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Abstract In this paper, we use the linear regression model for survival data, explaining that it corresponds to an accelerated
time model of lifetime, as described in Kalbfleisch and Prentice [12] and Koul and al. [15]. In this context, we adapt the
jumps of the KM estimator as defined in Lopez [16] to the accelerated lifetime model. The introduction of a more restrictive
hypothesis allows us to establish a strong consistency property of the Stute [24] estimator obtained by minimizing the sum
of the least squares. Using the asymptotic normality of the bivariate distribution estimator proposed by Stute [26] and the
Slutsky theorem, we succeed in establishing the asymptotic distribution of the Stute [24] estimator.
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1. Introduction

The statistical analysis of the lifetimes studies the laws of instants of occurrence of events, based on observations
of durations and possibly explanatory variables, made discretely or continuously over time. A priori, we could
treat a duration variable like any continuous quantitative random variable, except that it necessarily takes a positive
real value. This is not a very discriminating characteristic, since found in other themes of economic analysis, such
as that of wages. The usual reference to the normal law then requires a transformation on the data, taking for
example the logarithm. Thus, one of the basic laws in wage econometrics is the log-normal law, which consists in
making a normality assumption on the log of the variable studied. This distribution, as we shall see, is less central
in econometrics of durations. The peculiarity of time data arises from the fact that they can easily be interpreted
as resulting from an underlying stochastic process, that is to say from a random path that makes an individual
pass between different states. This process thus accounts for the dates of changes in the state of the individual
(life And death, employment and unemployment, parenting one child or two children...). The duration of a state
is then simply the difference between the start date and the end date of a state. The characteristics of this process
then lead to the definition of large classes of probability laws for durations. In many fields of application we have,
in addition to the observation of lifetimes, additional information suspected of influencing the durations studied.
This additional information, called covariables or explanatory variables, may be different for each individual.This
can be a characteristic of the individual (blood group, sex, occupational domain, age ...) or a study-dependent
observation (dosage of medical treatment, type of transplant, duration of hospitalization ...). Two major objectives
of the survival analysis are the evaluation of the influence of the covariates and the prediction of a survival time.
Lifetime analysis is used in many fields, such as medicine, industrial reliability, economics or psychology, and
the study of data from these sectors has been developing for several decades. There are many ways of modeling
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survival data: in the case of censored data, the Cox model defined by its risk function

λ(t) = λ0(t)e
β X ,

where λ0(t) is an unparametered basic risk function, and the linear regression model defined by an equality linking
the response variable Y to covariables X is

Y = β
′
X + ε,

where ε is a random error variable.
Since the founding paper of Cox [6], several works deal with the concept of analysis of survival data as well

as linear regression in data censored in particular Buckley and James [5], Aalen ([1], [2]), Andersen and Gill [3],
Fleming and Harrington [7], Kaplan and Meier [13], Klein and Moeschberger [14], Miller [17], Susarla and Van
Ryzin [27], Kalbfleisch and Prentice [12] and Koul et al. [15].

In addition, some specific probability tools such as survival function or instantaneous risk function or cumulative
risk function will play a more decisive role in the analysis than the usual probability density because they have the
advantage of being interpreted very simply.

2. Probabilistic tools

2.1. Characteristic functions in lifetime analysis

The statistical analysis of the lifetimes studies the laws of instants of occurrence of events, based on observations
of durations and possibly explanatory variables, made discretely or continuously over time.
Thus, we denote by T a positive random variable defined on a probabilized space (Ω, A, P ) and representing a
duration up to an event of interest, the origin of the times being predefined. In the medical field, this event may be
the death, healing, relapse of an individual; in the economic field, loss of employment; in reliability, the moment of
first breakdown. Thereafter, the duration T will be called the lifetime. We denote F its distribution function. The
law of T can also be characterized by other easily interpretable functions considering T in term of life.

Definition 1
We term survival function S, the probability that the lifetime T is superior to a time t:

∀t ∈ R, S(t) = P(T > t) = 1− F (t).

Note that if the law of T has a density f with respect to the Lebesgue measure, then we have:

∀t ∈ R, S(t) =
∫ +∞

t

f(t)dt and f(t) = −S′(t) p.p.

Definition 2
The instantaneous risk function λ is the function defined for t ∈ R+ by

λ(t) =

{
lim
h→0

1

h
P (t < T ≤ t+ h | T > t) if t such that P(T > t) > 0

+∞ if not.

