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Abstract This paper deals with testing the number of components in a Birnbaum-Saunders mixture model under randomly
right censored data. We focus on two methods, one based on the modified likelihood ratio test and the other based on the
shortcut of bootstrap test. Based on extensive Monte Carlo simulation studies, we evaluate and compare the performance
of the proposed tests through their size and power. Moreover, a power analysis is provided as a guidance for researchers
to examine the factors that affect the power of the proposed tests used in detecting the correct number of components in a
Birnbaum-Saunders mixture model. Finally an example of aircraft Windshield data is used to illustrate the testing procedure.
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1. Introduction

Birnbaum-Saunders (BS) distribution is a two-parameter, right-skewed, unimodal distribution and can be
considered as an alternative to the normal distribution for modeling skewed data because it has developed from
a normal distribution by using a monotone transformation. The distribution is named after Birnbaum and Saunders
who introduced it to model fatigue life of metals subject to cyclic stress. Hence it is considered one of the most
frequently used distributions to model failure times of fatiguing materials, as a potential alternative to different
widely used distributions such as the log-normal, Weibull, gamma and inverse Gaussian. The BS distribution, with
its generalizations, has been used to solve problems in areas such as biology, business, economics, engineering,
industry, reliability, environmental and medical sciences and many others. A comprehensive review of the BS
distribution, including genesis, various interpretations, statistical features and all the developments, can be found
in [3] and [23]. A nonnegative random variable Y is BS distributed with parameters α, β > 0, denoted as BS(α,β),
if its cumulative distribution function (cdf) and the corresponding probability density function (pdf) are given by

F (y;α, β) = Φ(υ), y > 0, (1)

and
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respectively, where Φ(.) is the standard normal cumulative function, υ = α−1ρ(y/β), ρ(z) = z1/2 − z−1/2, α is a
shape parameter and β is a scale parameter.

Finite mixture models are an effective tool for the analysis of heterogeneous data in many fields of applied
science such as, agriculture, bioinformatics, physics, cell biology, economics, industrial engineering, genetics,
geology, machine learning, medicine, social sciences and among many others. Extensive bibliographies on the
finite mixture can be found in the books such as [37] and [30].

Finite mixture of BS distributions are widely used to model heterogeneous populations when the subpopulations
have skewed distributions. [2] studied the characteristics and estimation procedure of three different two-
component mixture models based on BS and length-biased BS distributions. [21] suggested a two-component
mixture of two bivariate BS distributions and they studied its different properties and parameter estimation using
EM algorithm. [4] proposed a g-component mixture of BS distributions for modeling multimodel populations as an
extension of the two-component mixture of BS distributions introduced by [2]. They discussed the identifiability
and proposed the k-bumps initialization algorithm in the EM algorithm for estimating the parameters of the two-
component mixture of BS distributions. Also, they implemented bootstrap procedures for testing the hypotheses
about the number of components g in a mixture of BS distributions through real data. [18] generalized the proof of
the identifiability problem suggested by [4] for a g-component mixture of BS distributions. Also, they addressed
parameter estimation and homogeneity testing for the finite mixture of BS distributions based on random censoring
data using the EM algorithm and EM test, respectively. The cdf and pdf of finite mixture of BS distributions are
defined as follows:

F (t;θ) =

g∑
j=1

πjF (t;αj , βj), t > 0, (3)

f(t;θ) =

g∑
j=1

πjf(t;αj , βj), t > 0, (4)

where θ = (πj , αj , βj), αj > 0, βj > 0, πj are the mixing weights with πj ≥ 0,
∑g

j=1 πj = 1 , and F (t;αj , βj)
and f(t;αj , βj), the cdf and pdf of the jth component, are given by (1) and (2), respectively, j = 1, ..., g.

An important issue in a finite mixture is to decide whether the number of components g in the mixture, which
indicates the number of distinct groups, describes the data adequately or not. Different ways have been described by
several authors including [30], [24] and [31] to assess the number of components g in mixture models. One of the
major ways is the hypothesis testing approach for testing the smallest number of components g that is compatible
with the number of distinct groups in the data. The popular classical way in the testing hypothesis approach is using
a likelihood ratio test (LRT), but in the context of mixture models the asymptotic null distribution of the LRT is not
chi-squared distribution due to the violation of standard regularity conditions. [16], [9], [27] and [1] deduced that
the asymptotic null distribution of the LRT includes Gaussian process, which is very complex to execute in data
analysis.

For a simpler asymptotic distribution, [7], [10] and [11] developed the LRT by combining a penalty term based
on mixing proportions to the log-likelihood function that partially restores the regularity conditions. The asymptotic
null distribution of the modified likelihood ratio test (MLRT) is restricted to a mixture of chi-squared distributions
when testing homogeneity for finite mixture models of a single parameter in the components. [39] showed that the
general asymptotic null distribution of the MLRT for testing homogeneity of mixture models with constraints in
parameters is the chi-bar-squared distribution.

