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Variable Selection in Count Data Regression Model based on Firefly
Algorithm
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Abstract Variable selection is a very helpful procedure for improving computational speed and prediction accuracy by
identifying the most important variables that related to the response variable. Count data regression modeling has received
much attention in several science fields in which the Poisson and negative binomial regression models are the most basic
models. Firefly algorithm is one of the recently efficient proposed nature-inspired algorithms that can efficiently be employed
for variable selection. In this work, firefly algorithm is proposed to perform variable selection for count data regression
models. Extensive simulation studies and two real data applications are conducted to evaluate the performance of the
proposed method in terms of prediction accuracy and variable selection criteria. Further, its performance is compared with
other methods. The results proved the efficiency of our proposed methods and it outperforms other popular methods.

Keywords Variable selection; count data; Poisson regression; negative binomial regression; firefly algorithm.

AMS 2010 subject classifications 62J12, 62J07

DOI: 10.19139/soic.v7i2.566

1. Introduction

In regression modeling, data in the form of counts are usually common. Count data regression modeling has
received much attention in medicine, behavioral sciences, psychology, and econometrics [1, 2, 3, 36]. The Poisson
and negative binomial regression models are the most basic models under count data regression models [4](Wang
et al. 2014). The problem of overdispersion usually occurs in count data. Unlike Poisson regression model, negative
binomial regression can handle the overdispersion issue [5, 6, 31].

In many real applications, recent developments in technologies have made the possibility to measure a large
number of variables. In the regression modeling, the existence of huge number has a negative effect by overfitting
the regression model. Therefore, identification of a small subset of important variables from a large number of
variables set for accurate prediction is an important role for building predictive regression models [7, 35].

Recently, the naturally inspired algorithms, such as genetic algorithm, particle swarm optimization algorithm,
firefly algorithm, and crow search algorithm, have a great attraction and proved their efficiency as variable selection
methods [12]. This is because that the main target in variable selection is to minimize the number of selected
variables while maintaining the maximum accuracy of prediction, and, therefore, they can be considered as
optimization problems [13].

Several researchers have employed the naturally inspired algorithms for variable selection in regression models.
[14] employed the genetic algorithm for variable selection in linear and partial least squares regression models,
with application in chemometrics. Drezner et al. [15] proposed to use tabu search algorithm in model selection in
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the linear regression model. On the other hand, a hybrid algorithm of genetic algorithm and simulated annealing
was proposed as a subset selection method in linear regression model by [16]. [17] did a comparison of simulated
annealing algorithms for variable selection in principal component analysis and discriminant analysis. Besides, the
di?erential evolution algorithm was used as a variable selection in linear regression model by [18]. In generalized
linear models, the natural inspired algorithms for variable selection are also used, such as, logistic regression model
[19, 20], Poisson regression model [21, 22, 32], and gamma regression model [23].

The purpose of this paper is to propose firefly algorithm, which is a swarm intelligence technique, as an
alternative variable selection method for use in count data regression model. The proposed algorithm will efficiently
help in identifying the most relevant variables in the count data regression model with a high prediction”. The
superiority of the proposed algorithm is proved though different simulation settings and a real data application.

2. Count data regression model

Consider that ”we have a data set {(yi,xi)}ni=1 where yi ∈ R is a response variable and xi = (xi1, xi2, ..., xip) ∈ Rp

is a p× 1 known explanatory variable vector.Assume that yi is counts data and it has a Poisson distribution with
probability density function

f (yi, θ) =
e−θiθi

yi

yi!
, yi = 0, 1, . . . , (1)

where θ > 0 is the parameter of the Poisson distribution. In Poisson regression model (PRM), represents the
conditional mean as θi = exp(xi

Tβ(p+ 1)× 1), where β = (β0, β1, ..., βp) is a vector of unknown regression
coefficients. The PRM can be defined as

yi = exp(xi
Tβ). (2)

The log-likelihood function of Eq. (2) is defined as

ℓ(βPRM) =

n∑
i=1

{
yixi

TβPRM − exp(xi
TβPRM)− ln yi!