The risk function can have very different forms but is necessarily positive on R.
Suppose now that T is a continuous variable, we therefore observe that

∀t ∈ R+, λ(t) =
f(t)

S(t)
= − ∂

∂t
ln(S(t)),

by posing c/0 = +∞ for all c > 0. The definition of λ shows that for h small enough, hλ(t) is interpreted as
the probability of occurrence of the event of interest in the interval [t, t+ h] knowing that this event has not yet
occurred in the instant t. This function therefore reflects the evolution over time of the risk of occurrence of the
event of interest.
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Definition 3
We call the cumulative risk function Λ The function defined for t ∈ R+ by:

Λ(t) =

∫ t

0

λ(s)ds = − ln(S(t)),

which is worth +∞ when S(t) = 0.

From the above definitions, it can be deduced that for all t ∈ R+, we have the relation:

f(t) = λ(t) exp (−Λ(t)) .

In conclusion, the five previous functions allow us to characterize the law of T and some are deductible from the
others. However, it is the interpretation of the instantaneous risk function that will most often guide the choice of a
model for lifetime data.

Remark 1
We can therefore characterize the law of duration T by a function of constant instantaneous risk:

∀t ∈ R+, λ(t) = λ,

where λ is a strictly positive constant.

This means that in a survival study, assuming that there is no wear or aging effect, the probability of occurrence
of the event of interest, knowing that it is not Still occurred, does not change over time.

Example 1
The exponential law was generalized by Weibull in 1939 (Weibull [28]) to the law of the same name by introducing
a new parameter, so that the risk function is as follows:

∀t ∈ R+, λ(t) = λαtα−1,

where λ and α are two strictly positive constants. The parameter λ is called scale parameter and α, shape parameter.
Indeed, λ gives the magnitude of the risk function, and the position of α with respect to 1 defines the monotony
of the risk function: if α = 1, we find the constant risk function and therefore the exponential law; if α > 1
(respectively α < 1), λ is increasing (or decreasing) in time and there is therefore a phenomenon of wear, ag-
ing (respectively rejuvenation). By expressing the risk function, we obtain the following expressions for t belongs
to R+ :

f(t) = λαtα−1e−λtα, S(t) = e−λtα and Λ(t) = λtα.

The Weibull law is widely used in the industrial (reliability) and biomedical (lifetime analysis) fields. Indeed,
this law appeared to be the most appropriate choice of model in the description of data concerning the lifetime of
manufactured components or the appearance of a tumor in the animal. Its success is also due to the fact that this
law has a fairly broad spectrum, covering both the case of a function of increasing risk and that of a decreasing risk
function.

3. Taking into account the covariates

In the parametric approach, the interest functions may depend on explanatory covariates that can influence survival.
In addition to adjusting survival functions to different factors,this will make it possible to compare survival times
(the null hypothesis will be equality of survival distributions).

Let’s consider a random lifetime T and a vector of p real explanatory variables Z = (Z1, . . . , Zp)
′

associated
with the survival time T .
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Note that these covariates may depend on time, however it is necessary to assume that the value of the covariates
does not change between two measures. In order to simplify the writing, it will be assumed in the following that
the covariables are fixed over time. We suppose that the covariables modify the risk functions by following a
Cox proportionate risk model (other models with proportionate risk are possible). In effect, the multiplicating risk
models are defined from a conditional risk function to the covariates Z written as the product of a risk function
termed basic λ0 by covariates positive function exp(β

′
x):

λ(t | Z) = λ0(t) exp (β
′Z) ,

where β′ is the vector of the regression coefficients. The survival and density functions corresponding to these risk
functions are given by

S(t | Z) = exp

(
−
∫ t

0

λ(u | Z)du
)

= exp

(
−
∫ t

0

λ0(u) exp(β
′Z)du

)
= S0(t)

exp(β′Z),

and

f(t | Z) = −S(t | Z)

= λ(t | Z) exp
(
−
∫ t

0

λ(u | Z)du
)

= λ0(u) exp(β
′Z)× S0(t)

exp(β′Z),

with S0(t) = exp
(
−
∫ t

0
λ0(u)du

)
.

