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Abstract Discrete uniform distribution (DUD) is one of the simplest probability models, but it is now introduced as
the main tool for the evaluation of resampling techniques which are rapidly entering data analysis and discovering useful
information for the researchers. In this paper we evaluate whether the sample coefficient of variation (CV) is a good estimator
for the population CV, when the random variable (r.v.) follows the DUD. A method is proposed to obtain the percentage of
the number of samples where the CV lies within the bounds of the corresponding population CV and this value is used as a
measure of goodness. Samples both with replacement and without replacement are examined, indicating that the goodness
of the sample CV estimator increases with the sample size. The overall study gives a good idea of whether the sample CV
is generally a good estimator. A real-life data set is analyzed to demonstrate the applicability of the proposed method in
practice and the results are interpreted.
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1. Introduction

The CV of a r.v. X is given by:

CV =
σ

µ
(1)

where σ is the population standard deviation and µ ̸= 0 is the population mean of the rv X [21, 22], while the value
of the CV obtained from a sample is as follows:

ĈV =
s

x̄
(2)

where s is the sample standard deviation and x̄ is the sample mean.
The CV is unit-free and thus, it is one of the most widely used statistical tools in various scientific fields. It is

used as a tool for quality improvement [12], as a tool for managing loan portfolio risks [17], as a tool for measuring
athletic performance [25], as a tool for calculating the sample size needed for carrying out studies [29], as a tool
for obtaining a distribution model [20], as an intra-observer variability assessment tool [7] and so on.
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Discrete uniform distributions play a naturally important role in many classical problems of probability theory
[1, 13]. The interest of the study of discrete random variables is that the study is theoretical and can be exhaustive
because we have a small amount of data. Another advantage of the discrete r.v. is that a continuous variable can be
transformed into discrete by appropriately dividing its range. The continuous life time may not necessarily always
be measured on a continuous scale but may often be counted as discrete random variables [10]. In survival analysis
the survival function may be a function of count r.v. that is a discrete version of the underlying continuous r.v.
For example, the length of stay in an observation ward is counted by number of days or survival time of leukemia
patients is counted by number of weeks. Therefore, the use of a discrete distribution is more realistic than the use
of a continuous one. An extension of the study for a larger number of values can also predict the marginal behavior
of the continuous r.v. when the number of values is increasing, or even tends to infinity. The importance of the
CV in a DUD is that it can be used as a main evaluation tool for resampling techniques, like bootstrapping and
permutation testing [9, 23], which are very powerful in all areas of data analysis, such as in fraud detection, product
categorization and disease diagnosis.

We investigate the case of the discrete r.v. X, following the DUD DU{0, 1, . . . , N − 1}. It can be easily seen that
the CV of X is given by:

CV =

√
N + 1

N − 1

√
3

3
(3)

From (3), we conclude that the CV is independent of the difference between the consecutive terms and that, as the
population size, N , increases, the CV tends to

√
3/3 = 0.5774.

Let CV (N) and CV (N + 1) denote the CV for random variables following the discrete uniform distributions
DU{0, 1, . . . , N − 1} and DU{0, 1, . . . , N}, respectively. Thus, we have:

CV (N + 1)

CV (N)
=

√
N2 +N − 2

N2 +N
(4)

and we conclude that the CV is a strictly decreasing function and has an upper limit, CV61, ∀ N>2.
In the related literature, not much work is seen in the discrete case and consequently, the published work on

CV and DUD is rare. [11] recently developed procedures for interval estimation and hypothesis testing for the
coefficient of variation in the continuous uniform distribution, [2, 3, 19] studied the convolution powers of DUD,
[5, 4] studied order statistics from a DUD, [16] obtained bounds for the population CV in DUD along with other
distributions and [6] defined goodness-of-fit statistics to test fit to a DUD. In the present study, the goodness of the
sample CV is ultimately attributed to the percentage of samples where their CV is lying within the bounds of the
population CV:

√
3/3 < CV 61 [16] or approximately in the interval (0.5774,1].

