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Abstract This paper deals with the stochastic approach of bi-level multi-objective linear fractional programming problem.
In this type of bi-level programming problem stochastic nature the right hand side resource vector is considered to follow
a general form of distribution F (bi) = 1−Bie

−Aih(bi) [13], which in itself includes many well known distributions such
as Pareto distribution, Weibull distribution etc. After converting the problem into an equivalent deterministic form, each
level of the problem is transformed into a single objective by using K-T conditions. Finally the problem is solved by Taylors
series approach. A numerical example is also presented to illustrate how the proposed approach is utilized.
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1. Introduction

Bi-level multi-objective programming problem (BLMOPP),which is an apparatus for modeling decentralized
decisions, consists of the objectives of the first level decision maker (ULDM) at its first level and that of the
objectives of the second level decision maker (LLDM) at the second level.The execution of decision is sequential,
from first level to second level; each decision maker (DM) independently controls only a set of decision variables
and optimizes the net benefits over a common feasible region. Even though each DM independently tries to
optimize their own objective function, the decision may be affected by the actions and reactions of the LLDM
due to the dissatisfaction with the decision [10, 16].

In other words, although the ULDM independently optimizes its own benefits, the decision may be affected
by the reaction of the LLDM. As a result, in most of the practical decision situations, decision deadlock arises
frequently and the problem of distribution of proper decision power is encountered. Most of the developments on
BLMOP problems focus on bi-level programming problems [6, 23]. There are many algorithms, such as, the K-th
best approach [5], Kuhn-Tucker approach, complementarity pivot approach [4], penalty function approach [1, 25],
which have been given for solving linear BLP problems. The most popular one is Kuhn-Tucker approach. The
fundamental strategy of Kuhn-Tucker is that it replaces the followers problem with its Kuhn-Tucker conditions and
appends the resultant system to the leaders problem. The reformulation of the linear BLP problem is a standard
mathematical program and relatively easy to solve because all but one constraint is linear. Neglecting or relaxing the
constraint leaves a standard linear program that can be solved by using simplex algorithm. Kuhn-Tucker approach
has been established to be a valuable analysis tool with a wide range of successful application for linear BLP.
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When the objective function of both level DMs of a BLPP are linear fractional in nature, then BLPP is
called bi-level linear fractional programming problem (BLLFPP). Fractional programming problem is the ratio of
numerator and denominator. These types of problems have attracted considerable research and interest. Fractional
programming is useful in production planning, financial and corporate planning, health care and hospital planning
etc . The concept of Multi-objective fractional programming problems and second order generalized hybrid invexity
frameworks has given by Verma,[24]. Helmy, et.al[17] have given the idea of stochastic multi-level multi-objective
fractional programming problem. Osman, M. S,et al.[21] have also given the concept of stochastic fuzzy multi-
level multi-objective fractional programming problem. Kumar, P.et al. [18] have presented the Characterization
of Generalized Invexity in multi-objective Fractional Variational Problem. Charles and Dutta [11, 12], have
developed a solution procedure for solving multi-objective stochastic fractional programming. Abdelaziz, et al. [3],
represented multi-objective programming technique to choose the portfolio best satisfying the decision makers.
Most of the probabilistic models assume normal distribution for model coefficients. Sahoo and Biswal [22],
have given some deterministic equivalents for the probabilistic problem involving normal and log-normal random
variables for joint constraint.

Stochastic linear programming has developed as one of the most important planning tools, with a variety of
applications. Stochastic programming deals with situations where some or all the parameters of the optimization
problem are described by probabilistic (or random) variables rather than by deterministic one. Maiti, S. K.et.al [19],
offered the multi-choice stochastic bi-level programming problem in cooperative nature via fuzzy programming
approach. The basic idea in stochastic optimization is to convert the stochastic model into an equivalent
deterministic model. A linear or non-linear programming algorithm can be then used to solve the resulting
deterministic problem.

Stochastic programming model were first formulated by Dantzig [14], who suggested a two stage programming
technique that involves change of stochastic programming model into their equivalent deterministic programming
model. This technique suffers from this limitation that it does not allow any constraint to be violated even at
specific probability level. This gave rise to the concept of chance constraint programming (CCP), where constraints
containing random variables are guaranteed to be satisfied with a certain probability. Chance and Cooper [8, 9],
originally developed the chance constrained programming technique.