3.1. Comparison of two groups

Let’s consider the situation where we want to compare the survival times of two groups A and B. We introduce
the following covariate:

Z = 0 if the individual belongs to the group A =⇒ λA(t) = λ0(t);

Z = 1 if the individual belongs to the group B =⇒ λB(t) = λ0(t) exp(β).

To compare the two groups, we estimate the regression coefficient β and we test the null hypothesis H0 : β = 0
i.e. H0 : λA = λB . We can use the tests of the likelihood ratio of Wald or of the score that follows asymptotically
a law of χ2(1), under H0.

Example 2
Consider a basic risk according to a Weibull law W (θ, ν), so, we have respectively

λ0(t) = ν

(
1

θ

)ν

tν−1, t ≥ 0 and θ, ν > 0;

S0(t) = exp

(
−
(
1

θ

)ν)
and

f0(t) = ν

(
1

θ

)ν

tν−1 exp

(
−
(
1

θ

)ν)
.

From the beginning of this section, the risk, survival and density functions in the case of covariates are defined
by:
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λ(t | Z) = ν

(
1

θ

)ν

tν−1 × exp(β′Z) t ≥ 0 and θ, ν > 0;

S(t | Z) = exp

(
−
(
1

θ

)ν)exp(β′Z)

and

f(t | Z) = ν

(
1

θ

)
tν−1 × exp(β′Z)× exp

(
−
(
1

θ

)ν)exp(β′Z)

For ν = 1; we find the exponential distribution ε( 1θ ). Thus, in the case of a risk according to an exponential law
with covariates, we obtains respectively:

λ(t | Z) =
1

θ
× exp(β′Z), θ > 0

S(t | Z) = exp

(
−1

θ

)exp(β′Z)

and

f(t | Z) =
1

θ
exp(β′Z)× exp

(
−1

θ

)exp(β′Z)

.

4. Accelerated Failure Time model

Among the regression models, accelerated life models are often regarded in terms of reliability. These models can
be defined in two ways. The first representation of accelerated life models is given by the accelerated survival
function:

S(t | Z) = S0

(
teβ

′Z
)
,

where Z is a vector of covariate and β the vector of the regression coefficients.
Indeed,

S(t | Z = z) = P(T > t | Z = z)

= P (ln(T ) > ln(t) | Z = z)

= P (ε > ln(t)− β′Z | Z = z)

= P(exp(ε) > t exp(−β′z))

= P (T > t exp(−β′z) | Z = 0)

= S0 (t exp(−β′z)) .

The term eβ
′ZZ is an acceleration factor because a change in the covariates modifies the time scale. We can

obtain the following expression of the risk function:

λ(t | Z) = [− ln(S(t | Z))]′

= − [S(t | Z)]′

S(t | Z)

=
−eβ′Z × λ0(te

β′z)× S0(te
−β′z)

S0(teβ
′z)

= eβ
′zλ0(te

β′Z).
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Indeed, we have the following equations:

S(t | Z) = S0(t e
β′z) = exp(−Λ0(t e

tbeta′z)) = exp

[
−
∫ t

0

λ0(ue
β′Z)du

]
,

where λ0 and Λ0 are the instantaneous and cumulative risk functions of T when the covariates are set equal to 0.
In the same way, when we know the covariates Z ∈ Rp , so we have

Λ(t | Z) = Λ0(t exp(−β′Z)).

The density f(t|Z) can then be written as a function of the basic risk function:

f(t|Z) = λ0(t e
−β′X)e−β′Z exp (−Λ0(t exp(−β′Z))) .

This model of acceleration or deceleration of time is commonly used in industry, where multiplicative time scales
are common.

On the other hand, assuming that S0(t) is the survival function of the variable exp(µ+ ε), then S0(t) =
P (eµ+ε > t). Thus, one obtains that is the survival function of the variable X where log(X) = µ− β′Z + ε.
Considering the change of variable α = −β, we obtain the second representation by a log-linear regression model
for the duration of survival

log(X) = µ − β′Z + ε,

where X is the survival time (not always observed because T = min(X,C)) and ε is a random variable (in the case
of several observations, the εi are i.i.d.).

Several laws are possible for varepsilon variables, for example:

1. ε ∼ Law to extreme values (fϵ(y) = exp(y − ey))
2. ε ∼ log-logistic
3. ε ∼ log-normal
4. ε ∼ generalized gamma

One can safely deduce that the law of X and the parameter estimates are obtained by maximizing the likelihood.