The organization of the rest of this paper is as follows. In Section 2, we describe the sampling methods used.
In Section 3, we provide an efficient algorithm for computing the rate of return and we apply it for different
sample sizes and population sizes. In Section 4, regression and correlation analysis were carried out between the
sample size and the rate of return. In section 5, a real-data application illustrates the effectiveness of the proposed
algorithm. Section 6 concludes the paper and proposes future directions.

2. Sampling Method

The sampling method selected is the random sampling (RS) [8, 15], i.e. every element of the population has the
same probability of being drawn with any other element. In the RS process it is usually considered that the selected
element does not return to the population, so it cannot be re-selected. This sampling is known as sampling without
replacement. However, there is a case where each element is selected and after its value is recorded, it is returned
to the population so that it can be re-selected. This process is known as sampling with replacement.

It has been proved that V arX̄r > V arX̄ , where X̄r is the mean of the sample with replacement and X̄ is
the mean of the sample without replacement and more precisely, it is bigger by (N − 1)/(N − n) [8], where N
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and n are the population size and the sample size, respectively. Therefore, in the case of random sampling with
replacement, we have less information from a sample of size n.

The number of different samples taken during sampling without replacement is equal to the number of possible
combinations of n elements from a population of size N , which is denoted by

(
N
n

)
, while in sampling with

replacement is equal to Nn.

3. Proposed Method

The proposed method for the evaluation of the estimate of the sample ĈV is described in the following steps:

1. Recording the samples as n-dimensional vectors (xi1, xi2, . . . , xin), where i denotes the samples number.
2. Calculating the number of samples by solving the following equation:

N−1∑
j=0

Bj = n

where Bj = 0, 1, . . . , n is a non-negative integer and denotes the number of times that we observe number j
in our sample.

3. Calculating the number of permutations that can be formed with the values of each n-dimensional vector.
4. Calculating the ĈV of each sample. It can be shown that:

ĈV
2
=

n

n− 1

(
x2
i

x̄i
2
− 1

)
=

n2

n− 1

(
B1 + 4B2 + . . .+ (N − 1)2BN−1

B1 + 2B2 + . . .+ (N − 1)BN−1)2
− 1

n

)
where xi = (xi1, xi2, . . . , xin), i = 1, . . . , n.

5. Calculating the percentage (%) of the number of samples where the ĈV lies within the interval (
√
3/3, 1].

This percentage will henceforth be called rate of return for the sake of brevity. The probability distribution
of ĈV is given by:

P

(
ĈV

2
=

n2

n− 1

(
B1 + 4B2 + . . .+ (N − 1)2BN−1

(B1 + 2B2 + . . .+ (N − 1)BN−1)
2 − 1

n

))
=

n!

B0!B1! . . . BN−1!

(
1

N

)n

We apply the proposed method when using both sampling methods, but the following propositions are useful in the
case of sampling with replacement.
Proposition 1. In the case of sampling with replacement, the proposed algorithm examines

(
n+N−1
N−1

)
samples.

Proof. As mentioned in section 2, the number of possible combinations of n elements from a population of size
N is equal to Nn. We will, however, prove that the proposed algorithm examines

(
n+N−1
N−1

)
samples, which is too

much smaller than Nn.
Assume that (xi1, xi2, . . . , xin) follow a DUD DU{0, . . . , N − 1}. Since the sample ĈV does not depend

on the order of the samples, we only need to find the number of ordered samples (xi1, xi2, . . . , xin) where
xi1 6 xi2 6 . . . 6 xin. It is easy to see that the number of ordered samples (xi1, xi2, . . . , xin) is equal to the
number of non-negative integer solutions of the equation

∑N−1
j=0 Bj = n [26], which completes the proof of the

proposition 1.
Proposition 2. In the case of sampling with replacement, the number of distinct values of ĈV is

(
n+N−1
N−1

)
−n(N −

2)− 1.
Proof. Samples (i, 0, 0, . . . , 0) for i = 1, . . . , N − 1 have the same ĈV because we have Bi = 1, B0 = n− 1 and
therefore:

ĈV
2
=

n2

n− 1

(
i2Bi

(iBi)
2 − 1

n

)
=

n2

n− 1

(
1− 1

n

)
(5)
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which does not depend on i. Similarly, considering samples (i, i, 0, . . . , 0) for i = 1, . . . , N − 1, we have Bi =
2, B0 = n− 2 and therefore:

ĈV
2
=

n2

n− 1

(
i2Bi

(iBi)
2 − 1

n

)
=

n2

n− 1

(
1

2
− 1

n

)
(6)

We can see generally that when Bi = m,B0 = n−m, for m = 1, . . . , n, then:

ĈV
2
=

n2

n− 1

(
i2Bi

(iBi)
2 − 1

n

)
=

n2

n− 1

(
1

m
− 1

n

)
(7)

As a result, we can neglect N − 2 replications of ĈV for each sample with Bi = m,B0 = n−m, i = 1, 2, . . . , N −
1,m = 1, 2, . . . , n. Since i = 1, 2, . . . , N − 1, there are N − 1 samples having the same ĈV and thus, we can
remove N − 2 same values of ĈV and since m = 1, 2, . . . , n, we can remove n(N − 2) same values of ĈV among
the possible values of ĈV .

Finally, the case of (0, 0, . . . , 0) is also removed as it has the same ĈV with samples (i, i, . . . , i). In this way, we
show that the number of same ĈV values is n(N − 2) + 1 which completes the proof of the proposition 2.

3.1. DU{0,1,2}

The goodness of the sample ĈV estimator of the r.v. X following a DUD DU{0, 1, 2} is evaluated, i.e. for N = 3.
The case of samples of size 6, which are taken from sampling with replacement, is fully described below.

The equation
∑N−1

j=0 Bj = 6 has 28 solutions. Each of the 28 solutions is represented in Table 1 in the form of a
6-dimensional vector (xi1, xi2, . . . , xi6), i = 1, . . . , 28, the coordinates of which can obtain the values of 0, 1 and/
or 2 in all possible ways. The number of permutations that can be formed with the values given in each row of the
table is denoted by r.

All in all, we get Nn = 36 = 729 samples of size 6. We notice that in 390 samples of them, which are marked in
bold, the ĈV lies within the interval (

√
3/3, 1]. Finally, the number of distinct values for ĈV is 21 which is found

by removing 7 duplicated values (see Proposition 2).

Table 1. Description of samples and values of CV for N = 3 & n = 6.
xi1 xi2 xi3 xi4 xi5 xi6 r CV
0 0 0 0 0 0 1 0
0 0 0 0 0 1 6 2.4495
0 0 0 0 0 2 6 2.4495
0 0 0 0 1 1 15 1.5492
0 0 0 0 1 2 30 1.6733
0 0 0 0 2 2 15 1.5492
0 0 0 1 1 1 20 1.0954
0 0 0 1 1 2 60 1.2247
0 0 0 1 2 2 60 1.1798
0 0 0 2 2 2 20 1.0954
0 0 1 1 1 1 15 0.7746
0 0 1 1 1 2 60 0.9033
0 0 1 1 2 2 90 0.8944
0 0 1 2 2 2 60 0.8427
0 0 2 2 2 2 15 0.7746
0 1 1 1 1 1 6 0.4899
0 1 1 1 1 2 30 0.6325
0 1 1 1 2 2 60 0.6452
0 1 1 2 2 2 60 0.6124
0 1 2 2 2 2 30 0.5578
0 2 2 2 2 2 6 0.4899
1 1 1 1 1 1 1 0
1 1 1 1 1 2 6 0.3499
1 1 1 1 2 2 15 0.3873
1 1 1 2 2 2 20 0.3651
1 1 2 2 2 2 15 0.3098
1 2 2 2 2 2 6 0.2227
2 2 2 2 2 2 1 0

TOTAL 729
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We repeat the same procedure for each sample of size n = 2, 3, 4, 5, 7, 8, 9 and 10 which is randomly selected
and replaced and record the number of total samples as well as the number and the percentage of the samples where
the ĈV lies within the interval (

√
3/3, 1] (Table 2).

