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Abstract In the present paper, a direct numerical technique for solving fractional optimal control problems based on an
orthonormal wavelet, is introduced. First we approximate the involved functions by Sine-Cosine wavelet basis; then, an
operational matrix is used to transform the given problem into a linear system of algebraic equations, which is easier. In
fact operational matrix of Riemann-Liouville fractional integration and derivative of Sine-Cosine wavelet are employed
to achieve a linear algebraic equation. The mentioned matrices are derived via hat functions. The solution of transformed
system, gives us the solution of original problem. Two numerical examples are also given. Finally, the paper is ended with
conclusion.
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1. Introduction

In recent years, fractional calculus is one of the interesting issues that attract many scientists. Many realistic models
of engineering and physical phenomena can be uttered with fractional calculus. For example they can be applied
in nonlinear oscillations of earthquakes [20], fluid-dynamic traffic [21], frequency dependent damping behavior of
various viscoelastic materials [4], solid mechanics [35], economics [5], signal processing [32], and control theory
[10]. Niels Henrik Abel, in 1823, was probably the first to give an application of fractional calculus. Abel applied
the fractional calculus in the solution of an integral equation which arises in the formulation of the problem of
finding the shape of a frictionless wire lying in a vertical plane such that the time of a bead placed on the wire
slides to the lowest point of the wire in the same time regardless of where the bead is placed [6].

Besides modeling , the solution techniques and their reliabilities are most important. Analytical solutions of
fractional differential equations are not always available, therefore, it is important to obtain numerical solutions for
these equations. The most commonly techniques proposed to solve fractional problem are Adomian Decomposition
Method (ADM) [37, 29], Variational Iteration Method (VIM) [12], operational matrix method [36], homotopy
analysis method [1, 13, 14], homotopy perturbation methods [18], collocation method [17], Galerkin method
[28], Fractional Difference Method (FDM) [30], finite difference method [27], Fractional Differential Transform
Method (FDTM) [3, 16] and power series method [31], in addition, there are some classical techniques, e.g. Laplace
transform method [33]. For further study on recent papers in the area of fractional differential equations and their
applications, referred to [9, 42, 43].

A fractional optimal control problem (FOCP) is an optimal control problem in which the performance index
or the differential equations in the dynamics of the system or both contain at least one fractional order derivative
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term [39]. Tricaud and Chen have solved a large class of FOCPs (linear, nonlinear, time-invariant, time-variant,
SISO, MIMO, state or input constrained, etc.) by converting them into a general and rational form of optimal
control problem [40]. In addition to the above methods, orthogonal function method is also applicable to solve the
fractional order systems and as a result, FOCPs.

Approximation by orthogonal families of basis functions is widely used in science and engineering. The main
idea of applying an orthogonal basis is reduction of considered problem into a system of algebraic equations, by
truncating series of orthogonal basis functions for the solution of the problem and applying operational matrix of
integration and differentiation to eliminate the integral and derivative operations whenever needed, thus greatly
simplifying the problem. These matrices can be uniquely determined based on the particular orthogonal functions.

The orthogonal functions are classified into three main cathegories [38], the first one is sets of piecewise
constant orthogonal functions such as the Walsh functions and block pulse functions. The second one is orthogonal
polynomials such as the Laguerre, Legendre and Chebyshev functions [26], and the last one is sine-cosine
functions. On one hand, approximating a continuous function with piecewise constant basis functions results in a
piecewise constant approximation, on the other hand, if we approximate a discontinuous function with continuous
basis the resulting approximation is continuous which is not proper for modelling the discontinuities. So, neither
continuous basis functions nor piecewise constant basis functions, can efficiently model both continuity and
discontinuity of phenomena at the same time. In the case that the function under approximation is not analytic,
wavelet functions will be more effective.