Remark 2
It may be noted that in the case of accelerated life models, for a covariate Z > 0, a negative α regression coefficient
results in a smaller survival time. Whereas in the Cox semi-parametric model, a negative α regression coefficient
results in a lower risk of event and therefore greater survival.

The reader interested in a more detailed development on the accelerated time model can refer to Bagdonavicius
and Nikulin [4]. In addition, there are many works in which the linear regression model plays a central role in
modern statistics, for example: Jorgensen [11], Rao and Toutenburg [21], Searle [23], Rencher and Schaalje [22].

5. Motivation

In this section, we use the linear regression model for survival data, explaining that it corresponds to an accelerated
time model. The interpretation of this type of model is given in terms of the usual functions characterizing the law.
We then introduce into the general frame of survival time censored right the jumps of the Kaplan-Meier estimator
Kaplan and Meier [13] and the asymptotic results obtained by Stute [24] and Stute [26].

5.1. Random censorship

We are working in a straight type I random censorship mechanism. The interested reader may refer to Klein and
Moeschberger [14] for full censorship on Type II censorship, or Type I censorship on the left or by Intervals.
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Consider now a random lifetime T 0. Let us introduce a random variable C independent of T 0 to value in
R+ ∪+∞ called random variable of censorship. In the right-hand censorship model, the lifetime is only observed
if it is lower than the censoring variable. Otherwise, the value of the censoring variable is observed. Moreover,
the character of the variable observed is known, ie it is known if the variable observed is the variable of interest
(lifetime), or the variable of censorship. In summary, in the right censorship model, we observe

T = min(T 0, C) and δ = 11{T 0≤C}.

5.2. Modeling of the accelerated time model

Our accelerated time model for survival data is an approach using the classical linear regression model. In this
model, the covariates X ∈ Rp act by increasing or contracting the time by a factor exp(−β′X), where β is a p-
Vector of parameters. Indeed, the natural logarithm Y = ln(T ) of the lifetime T is modeled, so as to transform a
variable T taking its values in the positive reals into a real variable Y , and this variable Y is assumed to follow a
linear regression model:

Y = β′X + ε, (1)

where ε is a centered random variable representing the error.
The classical distribution choices for ε include the Gaussian law, leading for T to a log-normal regression model,

the law of extreme values, leading to a model of Weibull or the logistic law, leading to a log-logistic model.

5.3. Expression of Kaplan-Meier in the presence of right random censorship

Let us suppose that we have a n-sample (Y1, . . . , Yn) of independent repetitions of Y , real random variable of
distribution function F . Then a nonparametric and efficient estimator of F is given by the empirical distribution
function F̂n defined by

F̂n(y) =
1

n

n∑
i=1

11{Yi≤y}, (2)

which depends on the variables Yi which are not observed. In order to estimate the law of a variable Y , it is therefore
necessary to propose an estimator of the distribution function which can, in a censored framework, have properties
similar to that of the empirical distribution function used in the absence of censorship.

The Kaplan-Meier estimator (see Klein and Moeschberger [14]) makes it possible to generalize the concept of
empirical distribution function in the presence of censored data. This estimator is defined as follows:

F̂ (y) = 1−
∏
Ti≤y

1− 1∑
j=1

11{Tj≥Ti}


δi

. (3)

Expression (3) has been used recently in the literature for competiting risks (see Njamen and Ngatchou ([18]),
Njamen ([19]), Njamen and Ngatchou ([20])). It is a continuous function in pieces, showing jumps only to
uncensored observations. Moreover, the notions of Kaplan-Meier estimator and empirical distribution function
coincide in the absence of censorship. Moreover, by inverting the roles of Y and C, we observe a certain
symmetry of the problem. We can therefore define in an analogous manner Ĝ Kaplan-Meier estimator of the
function G(t) = P(T ≤ t). The measure defined by the Kaplan-Meier estimator gives weight only to the censored
observations, and reinforces the weight of the large observations. Indeed, it is a question of compensating the deficit
of observations in the bottom of distribution, deficit caused by the censorship.