}
. (3)

The maximum likelihood estimation of the PRM is obtained by taking the first derivative of Eq. (3) and solving
it as

∂ℓ(βPRM)

∂βPRM
=

n∑
i=1

[
yi − exp(xT

i βPRM)
]
xi = 0. (4)

The iteratively weighted least squares algorithm can be used to obtain the maximum likelihood estimators (MLE)
of the PRM as

β̂PRM = (XTŴX)−1XTŴû, (5)

where Ŵ = diag(θ̂i) and û is a vector where ith element equals to ûi = log(θ̂i) + ((yi − θ̂i)/θ̂i).
One of the most important assumptions in PRM is that the mean and variance of the response variable

are equivalent. When this assumption is violated, then the PRM suffers from the overdispersion issue. In real
applications, the conditional variance can exceed the conditional mean, and, therefore, the negative binomial
regression model (NBRM) be more appropriate than a PRM for modeling count data [24, 25, 33, 34]. In NBRM,
there is a random variation, αi, in the Poisson conditional mean as αi = ziθi, where zi is a random variable having
gamma distribution such that zi ∼ Γ(λ, λ).

Assume that yi is counts data and it has a negative binomial distribution with probability density function

f (yi) =
Γ(yi + τ−1)

Γ(yi + 1)Γ(τ−1)

(
τ−1

τ−1 + θi

)τ−1(
θi

τ−1 + θi

)yi

, (6)
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where τ ≥ 0 is the overdispersion parameter which is defined as τ = λ−1. The estimation of NBRM coefficients is
usually estimated by the ML estimator which is obtained by maximizing the log-likelihood function

ℓ(βNBRM) =

n∑
i=1


(

yi−1∑
j=0

log(j + τ−1)

)
− ln yi!− (yi + τ−1) ln(1 + τ exp(xi

TβNBRM))

+yi ln(τ) + yixi
TβNBRM

. (7)

Then ”the ML estimator can be obtained by solving Eq. (7) as

∂ℓ(βNBRM)

∂βNBRM
=

n∑
i=1

[
yi − exp(xT

i βNBRM)

1 + τ exp(xT
i βNBRM)

]
xi = 0, (8)

and β̂NBRM is

β̂NBRM = (XT Q̂X)−1XT Q̂v̂, (9)

where Q̂ = diag(θ̂i) and v̂ is a vector where ith element equals to v̂i = ln(θ̂i) + ((yi − θ̂i)/θ̂i).

3. Firefly algorithm

In recent years, ”numerous nature-inspired algorithms have been proposed as powerful approaches to solve the
continuous optimization problems. Minimizing the number of variables with maximizing the accuracy of prediction
is an optimization problem [27]. Firefly optimization algorithm (FA) is one of the recently efficient proposed nature-
inspired algorithms, which is firstly introduced by [26]. The application of FA is an easy algorithm for solving the
optimization problems compared with other algorithms. FA is inspired by the social behavior of fire?ies through
flashing lights. FA enables a swarm of fireflies with low light intensities to move towards the neighbor brighter
fireflies possessing superior search abilities in solving optimization problems. Three rules are held in FA [27]. The
first rule is that all fireflies are unisex meaning that one firefly will be attracted to other fireflies regardless of their
sex. The second rule is that the degree of the attractiveness of a firefly is proportion to its brightness, therefore for
any two flashing fireflies, the less bright one will move towards the brighter one and the more brightness. If there
is no brighter one than a particular firefly, it will move randomly. The third rule is that the brightness of a firefly
is somehow related to the analytical form of the fitness function. For a maximization problem, the brightness of
each firefly is proportional to the value of the cost function. Let d represents the dimension of the object function
that will optimized, nf i represents the number of fireflies, δ refers the light absorption coefficient, Ii is the light

intensity, and r is the distance between any two firefly locations (sij) and (sjr(si, sj) =
√∑

c=1

Ii
d(si,c − sj,c)

2
.).

