2(Ω))n

)
. An operator B⋄(−1) ∈ L

(
(L2(Ω))n

)
such that

A ⋄B⋄(−1) = B⋄(−1) ⋄A = I

will be called the Wick inverse of A.

Suppose thatA ∈ L1
(
T;L(Rd)

)
andB ∈ L2

(
T;L(Rd)

)
. Consider the stochastic semigroup U t

s , 0 ≤ s ≤ t ≤ 1,
defined by the linear stochastic differential equation

U t
s = I +

∫ t

s

AvU
v
s dv +

∫ t

s

BvU
v
s dwv. (3)

Lemma 3.3
There exists the Wick inverse of U t

s which fulfills equation

(U t
s)

⋄(−1) = I +

∫ t

s

(Uv
s )

⋄(−1)(−Av) dv +

∫ t

s

(Uv
s )

⋄(−1)(−Bv) dwv (4)

and has the Wiener chaos expansion

(U t
s)

⋄(−1) =

∞∑
n=1

In(v
s,t
n ), |vs,tn |22 ≤ K1

Kn
2

(n!)2
, (5)

with K1 =
√
d,K2 = e2|A|1 |B|22. In this case we have

Sh

(
(U t

s)
⋄(−1)

)
=

(
Sh(U

t
s)
)−1

. (6)

Proof
Suppose that U t

s has a Wiener chaos exprassion of the form U t
s =

∑∞
n=0 In(u

s,t
n ). The kernels sequence {vt,sn }∞n=0

of the Wiener chaos expansion for (U t
s)

⋄(−1) is defined by the following system (see [3])

vt,s0 ut,s0 = I,

n∑
k=0

vt,sk ⊗̃ut,sn−k = 0, n = 1, 2, . . . . (7)

Considering thatU t
s satisfies (3), ut,s0 = EU t

s and E
∫ 1

0
F s dws = 0, F ∈ H2, 0+, one concludes that ut,s0 is a solution

to equation

ut,s0 = I +

∫ t

s

Avu
v,s
0 dv.

The system (7) has a unique solution if and only if ut,s0 is nondegenerate. It is true because of the Liouville theorem
(see [2]). We have vt,sn = −

∑n−1
k=0 v

t,s
k ⊗̃ut,sn−k(u

t,s
0 )−1 for n = 1, 2, . . . immediately from (7). So, there exists the
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unique (U t
s)

⋄(−1). Now, we find an equation for (U t
s)

⋄(−1). The relation (3) implies

Sh(U
t
s) = I +

∫ t

s

AvSh(U
v
s ) dv + i

∫ t

s

BvSh(U
v
s )hv dv. (8)

Let Gt
s be determined by the following equation

Gt
s = I +

∫ t

s

Gv
s(−Av) dv +

∫ t

s

Gv
s(−Bv) dwv.

Then

Sh(G
t
s) = I +

∫ t

s

Sh(G
v
s)(−Av) dv + i

∫ t

s

Sh(G
v
s)(−Bv)hv dv.

Therefore for Sh(G
t
s)Sh(U

t
s) we get

Sh(G
t
s)Sh(U

t
s) = I +

∫ t

s

[
Sh(G

v
s)
(
−Av + i(−Bv)hv

)
Sh(U

v
s )+

Sh(G
v
s)
(
Av + iBvhv

)
Sh(U

v
s )

]
dv = I.

For this reason Sh(G
t
s ⋄ U t

s) = Sh(G
t
s)Sh(U

t
s) = I = Sh(I). Thus, Gt

s ⋄ U t
s = I , that is, Gt

s = (U t
s)

⋄(−1). Hence,
equalities (4) and (6) are valid.

To establish (5) it suffices to remark that relation (4) implies the following equation for
(
(U t

s)
⋄(−1)

)T
(
(U t

s)
⋄(−1)

)T
= I+

∫ t

s

(−Av)
T
(
(Uv

s )
⋄(−1)

)T
dv+∫ t

s

(−Bv)
T
(
(Uv

s )
⋄(−1)

)T
dwv.

The Wiener chaos expansion of solution U t
s of the equation (3) and kernels estimation are obtained in [1], namely

U t
s =

∞∑
n=1

In
(
ut,sn

)
, |ut,sn |22 ≤ K1

Kn
2

(n!)2
, (9)

where K1 =
√
d,K2 = e2|A|1 |B|22. Consequently,

(
(U t

s)
⋄(−1)

)T
=

∞∑
n=0

In
(
(vs,tn )T

)
, |vs,tn |22 = |(vs,tn )T |22 ≤ K1

Mn

(n!)2
,

K1 =
√
d,M = e2|−AT |1 | −BT |22 = K2.