The study of the asymptotic properties of this estimator has been mainly approached in two different ways.
The martingale approach, developed in particular by Gill ([8], [10]), results in a representation in the form of a
stochastic integral. Asymptotic normality arises from the Rebolledo theorem. We focus in this section on randomly
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censored data on the right. We thus introduce a real random variable of censorship C of the distribution function
G independent of Y and assume that the observed data are the covariates X , the variable of interest possibly
censored Z = min(Y,C) and the censorship indicator δ = 11{Y≤C} . We thus have a n-sample (Xi, Zi, δi)1≤i≤n of
independent repetitions of (X,Z, δ).

Let us introduce the following notations. Let a sequence Qi = Z(in) for all i = 1, . . . , n.
This sequence Qi can be either increasing or decreasing. Assuming that it is increasing, then we have Q1 ≤

Q2 ≤ . . . ≤ Qn i.e. Z(1n) ≤ Z(2n) ≤ . . . ≤ Z(nn) the reordered values in ascending order of (Z1, Z2, . . . , Zn) and
(δ(1n), δ(2n), . . . , δ(nn)), (X(1n), X(2n), . . . , X(nn)) the values of δ andX associated with (Zi:n). The nonparametric
analogue of Fn, when observing the n-uplet (Xi, Zi, δi)1≤i≤n then becomes the estimator de Kaplan and Meier
[13] F̂n defined by

F̂n(y) = 1−
n∏

i=1

(
1−

δ(in)

n− i+ 1

)11{Z(in)≤y}

=

n∑
i=1

W(in)11{Z(in)≤y} (4)

where the weights W in are called jumps at observation Zi , and in particular is 0 if δi = 0.
By combinatorial reasoning, Stute and Wang [25] obtain the following expression of the jumps of the Kaplan-

Meier estimators given by

W(in) =
δ(in)

n− i+ 1

i−1∏
j=1

(
n− j

n− j + 1

)δ(jn)

, (5)

where W(in) is the jump to the i-th observation Z(i) in the ordered sample, and δ(in) is the realization of δ
corresponding to Z(i).

Gill [9] shows the uniform convergence of the Kaplan & Meier estimator (see Kaplan and Meier [13]) F̂n to
F in the case of positive variables. Stute, in the 1990s, is interested in a very general framework for estimating
the bivariate distribution function F 0 = FX,Y , as an extension of the estimate of univariate distribution function
F̂n of Y . The estimator F̂ 0

n of F 0 should check the property: for all y ∈ R, F̂n(y) = F̂ 0
n(+∞, y). Only the

following two hypotheses are posed on the model:

(H.1) P(Y ≤ C | X,Y ) = P(Y ≤ C | Y );
(H.2) F and G have no jumps in common.
Stute [24] introduces the estimators of the general form:

Sφ
n =

n∑
i=1

W(in)φ
(
X(in), Z(in)

)
. (6)

Remark 3 1. By choosing φ(x, y) = 11{]−∞,x]×]−∞,y]}, S
φ
n becomes the estimator of the bivariate distribution

function proposed by Stute [24]:

F̂ 0
n =

n∑
i=1

W(in)11{]−∞,X(in)]×]−∞,Z(in)]} (7)

2. Let’s suppose X is univariate. By putting φ1(x, y) = yx, φ2(x, y) = y, φ3(x, y) = x, φ4(x, y) =
y2, φ5(x, y) = x2 and noting Si

n(1 ≤ i ≤ 5). The corresponding quantities, combinations of these to obtain
estimates of the covariance and correlation of (X,Y ).
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In order to study the properties of the estimators of the proposed Sφ
n form, let us introduce some notations. Let

H be the distribution function of the observed variable Z and putting

τH = inf{x ∈ R; H(x) = 1}, (8)

the upper bound of the H support. We will use the same notation tauF , τG for the distribution functions F and G.
Notice that τH = min (τF , τG) due to the independence of Y and C. In the remainder of this paper, we will replace
the hypothesis (H.2) by the more restrictive hypothesis:
(H.3) F and G are continuous on R.
This last hypothesis will make it possible to simplify the notations which corresponding to the framework in

which our study is made.
We will now present different results obtained by Stute ([24], [26]) on random variables Sφ

n .

5.4. Previous results

The following Lemma, as stated by Lopez [16], provides the expression ofW(in) as a function of the Kaplan-Meier
Ĝ estimator of the distribution function of the censoring variable. It shows that the mass in Ti is evenly divided
between the k ex-aequos.