The operational matrix of fractional integrals has been derived for many types of orthogonal polynomials such
as Legendre polynomials [2, 15], Jacobi polynomials [8], Laguerre polynomials [7] and so on.
In this paper, two new operational matrices are introduced and a direct method based on Sine-Cosine wavelet with
their fractional integration and differentiation operational matrix is proposed to solve a FOCP and a variational
problem. The main idea is to reduce the problem under consideration into a system of algebraic equations. To
this end, we expand the fractional derivative of the state and control variables using the Sine-Cosine wavelet with
unknown coefficients. There are many numerical methods to solve the transformed problem. The proposed method
can also be applied to systems with time varying coefficients by using operational matrix of production. This matrix
could easily obtained by using the sin and cos multiplication properties.

The paper is organized as follows. In next section we will give the preliminaries of fractional calculus, then
in section 3 express a brief review of Hat function and the related fractional operational matrix. In section 4, we
describe Sine-Cosine wavelets and its application in function approximation. In section 5, operational matrices
of fractional integration and differentiation for considered wavelet is given. In section 6, the proposed method is
described for solving the underlying FOCP. The proposed method is applied for solving numerical examples, in
section 7. Finally, the paper is ended with conclusion.

2. Preliminaries of fractional calculus

Fractional order calculus deals with the non-integer order differentiation and integration. Now, we give necessary
definitions of the fractional calculus theory. The most commonly used definitions for fractional integral and
derivative are the Riemann–Liouville and Caputo definitions. The Riemann–Liouville fractional integration
operator of a function f of order α ≥ 0 is defined in [34] as

(Iαf)(t) =


1

Γ(α)

∫ t

0
(t− τ)α−1f(τ)dτ α > 0,

f(t) α = 0,
(1)

as two properties of Riemann-Liouville fractional integration we have

Iαtk =
Γ(k + 1)

Γ(k + 1 + α)
tα+k k ∈ N ∪ {0}, t > 0,

IαIβtk = Iα+βtk.
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The fractional derivative operator of order α > 0 in the Caputo sense is defined in [34] as:

Dαf(t) =
1

Γ(n− α)

∫ t

0

(t− τ)n−α−1f (n)(τ)dτ = In−αf (n)(t) n− 1 < α ≤ n. (2)

Two useful relation between the Riemann-Liouville and Caputo operators is as follow

DαIαf(t) = f(t),

IαDαf(t) = f(t)−
n−1∑
0

fk(0)
tk

k!
t > 0, n− 1 < α ≤ n.

3. Review of Hat functions and the related fractional operational matrix

In this section, we introduce Hat functions (HFs) and its operational matrix of fractional integration.

3.1. Definition of HFs

A m̂− set of HFs basis functions is defined by Tripathi et al. [41] as follows:

ϕ0(t) =


h− t

h
0 ≤ t < h,

0 O.W.,
(3)

ϕi(t) =


t− (i− 1)h

h
(i− 1)h ≤ t < ih,

(i+ 1)h− t

h
ih ≤ t < (i+ 1)h i = 1, 2, · · · , m̂− 2,

0 O.W.,

(4)

ϕm̂−1(t) =


t− (1− h)

h
1− h ≤ t ≤ 1,

0 O.W.,
(5)

where h =
1

m̂− 1
. An arbitrary function like f(t) ∈ L2[0, 1] can be expanded by HFs as:

f(t) =

m̂−1∑
i=0

fiϕi(t) = FTΦ(t) = ΦT (t)F, (6)

where

F = [f0, f1, · · · , Fm̂−1]
T , Φ = [ϕ0, ϕ1, · · · , ϕm̂−1]

T .

An important property of HFs in approximating the function f(t) is that the coefficients fi in the above equation
are stated by:

fi = f(ih), i = 0, 1, · · · , m̂− 1. (7)

3.2. Operational matrix of fractional integration for HFs

Operational matrix of fractional integration of order α for HFs, which given in [41] is as:

(IαΦ)(t) ≃ QαΦ(t),
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where

Qα =
hα

Γ(α+ 2)



0 ζ1 ζ2 · · · ζm̂−2 ζm̂−1

0 1 ξ1 · · · ξm̂−3 ξm̂−2

0 0 1 · · · ξm̂−4 ξm̂−3

...
...