This Cartesian distance can be defined as

r(si, sj) =

√√√√ d∑
c=1

(si,c − sj,c)
2
. (10)

Because Ii decreases when the distance from the source increases, the variations of should be monotonically
decreasing function. As a result, in most applications, the Ii can be approximated as

I(r) = I0 e
−δr2 , (11)

where I0 is the original light intensity. Because the attractiveness of a firefly is proportional to the Ii, the
attractiveness φ of a firefly is defined as

φ(r) = φ0 e
−δr2 , (12)
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where φ0 represents the attractiveness at r = 0.
FA originally is proposed to solve continuous optimization problems. However, in variable selection, the

optimization problem is discrete. A binary firefly algorithm (BFA) is proposed by [28] to deal with the problem of
variable selection where the position is binary. Because variable selection problem is to select a specific variable
or not, thus the solution is expressed as a binary vector, where the value 1 indicates a variable to be selected and 0
otherwise.

Accordingly, the position of a firefly will be replaced as follow:

s
(t+1k2)
i =

{
1 if sigm ≥ k2
0 otherwise,

(13)

where k2 represents a random number generated from uniform distribution with [0, 1]. The pseudo code of the
BFA is given in Figure 1.

Consequently, our proposed algorithm setting is as follows:
Step 1: The number of fireflies is nf = 40, φ0 = 1, δ = 0.2, α = 0.1, and the maximum number of iterations is

tmax = 500.
Step 2: The positions of each firefly are randomly generated from uniform distribution with 0 and 1. The

representation of the positions of a firefly is depicted in Figure 2.
Step 3: The fitness function is defined as

fitness = min

[
1

n

n∑
i=1

(yi − ŷi)
2

]
. (14)

Step 4: The positions of the fireflies are updated using Eq. (13).
Step 5: Steps 3 and 4 are repeated until a tmax is reached”.

fn

t

fn

i

j

j i

i j

Figure 1. Pseudo code of the Firefly algorithm.
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Figure 2. The representation of the firefly position.

4. Computational results

In this section, ”the performance of our proposed variable selection method, FA-BN is tested. Further, the
performance of FA-BN is compared with the Akaike information criteria (AIC), corrected Akaike information
criteria (CAIC), and Bayesian information criteria (BIC) that are defined as, respectively,

AIC = −2ℓ(β̂) + 2 × q, (15)

CAIC = −2ℓ(β̂) +
2q (q + 1)

n− q − 1
, (16)

BIC = 2ℓ(β̂) + log(n)× q, (17)

where ℓ(β̂) is the log-likelihood for either PRM or NBRM, and q is the number of selected variables”.

4.1. simulation results

In this section, ”the same simulation settings of [29] and [4] are used. Each simulation setting is considered for
PRM and NBRM. The sample size is considered with n ∈ {50, 100, 200}.

Simulation 1: In this simulation, 20 explanatory variables are generated from multivariate normal distributions
with mean vector 0 and covariance matrix Σ which elements ρ(xi, xj) = ρ|i−j| with ρ = 0.5. The true vector
of parameters is given by β = (0.5,−0.5, 0.5,−0.6, 0.5, 0, ..., 0,︸ ︷︷ ︸

5

0.5,−0.5, 0.5,−0.6, 0.5, 0, ..., 0︸ ︷︷ ︸
5

)T with 10 true

explanatory variables and the rest in non-true variables.
Simulation 2: Here, The true vector of parameters is given by β = (1.25,−0.95, 0.90,−1.10, 0.60, 0, ..., 0︸ ︷︷ ︸

15

)T

with 5 true explanatory variables and 15 non-true variables. The explanatory variables are generated as same as
simulation 1 with ρ(xi, xj) = 0.5.

Simulation 3: In this simulation, 8 explanatory variables are generated as same as simulation 1 with ρ(xi, xj) =
0.5|i−j|. The true parameter vector is given by β = (0.17, ..., 0.17︸ ︷︷ ︸

8

)T .

For all the simulation examples 1-3, the response variable is generated according to PRM as yi ∼
Po(exp(xi

Tβ)). Simulations 4-6 are the same as the setting of simulations 1 C 3 where the response variable is
generated according to NBRM with conditional mean exp(xi

Tβ) and τ = 2. For performance evaluation of the FA-

BN, the mean squared error (MSE) is used as a prediction accuracy criteria, which is defined as
n∑

i=1

(yi − ŷi)
2
/n.