Table 2. Results of sampling with replacement for N = 3 & n = 2, 3, . . . , 10.

Sample size Number of samples Number of samples where
√
3/3 < CV 6 1 Rate of return (%)

2 9 1 11.11
3 27 13 48.15
4 81 33 40.74
5 243 121 49.79
6 729 390 53.5
7 2187 1170 53.5
8 6561 3585 54.64
9 19683 10795 54.84
10 59049 39871 67.52

It is noticed that the percentage of the values of the sample CV within the bounds of the population CV increases
in parallel with the sample size (Figure 1).
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Figure 1. Rate of return (%) for N = 3 & n = 2, 3, . . . , 10.

3.2. DU{0,1,2,3}

The goodness of the sample ĈV estimator of the r.v. X following a DUD DU{0, 1, 2, 3} is evaluated, i.e. for N = 4.
Table 3 presents the results of sampling with replacement for samples of size n = 2, 3, 4, 5, 6 and 7.

Table 3. Results of sampling with replacement for N = 4 & n = 2, 3, . . . , 7.

Sample size Number of samples Number of samples where
√
3/3 < CV 6 1 Rate of return (%)

2 16 7 43.75
3 64 25 39
4 256 91 35.55
5 1024 526 51.37
6 4096 2137 52.17
7 16384 9479 57.86

An increasing trend of the percentage of the samples, where the ĈV lies within the bounds of the population CV
is obvious (Figure 2).
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Figure 2. Rate of return (%) for N = 4 & n = 2, 3, . . . , 7.

3.3. DU{0,1,2,3,4}

The goodness of the sample ĈV estimator of the r.v. X following a DUD DU{0, 1, 2, 3, 4} is evaluated, i.e. for
N = 5. Table 4 presents the results of sampling without replacement for samples of size n = 2, 3, 4 and 5.

Table 4. Results of sampling without replacement for N = 5 & n = 2, 3, 4, 5.

Sample size Number of samples Number of samples where
√
3/3 < CV 6 1 Rate of return (%)

2 10 2 20
3 10 5 50
4 5 4 80
5 1 1 100

We notice that there is only one sample of size 5, which is the population itself. In this case, the sample ĈV and
the population CV coincide and are equal to 0.7906.
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Figure 3. Rate of return (%) for N = 5 & n = 2, 3, 4, 5.

The percentage of the samples, where the ĈV lies within the interval (
√
3/3, 1], is still increasing and has a

strong linear trend with respect to the sample size (Figure 3).

3.4. DU{0,1,2,3,4,5,6,7}

Finally, the goodness of the sample ĈV estimator of the r.v. X following a DUD DU{0, 1, 2, 3, 4, 5, 6, 7} is
evaluated, i.e. for N = 8. Table 5 presents the results of sampling without replacement for samples of size
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n = 2, 3, 4, 5, 6, 7 and 8.

Table 5. Results of sampling without replacement for N = 8 & n = 2, 3, . . . , 8.

Sample size Number of samples Number of samples where
√
3/3 < CV 6 1 Rate of return (%)

2 28 6 21.43
3 56 27 48.21
4 70 42 60
5 56 42 75
6 28 24 85.71
7 8 6 75
8 1 1 100

Similar to the case of N = 5, we notice that there is only one sample of size 8, which is the population itself. In
this case, the sample ĈV and the population CV coincide and are equal to 0.6999.
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Figure 4. Rate of return (%) for N = 8 & n = 2, 3, . . . , 8.

In general, the rate of return has an increasing trend with respect to the sample size (Figure 4).

4. Correlation between sample size and rate of return

After the steps 1 to 5 have been completed, we investigate the rate of increase of the rate of return when the sample
size, n, increases by one unit.