... . . .
...

...
0 0 0 0 1 ξ1
0 0 0 0 0 1


, (8)

and

ζi = iα(α− i+ 1) + (i− 1)α+1, i = 1, 2, · · · , m̂− 1,

ξi = (i+ 1)α+1 − 2iα+1 + (i− 1)α+1, i = 1, 2, · · · , m̂− 2.

4. Description of Sine-Cosine wavelets and its application in function approximation

Wavelets have been very successful in approximate solution of different types of systems. They constitute a family
of functions constructed from dilation and translation of a single function called the mother wavelet. When the
dilation parameter a and the translation parameter b vary continuously, we have the following family of continuous
wavelets [19].

ψa,b = |a|− 1
2ψ(

t− b

a
) a, b ∈ R, a ̸= 0,

if we restrict the parameters a and b to discrete values a = a−k
0 , b = nb0a

−k
0 , where a0 > 1, b0 > 0, n and k are

positive integers, we have the following family of discrete wavelets:

ψk,n = |a0|
k
2ψ(aK0 t− nb0),

which are a wavelet basis for L2(R). Sine-Cosine wavelets are defined as follows [23]

ψn,m(t) =

{
2

k+1
2 fm(2kt− n) n

2k
≤ t < n+1

2k
,

0 O.W.,
(9)

with

fm(t) =


1√
2

m = 0,

cos(2mπt) m = 1, 2, · · · , l,
sin(2(m− l)πt) m = l + 1, · · · , 2l,

n = 0, 1, · · · , 2k − 1, k = 0, 1, · · · and l is any positive integer. A function f(t) ∈ L2[0, 1) can be approximated
as:

f(t) =

2k−1∑
n=0

2l∑
m=0

cn,mψn,m(t) = CTΨ(t) = ΨT (t)C, (10)

where cn,m = ⟨ f(t), ψn,m⟩ and ⟨ . , . ⟩ denotes the inner product as:

cn,m =

∫ +∞

−∞
f(t)ψn,m(t)dt.

Ψ(t) represent the vector of considered wavelet. C and Ψ(t) are 2k(2l + 1)× 1 matrices which are given by:

CT = [c0,0, c0,1, · · · , c0,2l, c1,0, · · · , c1,2l, · · · , , c2k−1,0, · · · , c2k−1,2l],

ΨT = [ψ0,0, ψ0,1, · · · , ψ0,2l, ψ1,0, · · · , ψ1,2l, · · · , , ψ2k−1,0, · · · , ψ2k−1,2l].
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5. Operational matrix of fractional calculus for Sine-Cosine wavelet

In this section, we derive the operational matrix of fractional derivative for the considered wavelet using the
operational matrix of fractional integration for HFs.

5.1. Express Ψ(t) in terms of HFs

Each ψn,m(t) as a function, can be expanded in terms of HFs function, thus for Ψ(t) we will have

Ψ(t) ≃ Φm̂×m̂Φ(t). (11)

In the above equation m̂ = 2k(2l + 1) and Φm̂×m̂ obtain as follow. We choose h =
1

m̂− 1
, then by considering the

property which is given in Eq. (6) we have

ψn,m(t) =

m̂−1∑
i=0

cin,mϕi(t) = Cn,mΦ(t),

cin,m = ψn,m(ih),

Cn,m = [c0n,m, c
1
n,m, · · · , cm̂−1

n,m ] = [ψn,m(0), ψn,m(h), · · · , ψn,m(1)],

therefore

ψn,m(t) = [ψn,m(0), ψn,m(h), · · · , ψn,m(1)]Φ(t). (12)

The vector Cn,m represent a row of matrix Φm̂×m̂.