In terms of variable selection performance, the number of the truly nonzero coefficients which are incorrectly
set to zero (I), and the number of the true zero coefficients which are correctly set to zero (C). The higher the
values of C, and the lower the values of I, the better the variable selection performance is. All computations of
this paper were conducted using R. Based on 500 times of repeating simulation, the averaged MSE, I, and C with
their associated standard deviations (the number in parentheses) are listed in Tables 1-6, respectively, for PRM and
NBRM.

It shows from these tables that the FA-BN method there has a significant improvement where it has a much
better average of MSE than those AIC, CAIC, and BIC methods. For instance, in Table 1 when n = 50, the MSE
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reduction by FA-BN was about 56.91%, 49.07%, and 44.43% comparing with AIC, CAIC, and BIC, respectively.
Further, regardless of the value of n, the FA-BN often shows the smallest MSE among the competitor methods.

In terms of variable selection performance, our proposed method obviously selects a very few irrelevant variables
comparing with AIC, CAIC, and BIC, where the number of the true zero coefficients which are correctly set to
zero is high comparing with others. For example, in Table 4 when n = 200, FA-BN does not select, on average,
about 8 irrelevant variables out of 10 irrelevant variables. While AIC, CAIC, and BIC select more than 4 irrelevant
variables. On the other hand, FA-BN performs very well with the smallest I (the number of the truly nonzero
coefficients which are incorrectly set to zero) among all the used methods. This indicates that FA-BN misses a very
few important variables. In Table 4 when n = 50, FA-BN does not select on average one important variable out of
10 important variables. In the same case, AIC, CAIC, and BIC select on average more than 6 important variables.

From the results of simulation 3 (Table 3) and simulation 6 (Table 6), the model is dense, and, therefore, all
the methods have zero values for the criterion C. On the other hand, FA-BN is the best because the number of
nonzero variables that have been identified as irrelevant variables is smaller compared with AIC, CAIC, and BIC.
It is worth noting that AIC has inferior performance in all simulation examples comparing with CAIC, BIC, and
FA-BN methods.

In summary, it is obvious that the simulation results for both PRM and NBRM demonstrated the use of FA-BN
in variable selection. Another important point that is concluded from the simulation results is that the variable
selection performance of the FA-BN is not changed by changing the sample size”.

Table 1. Simulation 1 results, on average, for PRM

Methods MSE C I
n = 50

FA-BN 3.301 (0.012) 8.421 (0.011) 0.664 (0.009)
AIC 7.661 (0.035) 5.332 (0.017) 4.141 (0.018)
CAIC 6.482 (0.022) 5.071 (0.018) 3.872 (0.018)
BIC 5.941 (0.019) 6.874 (0.017) 3.096 (0.012)

n = 100
FA-BN 3.114 (0.011) 8.545 (0.013) 0.720 (0.010)
AIC 7.374 (0.031) 5.456 (0.022) 4.197 (0.025)
CAIC 6.285 (0.019) 5.195 (0.019) 3.928 (0.022)
BIC 5.757 (0.019) 6.998 (0.019) 3.152 (0.012)

n = 200
FA-BN 3.065 (0.013) 8.582 (0.013) 1.295 (0.012)
AIC 7.425 (0.033) 5.493 (0.019) 4.172 (0.023)
CAIC 6.246 (0.021) 5.232 (0.019) 4.503 (0.021)
BIC 5.705 (0.023) 7.035 (0.016) 2.912 (0.017)

4.2. real application results

In this section, ”two real applications are considered. The first real application related to the PRM, while the second
real application related to the NBRM.

For the first real application, the number of publications produced by Ph.D. biochemists of [30] is considered
where the response variable is the number of articles in last three years of Ph.D. Five explanatory variables were
used. They are: the gender (x1), the marital status (x2), the number of children under age six (x3), prestige of Ph.D.
program (x4), and the number of articles by the mentor in last three years (x5). In this application, the response
variable is following Poisson distribution. Depending on the PRM analysis, four explanatory variables, x1, x2, x3,
and x5, are significantly related to the response variables with a level of significant 0.05.