The case of N = 3 and sampling with replacement is fully described, where the value of the ĈV exceeds 0.8
(Table 6). In other words, at least 64% of the changes in the rate of return is explained by the change in the sample
size. The value of the correlation coefficient indicates that there is a linear relationship between the rate of return
and the sample size and the linear regression equation is given by:

ŷ = b0 + b1 · n

where ŷ is the estimate of the rate of return, n is the sample size and b0, b1 the regression coefficients. The value
of the coefficient b1 is derived from the pair sample size C rate of return (%) of Table 2 and on average is slightly
higher than 2. This allows us to assume an increase in the rate of return by approximately 2% for each one-unit
sample size increase. Therefore, with an initial goodness of the ĈV estimator around 35%, a sample size of 35 to
40 elements is required in order to approach 100%. The value of the coefficient b1 resulting from regression with
data including samples of size n > 10 is marginally decreasing. Consequently, the average will fall below 2.
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Table 6. Values of correlation coefficient and coefficient of determination.
With replacement Without replacement

Population size, N 3 4 5 8
Correlation coefficient, r 0.8490 0.7837 0.9959 0.9361
Coefficient of determination, r2 0.7208 0.6142 0.9918 0.8763

Table 6 above presents the values of the correlation coefficient and the coefficient of determination for both
sampling cases examined. All values of the correlation coefficients are positive, therefore there is a positive linear
relationship between the two variables [14], the rate of return and the sample size, whether the sample is taken with
replacement or without.

The value of the correlation coefficient for N = 5 and sampling without replacement (r = 0.9959) confirms that
there is almost a perfect linear relationship between the sample size and the rate of return, as seen in Figure 3. The
corresponding value of the coefficient of determination confirms the fitting of the regression line to the DUD data.

5. Application

From 1st of January until 31st of December 2017, 840 patients were hospitalised in the RSA IGEA - Rehabilitation
Residential Centre in Trieste, Italy. They were given the Barthel Index (BI) questionnaire [18] both at the
beginning and at the end of the rehabilitation. This questionnaire contains 10 questions and assesses the degree
of independence from daily activities, such as feeding, clothing and personal hygiene.

83 patients were excluded because the final data are not available and as we have been informed by the Medical
Director, Dr Paolo Da CoL, these patients were discharged before ending the rehabilitation path. The sample
consists of 757 patients with an average age of 84.09 ± 8.93 years old, of whom 522 (69%) are females and 235
(31%) are males.

We divided the questions into the following 3 categories based on the possible answers:
i. questions about help with personal hygiene and bathing were answered with 0 (dependent) or 1 (independent).
ii. questions about help with feeding, dressing/undressing, using the toilet and climbing stairs were answered

with 0 (dependent), 1 (with help) or 2 (independent) and questions about fecal and urinary incontinence were
answered with 0 (incontinent), 1 (occasionally) or 2 (continent).

iii. question about transfer from chair to bed was answered with 0 (not able), 1 (major help), 2 (minor help) or 3
(independent) and question about walking was answered with 0 (immobile), 1 (moving with wheelchair), 2 (with
help of a person) or 3 (with aids for disabled).

The above answers are coded to equal levels, therefore assuming that the expected average, approximated by
the sample estimator, makes sense, we calculate the coefficients of variation of all the questions before and after in
each category, as well as the coefficients of variation of all the questions before and after in total (Table 7).

We first notice a decrease in the ĈV in 9 of the 10 cases investigated, which indicates the improvement of the
patients condition. The increase in the ĈV in the case of help with bathing was expected and the reason is, as we
were informed by the Medical Director, that they patients rarely stay alone in the bathroom. We can also point out
that in the case of personal hygiene of patients, which is a binary variable, the final ĈV has become less than 1,
which means that the patients will become independent in their personal hygiene with higher probability after the
end of the rehabilitation path.

From Table 7, we get the following rates of return by category of questions: 25% for N = 2, 50% for N = 3 and
25% for N = 4. Finally, we observe that while the initial ĈV does not fall within the bounds of the population CV,
the final ĈV falls and coincides with the improvement of the patients condition.

We also used likelihood ratio tests (LRTs) to test whether there is statistically significant difference between the
coefficients of variation before and after the rehabilitation. The results indicate that there is enough evidence to
reject the null hypothesis, at 5% level of significance.