5.2. Operational matrix of fractional integration and derivative for Sine-Cosine wavelet

Suppose Ψ(t) be the vector defined in (9), then, fractional integration of order α > 0 in the Riemann-Liouville
sense of this vector can be expressed as

(IαΨ)(t) ≃ PαΨ(t), (13)

where Pα is the operational matrix of fractional integration. By considering Eq. (11), Pα calculated as follows

IαΨ(t) ≃ IαΦm̂×m̂Φ(t) = Φm̂×m̂I
αΦ(t) ≃ Φm̂×m̂Q

αΦ(t). (14)

Using Eqs. (13) and (14) we obtain

PαΨ(t) ≃ PαΦm̂×m̂Φ(t) = Φm̂×m̂Q
αΦ(t) ⇒ Pα = Φm̂×m̂Q

αΦ−1
m̂×m̂. (15)

Now we calculate operational matrix of derivative using Pα, suppose that x(t) ≃ XTΨ(t) then we have

Dαf(t) = In−αf (n)(t) n− 1 < α ≤ n, n ∈ N,

Dαx(t) ≃ DαXTΨ(t) = XTDαΨ(t) = XT In−αΨ(n)(t), (16)

for α ∈ ( 0, 1] we have n = 1 thus

Dαx(t) ≃ XT I1−αDΨ(t) = XTDI1−αΨ(t) = XTDΦm̂×m̂Q
1−αΦ−1

m̂×m̂Ψ(t), (17)
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where D is the operational matrix of derivative for Ψ(t) which defined as D = diag(W, W, · · · , W ), which is a
2k(2l + 1)× 2k(2l + 1) matrix and W is of size (2l + 1)× (2l + 1)

W = 2k+1π



0 0 0 · · · 0 0 0 · · · 0
0 0 0 · · · −1 0 0 · · · 0
0 0 0 · · · 0 −2 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 0 0 · · · −l
0 1 0 · · · 0 0 0 · · · 0
0 0 2 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · l 0 0 · · · 0


(2l+1)×(2l+1)

. (18)

6. Solution of fractional optimal control problem by Sine-Cosine operational matrix

Consider the fractional optimal control problem with quadratic performance index

min J =
1

2
XT (1)SX(1) +

1

2

∫ 1

0

(XT (t)QX(t) + UT (t)RU(t))dt,

st. DαX(t) = AX(t) +BU(t) 0 < α ≤ 1,

X(0) = X0,

(19)

where A and B are constant matrices with the appropriate dimensions, also in cost functional, S and Q are
symmetric positive semi- definite matrices and R is a symmetric positive definite matrix.

X(t) = [x1(t), x2(t), · · · , xs(t)]T xi(t) = ΨT (t)Xi = XT
i Ψ(t),

X(t) = Ψ̃T
s (t)X X = [XT

1 , X
T
2 , · · · , XT

s ]
T Ψ̃s(t) = Is ⊗Ψ(t),

U(t) = [u1(t), u2(t), · · · , uq(t)]T ui(t) = ΨT (t)Ui = UT
i Ψ(t),

U(t) = Ψ̃T
q (t)U U = [UT

1 , U
T
2 , · · · , UT

q ]T Ψ̃q(t) = Iq ⊗Ψ(t), (20)

thus

J =
1

2
XT Ψ̃s(1)SΨ̃

T
s (1)X +

1

2

∫ 1

0

[XT Ψ̃sQΨ̃T
s X + UT Ψ̃qRΨ̃

T
q U ]dt. (21)

The considered wavelet is orthonormal, it means
∫ 1

0
ΨT (t)Ψ(t)dt = I , thus we can rewrite (21) as follows

J(X,U) =
1

2
XT [S ⊗ Ψ̃s(1)Ψ̃

T
s (1)]X +

1

2
[XT (Q⊗ I)X + UT (R⊗ I)U ], (22)

similarly, we use (17) and (20) for the dynamic system in (19)