4. Main result

Let x0 : Ω → Rd and φ,ψ : T× Ω → Rd. Consider the following stochastic differential equation

xt = x0 +

∫ t

0

(Asxs + φs) ds+

∫ t

0

(Bsxs + ψs) dws . (10)

Definition 4.1
A process xt , t ∈ T is called the solution of the equation (10), if 1[0,t](•)(B•x• + ψ•) ∈ Dom δ for each t ∈ T and
the equality (10) holds true with probability 1 for every t ∈ T.
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Remark 4.1
As it is shown in [1], in the case of φ = ψ = 0 the solution of the Cauchy problem with a random initial condition
x0(ω) ∈ H0+ is of the following form xt = U t

0 ⋄ x0.

Theorem 4.1
Suppose that x0 ∈ H0+(Rd), φ ∈ H1, 0+(Rd)

∩
H̃1, 0+(Rd) and ψ ∈ H2, 0+(Rd). Then there exists the unique

solution xt of the system (10). Uniqueness of the solution means that given kernels sequences of x0, φ and ψ
under condition we come to a unique kernels sequence of the solution xt. This solution is of the following form

xt = U t
0 ⋄

(
x0 +

∫ t

0

(Us
0 )

⋄(−1) ⋄ φs ds+

∫ t

0

(Us
0 )

⋄(−1) ⋄ ψs dws

)
=

U t
0 ⋄ x0 +

∫ t

0

U t
s ⋄ φs ds+

∫ t

0

U t
s ⋄ ψs dws.

(11)

In this case xt ∈ H0+(Rd). In addition, if x0 ∈ H∞(Rd), φ ∈ H1,∞(Rd)
∩
H̃1,∞(Rd) and ψ ∈ H2,∞(Rd), then

xt ∈ H∞(Rd).

Proof
We shall first prove equality of right-hand side of (11) and the term in the middle of (11). To this end we show that

U t
sU

s
0 = U t

s ⋄ Us
0 , 0 ≤ s ≤ t ≤ 1. (12)

Fix an arbitrary h ∈ L2
(
T
)
. The following equalities hold true

Sh

(
U t
sU

s
0

)
= E

(
U t
sU

s
0 ε(h)

)
= E

(
U t
sε(1[s,1]h)U

s
0ε(1[0,s]h)

)
=

E
(
U t
sε(1[s,1]h)

)
Eε(1[0,s]h)Eε(1[s,1]h)E

(
Us
0ε(1[0,s]h)

)
=

E
(
U t
sε(1[0,1]h)

)
E
(
Us
0ε(1[0,1]h)

)
= Sh

(
U t
s

)
Sh

(
Us
0

)
.

This implies (12).
Since U t

s ∈ H∞(L(Rd)) (see [1]), we have equality U t
0 ⋄

∫ 1

0
F s dws =

∫ 1

0
U t
0 ⋄ F s dws, F ∈ H2, 0+,

(see, for example, [3]). Linearity of the Wick product implies U t
0 ⋄

∫ 1

0
F s ds =

∫ 1

0
U t
0 ⋄ F s ds for F ∈

H1, 0+(Rd)
∩
H̃1, 0+(Rd). Taking into account (12), we finally obtain

U t
0 ⋄

(
x0 +

∫ t

0

(Us
0 )

⋄(−1) ⋄ φs ds+

∫ t

0

(Us
0 )

⋄(−1) ⋄ ψs dws

)
=

U t
0 ⋄ x0 + U t

0 ⋄
∫ t

0

(Us
0 )

⋄(−1) ⋄ φs ds+ U t
0 ⋄

∫ t

0

(Us
0 )

⋄(−1) ⋄ ψs dws =

U t
0 ⋄ x0 +

∫ t

0

U t
0 ⋄ (Us

0 )
⋄(−1) ⋄ φs ds+

∫ t

0

U t
0 ⋄ (Us

0 )
⋄(−1) ⋄ ψs dws =

U t
0 ⋄ x0 +

∫ t

0

U t
sU

s
0 ⋄ (Us

0 )
⋄(−1) ⋄ φs ds+

∫ t

0

U t
sU

s
0 ⋄ (Us

0 )
⋄(−1) ⋄ ψs dws =

U t
0 ⋄ x0 +

∫ t

0

U t
s ⋄ Us

0 ⋄ (Us
0 )

⋄(−1) ⋄ φs ds+

∫ t

0

U t
s ⋄ Us

0 ⋄ (Us
0 )

⋄(−1) ⋄ ψs dws =

U t
0 ⋄ x0 +

∫ t

0

U t
s ⋄ φs ds+

∫ t

0

U t
s ⋄ ψs dws.