The stochastic bi-level problems with knapsack constraint are that of Ozaltin, et al.[20]. A stochastic version of
the bi-level knapsack problem has given by Dempe and Richter in [15]. In their variant of the problem the decision
of the leader consists in choosing the (one dimensional) right hand side of the knapsack constraint (i.e. the capacity
of the knapsack). The follower has to solve a common knapsack problem that Depends on this value. Ozaltin, et al.
extend this model by introducing an uncertainty in the lower level problem. More accurately, they assume that the
right hand side of the knapsack constraint in the lower level does not only depend on the leaders decision but also
on a random variable.

In this paper, we have considered BLMOSLFPP problem in which there are single ULDM with multi- objectives
at the upper level and a single LLDM with multi-objectives at the lower level. The objective functions of the
DMs are linear fractional in the nature and the right hand side follows the general form of distributionsF (bi) =
1−Bie

−Aih(bi).Its deterministic equivalent form is derived for marginal constraints. Taylor series is used to
transform the fractional objective into linear form. Results are also illustrated with the help of numerical example.

2. SLFP with marginal constraint for general form of distribution

The mathematical model of a stochastic linear fractional programming problem be expressed as

maxzk =

∑n
j=1 c

k
jxj∑n

j=1 d
k
jxj

k = 1, 2 . . .K (1)

subject to

P (

n∑
j=1

aijxj ≤ bi) ≥ pi, i = 1, 2 . . . n (2)
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xj ≥ 0, j = 1, 2 . . . n (3)

Where 0 < pi < 1,and usually close to 1. Where the decision variable xj , j = 1, 2, . . . n and the parameter aij , cj
and dj are deterministic constants and only bi are random variables having a general form of distributions F (bi) =
1−Bie

−Aih(bi). It also given that the ith random variable bi has two known parameters namely Ai (̸= 0),and
Bi(> 0), whereAi and Bi are such that F (αi) = 0, F (βi) = 1 and h(bi) is a monotonic and differentiable function
of bi in the interval (αi,βi). In this model, the decision variablexj , j = 1, 2, . . . n, are treated as deterministic
decision variables.

The probability density function of the random variablebiis given by

f (bi) = AiBie
−Aih(bi)h

′
(bi) (4)

Equation (2)can be expressed as

P (bi ≥ yi) ≥ pi, i = 1, 2 . . .m (5)

where

yi =

n∑
j=1

aijxj

Equation (5) can be restated as∫ βi

yi

AiBie
−Aih(bi)h

′
(bi)dbi≥pi, i = 1, 2 . . .m

After integration,we have

Bie
−Aih(yi)≥pi as Bie

−Aih(βi) = 0 (6)

2.1. Few special classes of distributions

(1) When bi

′
s follow Weibull distribution

F (bi) = 1− e−θibi
ai
, 0≤bi < ∞, ai > 0, θi > 0 (7)

Here Ai = θi, Bi = 1, h(bi) = bi
ai Now from equation (6), we

e−θiyi
ai≥pi

This can be simplified as

yi≤[−1

θ i
log(pi)]

1/ai (8)

So, the deterministic mathematical SLFP model can be expressed as

maxzk =

∑n
j=1 c

k
jxj∑n

j=1 d
k
jxj

k = 1, 2 . . .K

subject to
n∑

j=1

aijxj ≤ [−1

θ i
log(pi)]

1/ai i = 1, 2 . . .m

and xj ≥ 0, j = 1, 2 . . . n


(9)
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Note:we can also take Ai = 1, Bi = 1, h(bi) = θibi
ai for the Weibull distribution.

(2) When bi

′
s follow Burr Type XII distribution

The distribution function of Burr type XII distribution is given by

F (bi) = 1− (1 + θibi
a
i )

−λi, 0≤bi < ∞, ai > 0, θi > 0, λi > 0 (10)

Here Ai = λi, Bi = 1, h(bi) = log(1 + θbi
ai)

Now from equation (6), we have

e−λilog(1+θiyi
a
i )≥pi

This can be simplified as

yi≤[
pi

−1/λi − 1

θ i
]1/ai (11)

So,the deterministic mathematical model of SLFP can be expressed as

maxzk =

∑n
j=1 c

k
jxj∑n

j=1 d
k
jxj

k = 1, 2 . . .K

subject to
n∑

j=1

aijxj≤[
pi

−1/λi − 1

θ i
]1/ai i = 1, 2 . . .m

and xj ≥ 0, j = 1, 2 . . . n


(12)

Note: we can also take Ai = λi, Bi = 1, h(bi) = log(1 + θbi
ai) for the Burr Type XII distribution.