In the second real application, we considered the nuts dataset [24]. The dataset contains 52 observation and
7 explanatory variables. The nuts dataset concerning with the squirrel behavior and several features of the forest
across different plots in Scotland’s Abernathy Forest. The response variables, which is the number of cones stripped
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Table 2. Simulation 2 results, on average, for PRM

Methods MSE C I
n = 50

FA-BN 4.815 (0.021) 13.217 (0.018) 1.201 (0.019)
AIC 9.175 (0.028) 7.907 (0.024) 3.507 (0.024)
CAIC 7.996 (0.024) 7.122 (0.023) 3.118 (0.023)
BIC 7.455 (0.022) 9.493 (0.022) 2.749 (0.023)

n = 100
FA-BN 4.541 (0.019) 13.281 (0.017) 1.233 (0.018)
AIC 8.801 (0.025) 7.971 (0.024) 3.539 (0.025)
CAIC 7.712 (0.023) 7.186 (0.022) 3.150 (0.023)
BIC 7.184 (0.020) 9.557 (0.021) 2.781 (0.019)

n = 200
FA-BN 4.466 (0.019) 13.292 (0.018) 1.241 (0.017)
AIC 8.826 (0.022) 7.982 (0.024) 3.547 (0.023)
CAIC 7.647 (0.020) 7.197 (0.023) 3.158 (0.022)
BIC 7.106 (0.019) 9.568 (0.023) 2.789 (0.017)

Table 3. Simulation 3 results, on average, for PRM

Methods MSE C I
n = 50

FA-BN 2.505 (0.011) 0 0.357 (0.013)
AIC 6.865 (0.025) 0 2.622 (0.022)
CAIC 5.686 (0.021) 0 2.483 (0.021)
BIC 5.145 (0.015) 0 1.071 (0.021)

n = 100
FA-BN 2.231 (0.012) 0 0.343 (0.015)
AIC 6.491 (0.021) 0 2.566 (0.025)
CAIC 5.402 (0.017) 0 2.358 (0.024)
BIC 4.874 (0.015) 0 0.977 (0.018)

n = 200
FA-BN 2.156 (0.011) 0 0.317 (0.016)
AIC 6.516 (0.024) 0 2.538 (0.021)
CAIC 5.337 (0.020) 0 2.209 (0.021)
BIC 4.796 (0.014) 0 0.914 (0.019)

by squirrels, is following the negative binomial distribution, and, thus the NBRM is been more suitable regression
model. The explanatory variables are: the number of trees per plot (x1), the number of DBH per plot (x2), mean tree
height per plot (x3), canopy closure (as a percentage) (x4), standardized number of trees per plot (x5), standardized
mean tree height per plot (x6), standardized canopy closure (as a percentage) (x7). Depending on the NBRM
analysis, five explanatory variables, x1, x2, x3, x5, and x6, are significantly related to the response variables with
a level of significant 0.05. Tables 7 and 8 summarize the MSE and the selected variables for each used method for
both real data applications, respectively.

As seen from the result of Tables 7 and 8, FA-BN can remarkably reduce the MSE comparing with AIC, CAIC,
and BIC. In terms of selected variables, on the other hand, it clearly seen from Table 7 that FA-BN only select
4 variables out of 5 variables when PRM is assumed. FA-BN selected the explanatory variables x1, x2, x3, and
x5. These selected variables are identified as relevant variables to the study. Comparing with AIC and BIC, FA-
BN includes extra variable but the MSE is less than them. Further, AIC, CAIC, and BIC selected one irrelevant