Remark: Only in the case of help with climbing stairs the value of the test statistic is not available.
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Table 7. CV values for = 2, 3 and 4.
Before After

N = 2
Help with personal hygiene 1.141 0.806
Help with bathing 11.188 19.416
N = 3
Help with feeding 0.346 0.281
Help with using the toilet 1.052 0.683
Help with climbing stairs 4.818 1.253
Help with dressing/ undressing 1.078 0.831
Fecal incontinence 0.741 0.606
Urinary incontinence 0.892 0.736
N = 4
Help with transfer from chair to bed 0.595 0.287
Help with walking 1.067 0.482
TOTAL 1.128 0.846

Table 8. Paired samples correlations and 95% CI for Before-After.

95% CI Before-After
N = 2 r Lower Limit Upper Limit
Help with personal hygiene 0.67 -0.201 -0.143
Help with bathing 0.406 -0.003 0.014
N = 3
Help with feeding 0.784 -0.142 -0.091
Help with using the toilet 0.663 -0.496 -0.406
Help with climbing stairs 0.288 -0.61 -0.504
Help with dressing/ undressing 0.716 -0.32 -0.248
Fecal incontinence 0.834 -0.203 -0.136
Urinary incontinence 0.814 -0.182 -0.121
N = 4
Help with transfer from chair to bed 0.688 -0.777 -0.667
Help with walking 0.601 -10.066 -0.921

Furthermore, paired samples t-tests were used for comparing the average responses before and after the
rehabilitation and the results indicate that there is enough evidence to reject the null hypothesis, at 1% level of
significance, apart from the case of help with bathing, which is not surprising as explained earlier.

Table 8 above adds the information that the average responses before and after the rehabilitation are all positively
correlated and reports the 95% confidence intervals that confirm the improvement of the patients condition.

6. Conclusions and Future Directions

In this paper, we proposed a method to evaluate the goodness of the sample ĈV and investigated the case of the
discrete r.v. X, following the DUD when random samples are taken from the population. [16] investigated only the
case of N = 3 and n = 4 when random samples are taken with replacement from the population, while we further
investigated the cases of (a) N = 3 and n = 2, 3, . . . , 10 and (b) N = 4 and n = 2, 3, . . . , 7 and when it comes to
samples without replacement, the cases of (c) N = 5 and n = 2, 3, 4, 5 and N = 8 and n = 2, 3, . . . , 8.

The value of the sample ĈV is strictly associated with the number of zeros included in each sample and thus,
we stated and proved a proposition that derives the number of distinct values of the ĈV in the case of sampling
with replacement and we also introduced a model of low computational cost describing the relationship between
the ĈV and the sample. As a result, given the sample size, n, we can calculate the number of non-zero elements
required in order the sample ĈV to lie within the bounds of the population CV, which makes it a good estimator. As
the population size, N , increases, the percentage of samples, taken both by replacement and without replacement,
giving the sample ĈV within the bounds of the population CV, is also increasing. The results are of interest for
the scientific community, as the sample ĈV can be used from now on as an evaluation measure for resampling
techniques and the discrete distributions are gaining ground.

Regression analysis further describes the relationship between the sample size and the rate of return. The value
of the correlation coefficient indicates that there is a stronger positive linear correlation between the sample size
and the rate of return of the samples taken without replacement than the samples taken with replacement. Linear
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regression models predict that samples of size n > 40 give high rates of samples where the sample ĈV is lying
within the bounds of the population CV. Numerical study showed that this further investigation can easily evaluate
the variation in discrete data.

Directions for future research include using the proposed method to construct confidence intervals for the
CV and examining the proposed method in (a) larger populations and (b) other families of discrete uniform
distributions, like the Marshall-Olkin discrete uniform (MODU) distribution [27], the generalized DUD, known
as Harris Discrete Uniform (HDU) distribution, [24] and the exponentiated Marshall-Olkin discrete uniform (E-
MO-U) distribution [28].
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