(3) When bi

′
s follow Beta distribution of first kind

The distribution function of Beta distribution of first kind is given by

F (bi) = 1− (
λi − bi
λi − δi

)ai , 0 < δi≤bi≤λi, ai (13)

Here Ai = λi, Bi = 1, h(bi) = log(
λi − bi
λi − δi

)ai

Now from equation(6), we have e
ailog(

λi − bi
λi − δi

)

≥pi
This can be simplified as

yi≤λi(1− pi
1/ai) + pi

1/aiδi (14)

maxzk =

∑n
j=1 c

k
jxj∑n

j=1 d
k
jxj

k = 1, 2 . . .K

subject to
n∑

j=1

aijxj≤λi(1− pi
1/ai) + pi

1/aiδi i = 1, 2 . . .m

xj ≥ 0, j = 1, 2 . . . n


(15)
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Note: we can also take Ai = λi, Bi = 1, h(bi) = ailog(
λi − bi
λi − δi

) for the Beta distribution of First kind.

(4) When bi

′
s follow Pareto distribution

The distribution function of Pareto distribution is given by

F (bi) = 1− λai

i b−ai

i , 0 < λi≤bi∞, ai > 0 (16)

Here Ai = ai, Bi = λi
a
i , h(bi) = log(bi)

Now from equation (6),we have

λi
a
i e

−ailog(yi)≥pi

This can be simplified as

yi≤
λi

pi1/ai
(17)

So, the deterministic mathematical SLFP model can be expresses as

max zk =

∑n
j=1 c

k
jxj∑n

j=1 d
k
jxj

k = 1, 2 . . .K

subject to
n∑

j=1

aijxj≤
λi

pi1/ai
i = 1, 2 . . .m

and xj≥0, j = 1, 2 . . . n


(18)

Note: we can also take Ai = 1, Bi = λi
ai , h(bi) = ailog(bi) for the Pareto distribution.

(5) When bi

′
s follow Power function distribution

The distribution function of Power Function distribution is given by

F (bi) = λai

i b−ai

i , 0≤bi≤λi, ai > 0, λi > 0 (19)

Here Ai = −1, Bi = 1, h(bi) = log(1− λ−ai

i b−ai

i ) Now from equation(6), we have

elog(1−λi
−aiy

ai
i )≤pi

This can be simplified as

yi≤λi(1− pi)
1/ai (20)

So,the deterministic mathematical model of SLFP can be expressed as

maxzk =

∑n
j=1 c

k
jxj∑n

j=1 d
k
jxj

k = 1, 2 . . .K

subject to
n∑

j=1

aijxj≤λi(1− pi)
1/ai i = 1, 2 . . .m

and xj≥0, j = 1, 2 . . . n


(21)

Stat., Optim. Inf. Comput. Vol. 7, June 2019



412 BI-LEVEL MULTI-OBJECTIVE STOCHASTIC LINEAR FRACTIONAL PROG.

3. Problem formulation

Suppose that there are two levels in a hierarchy structure with upper level decision maker (ULDM) and lower
level decision maker (LLDM). Let the vector of decision variables x = (x1, x2, x3) ∈ Rn1 be partitioned between
the two planners. The upper level decision maker has control over the vector x1 ∈ Rn2 , x3 ∈ Rn3 where n =
n1 + n2 + n3 Now further we assume that

Fi(x1, x2, x3) : R
n1 ×Rn2 ×Rn3 → Rmi , i = 1, 2, 3 (22)

The upper level and lower level vector objective function respectively.
So the BLMO-SLFP problem of maximization type may be formulated as follows [2, 7]:
[ULDM]

max
x1

F1(x1, x2, x3) = Max(f11(x1, x2, x3), f12(x1, x2, x3)......f1m1(x1, x2, x3)) (23)