Now, we must show that all summands in (11) are elements of H0+(Rd). As it is proved in [1], U t
0 ⋄ x0 ∈

H0+(Rd). To verify that
∫ t

0
U t
s ⋄ φs ds ∈ H0+(Rd), it is should be noted that U t

s is an analytical functional for each
0 ≤ s ≤ t ≤ 1. Indeed, from (9) we have ∥U t

s∥2λ =
∑∞

n=0 λ
2nn! |ut,sn |22 ≤ K1e

K2λ
2

= Lλ <∞. Thus, U t
s ∈ Hλ for
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each 0 < λ <∞, that is, U t
s ∈ H∞. Next, it may be proved that U t

• ⋄ φ• ∈ H1, λ for φ ∈ H1, 2λ. For this purpose
we verify that

∫ t

0
∥U t

s ⋄ φs∥λ ds <∞. In virtue of the Wick product property ∥φ ⋄ ψ∥λ 5 ∥φ∥2λ ∥ψ∥2λ, λ > 0,
φ,ψ ∈ H2λ, and the estimation of ∥U t

•∥2λ, we have∫ t

0

∥U t
s ⋄ φs∥λ ds ≤

∫ t

0

∥U t
s∥2λ∥φs∥2λ ds ≤

√
L2λ

∫ t

0

∥φs∥2λ ds <∞.

In order to check that ⟨U t
• ⋄ φ•⟩λ <∞, we should use the estimation of ut,sn (9). Finally, we get

⟨U t
• ⋄ φ•⟩2λ =

∞∑
n=0

n!λ2n
(∫ t

0

∣∣ n∑
k=0

ut,sn−k⊗̃φ
s
k

∣∣
2
ds

)2

≤

∞∑
n=0

n!λ2n(n+ 1)

n∑
k=0

(∫ t

0

∣∣ut,sn−k

∣∣
2

∣∣φs
k

∣∣
2
ds

)2

≤

K1

∞∑
n=0

n∑
k=0

(n− k)!
(2λ2K2)

(n−k)

((n− k)!)2
k! (2λ2)k

(∫ t

0

∣∣φs
k

∣∣
2
ds

)2

≤

K1

∞∑
n=0

n∑
k=0

(2λ)2(n−k)K
(n−k)
2

(n− k)!
k! (2λ)2k

(∫ t

0

∣∣φs
k

∣∣
2
ds

)2

≤

K1

∞∑
n=0

(
(2λ)2n

Kn
2

n!

) ∞∑
k=0

(
k! (2λ)2k

(∫ t

0

∣∣φs
k

∣∣
2
ds

)2 )
= L2λ⟨φ⟩22λ <∞.

In view of (2), we have
∥∥ ∫ t

0
U t
s ⋄ φs ds

∥∥
λ
≤ ⟨U t

• ⋄ φ•⟩λ <∞ for φ ∈ H1, 2λ

∩
H̃1, 2λ and, on account of

Lemma 3.1,
∫ t

0
U t
s ⋄ φs ds ∈ H0+(Rd).

Now, we shall prove that
∫ t

0
U t
s ⋄ ψs dws ∈ H0+(Rd). For this purpose, by Lemma 3.2, it suffices to show that

1[0,t](•)U t
• ⋄ ψ• ∈ H2, λ

√
2 if ψ ∈ H2, 23/2λ. We have

∥∥1[0,t](•)U t
• ⋄ ψ•

∥∥2

2, λ
√
2
=

∫ t

0

∥U t
s ⋄ ψs∥2λ√2

ds ≤∫ t

0

∥U t
s∥223/2λ∥ψs∥223/2λ ds ≤ L23/2λ

∫ 1

0

∥ψs∥223/2λ ds <∞.

To complete the proof it still remains to show that the expression (11) is a solution to the equation (10). We shall
first apply S-transform to zt determined by the right-hand side of (11), namely to

zt = U t
0 ⋄ x0 + U t

0 ⋄
∫ t

0

(Us
0 )

⋄(−1) ⋄ φs ds+ U t
0 ⋄

∫ t

0

(Us
0 )

⋄(−1) ⋄ ψs dws. (13)

Since Sh(F ⋄G) = Sh(F )Sh(G), F,G ∈ H0+, (see [3]), Sh

( ∫ 1

0
F s dws

)
= i

∫ 1

0
Sh(F

s)hs ds for F ∈ H2, 0+ (see
[3]) and by (6), we have

Sh(zt) =Sh(U
t
0)Sh(x0)+

Sh(U
t
0)

∫ t

0

(
Sh(U

s
0 )
)−1(

Sh(φs) + iSh(ψs)hs
)
ds.