Stat., Optim. Inf. Comput. Vol. 7, June 2019



Z. ALGAMAL 527

Table 4. Simulation 4 results, on average, for NBRM

Methods MSE C I
n = 50

FA-BN 3.868 (0.011) 8.042 (0.015) 0.981 (0.016)
AIC 8.228 (0.021) 4.953 (0.022) 4.458 (0.023)
CAIC 7.049 (0.019) 4.692 (0.021) 4.189 (0.021)
BIC 6.508 (0.015) 6.495 (0.021) 3.413 (0.019)

n = 100
FA-BN 3.681 (0.013) 8.166 (0.015) 1.037 (0.014)
AIC 7.941 (0.020) 5.077 (0.023) 4.514 (0.021)
CAIC 6.852 (0.021) 4.816 (0.022) 4.245 (0.019)
BIC 6.324 (0.017) 6.619 (0.022) 3.469 (0.019)

n = 200
FA-BN 3.632 (0.014) 8.203 (0.014) 1.612 (0.013)
AIC 7.992 (0.022) 5.114 (0.021) 4.489 (0.019)
CAIC 6.813 (0.019) 4.853 (0.019) 4.821 (0.019)
BIC 6.272 (0.017) 6.656 (0.017) 3.229 (0.016)

Table 5. Simulation 5 results, on average, for NBRM

Methods MSE C I
n = 50

FA-BN 5.378 (0.014) 12.836 (0.015) 1.516 (0.017)
AIC 9.738 (0.022) 7.526 (0.023) 3.822 (0.025)
CAIC 8.559 (0.021) 6.741 (0.021) 3.433 (0.022)
BIC 8.018 (0.019) 9.112 (0.019) 3.064 (0.017)

n = 100
FA-BN 5.104 (0.013) 12.901 (0.015) 1.548 (0.016)
AIC 9.364 (0.021) 7.592 (0.024) 3.854 (0.023)
CAIC 8.275 (0.021) 6.805 (0.022) 3.465 (0.021)
BIC 7.747 (0.017) 9.176 (0.019) 3.096 (0.018)

n = 200
FA-BN 5.029 (0.014) 12.911 (0.014) 1.556 (0.016)
AIC 9.389 (0.022) 7.601 (0.024) 3.862 (0.022)
CAIC 8.212 (0.019) 6.816 (0.022) 3.473 (0.022)
BIC 7.669 (0.019) 9.187 (0.021) 3.104 (0.019)

variables (x4), indicating the possibility of these methods to select unimportant variables. Regarding Table 8, FA-
BN has similar results in terms of selected variables. FA-BN only select 4 variables out of 7 variables when NBRM
is assumed. FA-BN selected the explanatory variables x1, , x5, and x6. These selected variables are identified as
relevant variables to the study. Each of AIC, CAIC, and BIC, on the other hand, shows the ability in selecting
irrelevant variables”.

5. Conclusion

In this paper, the problem of selecting variables in count data regression models is considered. A firefly algorithm
was proposed as a variable selection method. The results obtained from simulation examples and real data
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Table 6. Simulation 6 results, on average, for NBRM

Methods MSE C I
n = 50

FA-BN 3.062 (0.011) 0 0.677 (0.010)
AIC 7.422 (0.021) 0 2.942 (0.017)
CAIC 6.243 (0.019) 0 2.803 (0.017)
BIC 5.702 (0.017) 0 1.391 (0.015)

n = 100
FA-BN 2.788 (0.013) 0 0.655 (0.012)
AIC 7.048 (0.019) 0 2.878 (0.021)
CAIC 5.959 (0.019) 0 2.671 (0.019)
BIC 5.431 (0.016) 0 1.289 (0.019)

n = 200 0
FA-BN 2.713 (0.011) 0 0.637 (0.013)
AIC 7.073 (0.021) 0 2.858 (0.019)
CAIC 5.894 (0.019) 0 2.529 (0.019)
BIC 5.353 (0.019) 0 1.234 (0.015)

Table 7. MSE and the selected variables for the first real application

Methods Selected variables MSE
FA-BN x1, x2, x3, x5 1338.21
AIC x1, x2, x4 1608.86
CAIC x1, x2, x3, x4 1577.81
BIC x1, x2, x4 1571.05

Table 8. MSE and the selected variables for the second real application

Methods Selected variables MSE
FA-BN x1, x2, x5, x6 79.07
AIC x1, x2, x3, x7 110.84
CAIC x1, x2, x5, x7 98.16
BIC x1, x2, x3, x4 90.53

applications demonstrated the superiority of the FA-BN in terms of MSE, I, and C comparing with AIC, CAIC,
and BIC methods.
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