Lemma 1
The mass contribution of the Kaplan-Meier F̂ estimator of the i observation is expressed by

W(in) =
1

n

δi

1− Ĝ(Ti)
. (9)

We give here consistency results on the estimators of type Sφ
n . They are developed in more detail in Stute [24]

for the interested reader.

Theorem 1
Under the assumptions (H.1), (H.3) and ifφ(X,Y ) is integrable, then almost surely

lim
n→∞

Sφ
n =

∫
Y≤τH

φ(X,Y )dP. (10)

Remark 4
Note that if τF ≤ τG then Sφ

n is a consistent estimator of
∫
φ(X,Y )dP.

This theorem makes it possible to conclude on the uniform convergence of the bivariate extension of the Kaplan-
Meier estimator.

Corollary 1
Under the assumptions (H.1), (H.3), and if τF ≤ τG then:

sup
x∈RR,y∈R

∣∣∣F̂ 0(x, y) − F 0
n(x, y)

∣∣∣ p.s.−→ 0 (n→ ∞). (11)

In 1996, Stute is interested in the asymptotic normality of estimators of the form Sφ
n . For this, it is necessary to

introduce some additional notations for this study. Let H̃ be the function defined for x ∈ Rp and y ∈ R by

H̃(x, y) = P (X ≤ x,Z ≤ y, δ = 1) ,

where the inequality X ≤ x is taken coordinate by coordinate. We also define for j ∈ {1, . . . , p} the functions Φj
1

and Φj
2 under R by:

Φφ
1 (z) =

1

1−H(z)

∫
11{z<y}φ(x, y) exp

(
G(y)

1−G(y)

)
dH̃(x, y) (12)

Φφ
2 (z) =

∫ ∫ 11{u<z,u<y}φ(x, y) exp
(

G(y)
1−G(y)

)
(1− F (u))(1−G(u))2

dG(u)dH̃(x, y). (13)
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The theorem establishing the asymptotic normality of the Sφ
n estimators will be verified under the following

assumptions:

(H.4)
∫ (

φ(X,Z) exp
(

G(z)
1−G(z)

)
δ
)2

dP < +∞;

(H.5)
∫
| φ(X,Y ) | φ

√
C(Y )dP < +∞;

where

C(y) =

∫ y

0

dG(υ)

(1−H(υ))(1−G(υ))
. (14)

We now state the theorem established by Stute [24].

Theorem 2
Under the assumptions (H.1), (H.3), (H.4), (H.5) and if τF ≤ τG then

√
n (Sφ

n − E[φ(X,Y )])
L−→ N (0, σ2(φ)) (n→ +∞), (15)

where

σ2(φ) = Var
(
φ(X,Y ) exp

(
G(Z)

1−G(Z)

)
δ +Φφ

1 (Z)(1− δ)− Φφ
2 (Z)

)
(16)

For many statistical applications, it is interesting to have a multidimensional version of the theorem (2). Let us put
φ = (φ1, φ2, . . . , φk) a measurable function defined on Rp+1 with values in Rk. Let us define for all j ∈ {1, ..., k}
the function

ψj = φj(X,Z) exp

(
G(Z)

1−G(Z)

)
δ +Φ

φj

1 (Z)(1− δ)− Φ
φj

2 (Z) (17)

and consider

σij = Cov(ψi, ψj). (18)

Given the vector function

Sφ
n = (Sφ1

n , . . . , Sφk
n )′, (19)

which makes it possible to have the following decomposition:

Sφ = (E[φ1(X,Y )], . . . , E[φk(X,Y )])
′
. (20)

Under this intuition, Stute [26] obtains the following theorem:

Theorem 3
Under the assumptions (H.1), (H.3.), if (H.4) and (H.5) are checked for all j ∈ {1, ..., k}, and if τF ≤ τG then

√
n(Sφ

n − Sφ)
L−→ N (0,

∑
(φ)) , (n→ ∞), (21)

where ∑
(φ) = (σij)1≤i,j≤k. (22)
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6. Results

Suppose now that the random variable Y is derived from the (1) linear regression model introduced in subsection
(5.2) where the true regression parameter will be denoted β0. Let us add the hypothesis that E[ε|X] = 0. It is then
possible to propose a new estimator of beta coinciding with the least squares estimator in the absence of censorship,
and having the property of consistency. For this purpose, we introduce the matrices M1n and M2n following for
1 ≤ i, j ≤ p and 1 ≤ s ≤ n :