(14)

Considering (8), it is easy to calculate that the right-hand side of (14) satisfies equation

Sh(zt) =Sh(x0)+∫ t

0

{(
As + iBshs

)
Sh(zs) +

(
Sh(φs) + iSh(ψs)hs

)}
ds.

(15)

Stat., Optim. Inf. Comput. Vol. 7, December 2019



A. ILCHENKO 693

Next, let us apply S-transform to each term of equation (10). Taking into account the S-transform properties given
above, we come to

Sh(xt) =Sh(x0)+∫ t

0

{
AsSh(xs) + Sh(φs) +

(
BsiSh(xs)hs + iSh(ψs)hs

)}
ds.

(16)

Inasmuch as equations (15) and (16) are equal up to the notation and order, we obtain Sh(zt) = Sh(xt) for all
h ∈ L2(T). It implies that zt = xt as elements of H0+(Rd), t ∈ T. Thus, the expression (11) determines a solution
to the equation (10).

The assertion of the case x0 ∈ H∞(Rd), φ ∈ H1,∞(Rd)
∩
H̃1,∞(Rd) and ψ ∈ H2,∞(Rd) follows immediately

from the above reasoning.
Uniqueness of the solution is a direct consequence of linearity of the equation (10) and corresponding result for

nonhomogeneous case established in [1].

Corollary 4.1
Let x0 be a non-random initial condition. Denote F t

s = σ
{
wv − wu : 0 ≤ s ≤ u ≤ v ≤ t ≤ 1

}
. Suppose that φt

and ψt are F t
0 measurable ( φt, ψt ∼ F t

0 ). Under these circumstances, as has been stated in [11], the solution of
the system (10) can be written in the form

xt = U t
0x0 +

∫ t

0

U t
s

(
φs −Bsψs

)
ds+ U t

0

∫ t

0

(Us
0 )

(−1)ψs dws, (17)

where the stochastic integral is interpreted in Itô sense.

Proof
We shall first prove that (17) is a direct consequence of (11). It should be recalled that in this case the Skorohod
integral coincides with the Ito integral. By property of the Skorohod integral

U t
0

∫ t

0

(Us
0 )

(−1)ψs dws =

∫ t

0

U t
0(U

s
0 )

(−1)ψs dws +

∫ t

0

(
DsU

t
0

)
(Us

0 )
(−1)ψs ds,

where Dt, t ∈ T, denotes the stochastic derivative (see [3, 4]). By simple computation,

DsU
t
0 =

{
0, 0 5 t < s,

U t
sBsU

s
0 , 0 5 s 5 t.

After making the substitution, we get∫ t

0

U t
sψs dws = U t

0

∫ t

0

(Us
0 )

(−1)ψs dws −
∫ t

0

U t
sBsψs ds.

Since φs, ψs ∼ Fs
0 and Ht

s ∼ F t
s, equalities U t

s ⋄ φs = U t
sφs and U t

s ⋄ ψs = U t
sψs can be proved in the same

manner as in the case of (12). Finally, (11) can be transformed like that

xt = U t
0 ⋄ x0+

∫ t

0

U t
s ⋄ φs ds+

∫ t

0

U t
s ⋄ ψs dws =

U t
0x0+

∫ t

0

U t
sφs ds+

∫ t

0

U t
sψs dws =

U t
0x0+

∫ t

0

U t
s

(
φs −Bsψs

)
ds+ U t

0

∫ t

0

(Us
0 )

(−1)ψs dws.
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Remark 4.2
In the one-dimensional case (d = 1) the Cauchy formula can be written, as it is shown in [9], by means of the
family of transformation Qt, Rt : Ω → Ω, t ∈ T, defined as

Qt(ω)s = ωs +

∫ t∧s

0

Bu du; Rt(ω)s = ωs −
∫ t∧s

0

Bu du, s, t ∈ T, ω ∈ Ω.

The solution of (10) takes the form

xt = U t
0x0(R

t) +

∫ t

0

U t
sφs(R

tQs) ds+

∫ t

0

U t
sψs(R

tQs) dws.

5. Conclusion

In this paper the solution to the affine stochastic differential equation with the Skorohod integral in
multidimensional case represents by means of the stochastic semigroup generated by the corresponding linear
homogenous equation and additive nonhomogeneities of the initial equation.

Properties of the solution are delineated in terms of the Wiener chaos expansion. Some stochastic spaces are
introduced and it is ascertained that if nonhomogeneities are elements of these spaces then the solution is a
generalized Wiener functional.
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