X(t) = XT Is ⊗Ψ(t) = (Is ⊗ΨT (t))X,

DαX(t) = I1−αX
′
(t) = I1−α(XT (Is ⊗Ψ(t)))

′
= XT I1−α(Is ⊗ (DΨ(t))) = XT Is ⊗ (I1−αDΨ(t))

= XT Is ⊗ (DI1−αΨ(t)) = XT Is ⊗ (DΦm̂×m̂Q
1−αΦ−1

m̂×m̂Ψ(t)), (23)

using dynamic system of (19) and (23), we set

R(t) = XT Is ⊗ (DΦm̂×m̂Q
1−αΦ−1

m̂×m̂)Ψ(t)−AXT Is ⊗Ψ(t)−BUT Iq ⊗Ψ(t),

R(t) = [XT Is ⊗ (DΦm̂×m̂Q
1−αΦ−1

m̂×m̂)−AXT Is ⊗ I2k(2l+1) −BUT Iq ⊗ I2k(2l+1)]Ψ(t).
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As in a typical tau method [11] we generate 2k(2l + 1)− 1 linear equations by applying

⟨ R(t) , ψn,m(t)⟩ =
∫ 1

0

R(t).ψn,m(t)dt = 0, (24)

also, for boundary value we have

X(0) = XT Ψ̃(0) = X0. (25)

Eqs. (24) and (25) generate 2k(2l + 1) set of linear equations. These linear equations can be solved for unknown
coefficients of the vectors XT and UT . Consequently, X(t) and U(t) can be calculated.

7. Illustrative example

We applied the method presented in this paper and solved the undergoing examples.

Example 1
Consider the following time invariant FOCP [25]

min J =
1

2

∫ 1

0

(x2(t) + u2(t))dt,

Dαx(t) = −x(t) + u(t),

x(0) = 1.

(26)

We want to find a control variable u(t) which minimizes the quadratic performance index J. This problem is
solved by proposed method, the numerical value obtained for J is 0.1932, which is close to the exact solution in the
case α = 1 (0.1929).

Example 2
Consider the following functional

min J(t) =

∫ 1

0

[(Dαx(t))2 + t Dαx(t)]dt, (27)

and the boundary conditions x(0) = 0 and x(1) is unspecified.

For solving the above problem we use the undergoing relation

Dαx(t) = CTΨ(t) ⇒ x(t) = CTPαΨ(t) + x(0), (28)

we expand t in terms of considered wavelet as t = dTΨ(t) where d is as follows

d = 2(
−2−3k

2 )[ 1, 0, · · · , 0 ,−
√
2

π
, · · · , −

√
2

lπ
|3, 0, · · · , 0 ,−

√
2

π
, · · · , −

√
2

lπ

| · · · |2k+1 − 1, 0, · · · , 0 ,−
√
2

π
, · · · , −

√
2

lπ
]T , (29)

because x(1) is unspecified we have

2Dαx(t) + t|t=1 = 0 ⇒ CTΨ(1) = −1

2
, (30)

by substituting Eqs.(28) and (29) in (27) we get

J(t) =

∫ 1

0

[CTΨ(t)Ψ(t)TC + dTΨ(t)Ψ(t)TC]dt = CTC + dtC, (31)

now we have to minimize quadratic function (31) subject to constraint (30). The exact value for J is -0.0833 [22]
and the value obtian via above method is -0.08328635, which is acceptable.
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8. Conclusion

In this paper, we use a direct numerical method for fractional problems based on two new operational matrices
of fractional integration and differentiation. The procedure of constructing these matrices is summarized. This
matrices are utilized along with tau method in order to reduce the fractional differential equations into the algebraic
equations which can be efficiently solved. The proposed approach is computationally simple. Two examples are
given to show the efficiency of method. The result obtained in this paper is more acceptable in comparison with
[24], where the fractional operational matrices of the Sine-Cosine wavelet are obtained using block-pulse functions.
The obtained matrices can also be used to solve fractional optimal control with delay or multi-delay.
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