M1n(i, s) = W(sn)X
i
(sn), (23)

M2n(i, j) =

n∑
k=1

W(kn)X
i
(kn)X

j
kn, (24)

where Xi
(kn) designate the i-th coordinate of the covariables X(kn) associated with the reordered data Z(kn). Let

β̂n be the minimizer of the least squares sum:

β̂n = argminβ∈Rp

n∑
i=1

W(in)

(
Z(in) − β′X(in)

)2
. (25)

In using the notation Z̃n =
(
Z(1n), Z(2n), . . . , Z(nn)

)′
, we notice that

β̂n = M−1
(2n)M(1n)Z̃n. (26)

Theorem (1) then makes it possible to establish the property of strong consistency of this new estimator and
constitutes the first fundamental result of this paper.

Corollary 2
Under the assumptions (H.1), (H.3), if τF ≤ τG and E[XX ′] exists and is positive definite, then

β̂n
p.s.−→ β0 (n→ ∞). (27)

Proof
As the existence of E[XX ′] is assumed, theorem 5.1 gives the almost sure convergence M2n → E[XX ′] when
(n → ∞). Moreover,

M1nZ̃n =

n∑
k=1

W(kn)Z(kn)Xkn. (28)

By applying Theorem 1 again and as τF ≤ τG one obtains the almost sure convergence M1nZ̃n → E[ZX] =

E[XX ′]β0 when n→ ∞, which makes it possible to conclude on the consistency of β̂n.

This estimator, which is easy to implement, was compared numerically with the estimators of Miller [17] and
Buckley and James [5] in the linear model in Stute [24] and gives better results overall.

Let us now apply the Stute normality results Stute [26] to the linear regression model (1) with the true parameter
of the model denoted β̂n under the assumptions E[ε|X] = 0 and

∑
0 = E[XX ′] exists and is defined positive. We

will use the functions (φj)1≤j≤p defined on Rp+1 by

φj(x, z) = φj(x
1, . . . , xp, z) = xj(z − β′

0x). (29)

The next result is the second fundamental result of this paper. It gives the asymptotic distribution of β̂n defined
by (26).
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Corollary 3
Under the assumptions (H.1), (H.3) and τF ≤ τG , if the assumptions (H.4) and (H.5) are verified by φj for all
j ∈ {1, . . . , p}, then

√
n
(
β̂n − β̂0

)
P−→ N

(
0,

−1∑
0

∑
(φ)

−1∑
0

)
(n→ ∞), (30)

where
∑

(φ) is the matrix defined in Theorem 3.

Proof
Let’s first calculate Sφ.

Sφ = (E[φ1(X,Y )], . . . ,E[φp(X,Y )])

= E[(Y − β′
0X)X]

= E[εX]

= (0, . . . , 0)′, (31)

according to the hypothesis E[ε|X] = 0.
We thus apply theorem 3 to establish the law convergence of

√
nSφ

n . The assumptions being verified, we obtain

√
nSφ

n =

n∑
i=1

W(in)

(
Z(in) − β′

0X(in)

)
X(in)

L−→ N
(
0,
∑

(φ)
)

(n→ ∞). (32)

Now, from the proof of Corollary 2, convergence

M2n
p.s.−→ E[XX ′] =

∑
0

(n→ ∞) (33)

is established, hence the Slutsky theorem

√
nM−1

2n S
φ
n

L−→ N

(
0,

−1∑
0

∑
(φ)

−1∑
0

)
(n→ ∞). (34)

To conclude, we remark that:

β̂n − β0 = M−1
2n M1nZ̃n − β0

= M−1
2n

(
M1nZ̃n −M2nβ0

)
= M−1

2n

(
n∑

k=1

W(kn)Z(kn)X(kn) −
n∑

i=1

W(kn)β
′
0X(kn)X(kn)

)

= M−1
2n

n∑
k=1

Wkn

(
Z(kn) − β′

0X(kn)

)
X(kn)

= M−1
2n S

φ
n (35)

7. Conclusion

In this paper, we established a strong consistency property of the Stute [24] estimator and, on the other hand,
established an asymptotic distribution property of the Stute [26] estimator in a model of accelerated life under
random censorship.
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