Where x2, x3.......xn solves
[LLDM]

max
x2

F2(x1, x2, x3) = Max(f21(x1, x2, x3), f22(x1, x2, x3)......f2m2(x1, x2, x3)) (24)

maxx3F3(x1, x2, x3) = Max(f31(x1, x2, x3), f32(x1, x2, x3)......f3m3(x1, x2, x3))

max
xn

Fn(x1, x2, x3) = Max(fn1(x1, x2, x3), fn2(x1, x2, x3)......fnmn(x1, x2, x3)) (25)

subject to

P [

n∑
j=1

aijxj≤b1,

n∑
j=1

aijxj≤b2......,

n∑
j=1

aijxj≤bm]≥p

Where

fij(x1, x2, x3) =
ckjxj + γij

dkjxj + θij
(26)

for i=1, we have j = 1, 2, ....,m1, for ULDM objective functions,
for i=1,2,3....p,we have j = 1, 2, ....,mi, for LLDM objective functions,
where mi, i = 1, 2, ...., p is the number of decision makers LLDM objective function, m is the number of constraint
Ai is the coefficient of matrices of sizen m× ni, c

k
j , d

k
j ∈ Rn, dkjxj + θij > 0 for all x ∈ G and γij , θij are constants

(for i = 1, 2..., p&j = 1, 2, ...,mi)

4. The Taylor’s series and Kuhn-Tucker conditions for solving BLMOS-LFPP

In the deterministic Bi-level fractional programming we can transform objective functions by using 1st order
Taylor series into Bi-level linear programming problem for the ULDM and LLDM. This approach can be explained
in four steps.
Step1:Determine x∗

ij = (x1
ij∗, x2

ij∗, ....xij
p∗)(i = 1, 2.....pj = 1, 2, .....mi)which is the values that is used to
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maximize the each of the objective functions in upper level and lower level Fij(x)(i = 1, 2.....pj = 1, 2, .....mi)
where m is the number of the variables.
Step2: Transform the objective functions Fij(x)(i = 1, 2.....pj = 1, 2, .....mi) by using the first-order Taylor
polynomial series.
Fij(x) = Fij(x

∗
ij) = Fij(x

∗
ij) +

∑p
k=1(xk − xk

ij∗)
Step3: Sum the objective functions together for the upper level. Note that problem is solved by assuming that the
objective functions in upper level are equal

P (x) =

m1∑
j=2

(F1j(x
∗
1j) +

p∑
k=1

(xk − xk
1j∗)

∂F1j(x
∗
1j)

∂xk
(27)

Step4: After applying the Kuhn-Tucker conditions to the lower level of the objective problem, we find satisfactory
x∗ = (x∗

1, x
∗
2, x

∗
3, , x

∗
p) by solving the reduced problem to a single objective.

BL-SLFPP is converted into a new mathematical model. This model is represented as follows:
Max P(x)
s.t
A1x1 +A2x2 + ...+Apxp + u = b

wAi − vi =

mi∑
j=2

∂Fij(x
∗
ij)

∂xi
(28)

wu = 0, xivi = 0
xi, w, u, vi >= 0 i = 2, 3, ..., p
In this method, a zero-one variable,η and ξi is added for each constraint wu = 0 and xivi = 0 respectively. In
addition, each of these constraints is replaced by two linear inequalities involving η and ξi and M,a large positive.
The auxiliary formulation now becomes
MaxP(x)
s.t
A1x1 +A2x2 + ...+Apxp + u = b

wAi − vi =
∑
(

j = 2)(mi)∂Fij(xij
∗)∂xi (29)

w≤Mη, u≤M(1− η)
xi≤Mxii, v≤M(1− xii)
η, xii ∈ 0, 1
xi, w, u, vi ≥ 0 i = 1, 2, 3, ..., p

5. An illustrative numerical example

[ULDM] maxx1(F11 =
10x1 + 6x2 + 3x3

x1 + 2x2 + x3 + 1
, F12 =

6x1 + 8x2 + 10x3

x1 + x2 + 2x3 + 1
)

Where x2, x3 solve

[LLDM] maxx2(F21 =
4x1 + 6x2 + 9x3

2x1 + x2 + x3 + 1
, F22 =

7x1 + 9x2 + 5x3

x1 + 2x2 + x3 + 1
)

maxx3(F31 =
6x1 + 8x2 + 4x3

2x1 + x2 + x3 + 1
, F33 =

10x1 + 6x2 + 3x3

2x1 + x2 + x3 + 1
)

Subject to

P (x1 + x2 + x3≤b1)≥.90
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P (3x1 + 2x2 + x3≤b2)≥.98

P (x1 + 2x2 + 3x3≤b3)≥.95

P (2x1 + x2 + x3≤b4)≥.90

x1, x2, x3≥0

where b1 follows Power Function distribution with parameter λ = 10, a = 5; b2 follows Pareto distribution with
parameter λ = 8, a = 2; b3 follows Beta of first kind distribution with parameterlambda = 15, a = 10, δ = 3; b4
follows Weibull distribution with parameter θ = 1/5, a = 10; b5 follows Burr type XII distribution with parameter
λ = 1/10, θ = 1/5, a = 1/5.
Using the well known concept of weighting characteristic of the objective functions and from equations
(9),(12),(15),(18) and (21) the deterministic model of the above MOSLP problem is.
[ULDM]

Max(F11 =
10x1 + 6x2 + 3x3

x1 + 2x2 + x3 + 1
, F12 =

6x1 + 8x2 + 10x3

x1 + x2 + 2x3 + 1
) (30)

Where x2, x3 solve

[LLDM]

Max(F21 =
4x1 + 6x2 + 9x3

2x1 + x2 + x3 + 1
, F22 =

7x1 + 9x2 + 5x3

x1 + 2x2 + x3 + 1
) (31)

Max(F31 =
6x1 + 8x2 + 4x3

2x1 + x2 + x3 + 1
, F3 =

10x1 + 6x2 + 3x3

2x1 + x2 + x3 + 1
) (32)

Subject to

x1 + x2 + x3≤6

3x1 + 2x2 + x3≤8

x1 + 2x2 + 3x3≤3

2x1 + x2 + x3≤9

10x1 + x2 + x3≤10

x1, x2, x3≥0

If the problem is solved for each objective functions, one by one then
f11(1, 0, 0), f12(0, 0, 1), f21(2.67, 0, 0), f22(0, 1.5, 0), f31(0, 1.5, 0) and f32(2.50, 0.25, 0) are obtained. Now the
objective functions are transformed by using first-order Taylor polynomial series.

Stat., Optim. Inf. Comput. Vol. 7, June 2019



AHMAD YUSUF ADHAMI, HANEEFA KAUSAR 415

F11
∼= F 11(x) = F11(1, 0, 0) + (x1 − 1)× ∂

∂x1
+ (x2 − 0)× ∂

∂x2
+ (x3 − 0)× ∂

∂x3
F11(1, 0, 0)

F11 = 2.5 + 2.5x1 − 2x2 − x3 (33)

Similarly, the other objective functions are transformed on using first-order Taylor polynomial series as follows:

F12(x) = 2.88 + 4.8x1 + 1.28x2 + 0.16x3 (34)

F21(x) = 2.25− 2.5x1 + 0.75x2 + 2.25x3 (35)

F22(x) = 3.7 + 0.52x1 − 0.32x2 − 0.03x3 (36)

F31(x) = 3.36− 1.44x1 + 1.28x2 − 0.32x3 (37)

F32(x) = 3.57 + 0.24x1 + 0.28x2 − 0.19x3 (38)

The P(x) is obtained by adding (32) and (33) as follows:

P (x) = F11(x) + F12(x) = 5.38 + 7.3x1 − 0.72x2 − 0.84x3 (39)

After applying the Kuhn-Tucker conditions to the lower level of the objectives problem, a new auxiliary problem
is to be solved
Max P (x) = 5.38 + 7.3x1 − 0.72x2 − 0.84x3 S.t
x1 + x2 + x3 + u1 = 6
3x1 + 2x2 + x3 + u2 = 8
x1 + 2x2 + 3x3 + u3 = 3
2x1 + x2 + x3 + u4 = 9

10x1 + x2 + x3 + u5 = 10 (40)
(41)

w1 + 2w2 + 2w3 + w4 + w5 − v1 = 0.75− 0.32
w1 + w2 + 3w3 + w4 + w5 − v2 = −0.19− 0.84
wj ≤ Mηj , uj ≤ (1− ηj), xi ≤ Mξi, vi ≤ M(1− ξi), ηj , ξi ∈ [0, 1]
x1, x2, wj , uj , vi≥0, i = 1, 2 j = 1, 25
We solve the problem for M=1000 and the solution is obtained as follow
x∗
1 = 1, x∗

2 = 0, x∗
3 = 0

F11 = 5, F12 = 3, F21 = 1.33, F22 = 3.5, F31 = 2, F32 = 3.33

6. Conclusion

In this paper, we developed a stochastic programming model, which consider a ratio of two linear functions in
the multi-objectives and probabilistic constraints. The main contribution of this paper is to solve BLMO-SLFPP by
converting it into deterministic form where the right hand side resource vector follows a general form of distribution
which includes distributions like Power function Distribution, Pareto Distribution etc.
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