[12] and [26] introduced EM-test as the development of the MLRT to overcome the undesirable restrictions
on the components. Various papers have focused on the development of the EM test for testing the number
of components g of finite normal mixtures (see, [25], [13], [32], [15], [21], [35], [14], [8] and [6]). Although,
the EM test is effective and has a simple asymptotic distribution under univariate normal mixture models for
the homogeneity test, it is still less effective to test the number of components in a mixture model with multi
dimensional parameters ([24] and [8]).

An alternative approach for testing the number of components g in mixture models is to obtain an empirical
distribution of the test statistic via Monte Carlo simulation, when the usual asymptotic null distribution of chi-
squared distribution of the test statistic is not applicable. [36] used this approach to simulate the LRT statistic for
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testing homogeneity in a mixture of two inverse Weibull distributions. Recently, [18] constructed the empirical
distribution of the EM test statistic to compute the size and power for testing homogeneity in the mixture of BS
distributions. A popular method in this approach is the bootstrap likelihood ratio test (BLRT) proposed by [28].
[19] and [33] extended the work of [28] to use the BLRT in the hypothesis testing in mixture models and focused
on the p-value computation rather than the power computation in their studies. [20] and [38] presented two methods
of power computation for the BLRT to assess the number of classes in latent models via Monte Carlo simulation.
In the first, the power computation is based on the proportion of bootstrap p-values method, which is inapplicable
in most cases. While the second method is an alternative computationally faster method called a shortcut. Recently,
[40] proposed a BLRT for determining the optimal number of components in a Weibull mixture model for grouped
data.

The mixture of BS distributions is important in many applications. However, no researches were done on
determining its number of components, apart from the work of [4] previously mentioned, which was confined to the
case of complete sampling and also the work of [18] which was for testing homogeneity (number of components g
= 2 ) using EM test. Hence the objective of this paper is to assess the number of components g in the mixture of BS
distributions for randomly right censored data as well as complete data which can be considered as a special case.
Censoring is an inevitable feature in reliability and life testing. It may occur naturally if the objects under study are
lost from the test before failure or incorporated into the design of a study to save time and cost of the test. Types
of censoring are based on the different termination techniques of life test. Type I censoring, Type II censoring and
random censoring arise if the test end at fixed time, or with fixed number, or randomly according to certain criteria,
respectively, see [22].

Thus this paper contributes to the present literature on the mixture of BS distributions by proposing the MLRT
and the shortcut method of the bootstrap test for testing the number of components g in a mixture of BS distributions
under a random right censoring scheme. We evaluate and compare the performance of the proposed tests through
their size and power. Furthermore, a power analysis is conducted to determine the factors that affect the power of
the proposed tests.

The rest of this paper is structured as follows. In Section 2, we introduce the MLRT for testing number of
components g in a mixture of BS distributions for randomly right censored data and describe the algorithms used
for size and power computation. Section 3 reports the simulation results and a real data set is analyzed in Section
4. A conclusion can be found in Section 5.

2. Hypothesis testing procedure

In this section, we introduce the hypothesis testing approach for testing the number of components g in a finite
mixture of BS distributions for randomly right censored data using the MLRT. After that, we present how to
compute the empirical size and power of the MLRT and shortcut method of the bootstrap test by Monte Carlo
simulation.

2.1. Modified likelihood ratio test procedure

Let T1, T2, ..., Tn be a random sample of observations with cdf (3) and pdf (4), and C1, C2, ..., Cn be randomly
right censored observations which are independent of T ′

is, i = 1, 2, ..., n, drawn from a suitable distribution. In this
case, for each of the n individuals we observe random pairs (ti, δi), i = 1, 2, ..., n, where

ti = min(Ti, Ci) and δi =

{
1 Ti ≤ Ci,

0 Ti > Ci.
(5)

The likelihood function under random right censoring scheme, as given in [22], can be written as

L(θ) =

n∏
i=1

[f(ti;θ)]
δi [1− F (ti;θ)]

1−δi . (6)
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The modified log-likelihood function is

ℓ̃n(θ) = ℓn(θ) + p(π), (7)

where ℓn(θ) is the natural log function of (6) called ordinary log-likelihood function and p(π) is the penalty
function and it is used to overcome the boundary problem on LRT ([10]) by setting a soft condition on mixing
weights such that p(π) gets its maximum at π = 0.5 and p(π) → −∞ when π → 0 or 1. The MLRT statistic is
defined as

Mn = 2
{
ℓ̃n(θ̃a)− ℓ̃n(θ̃0)

}
, (8)

where θ̃0, θ̃a are the modified maximum likelihood estimates under the null and alternative hypotheses,
respectively, obtained by maximizing (7). Then, the MLRT rejects the null hypothesis if Mn is large. Specifically,
it is rejected when the calculated value of the MLRT statistic for observed data is greater than the critical value at
some significance level α. We are interested in testing the null and alternative hypotheses as follows:

H0 : g = g0 versus Ha : g = g0 + 1,

for g0 ≥ 1.
For estimating the parameter values under the H0 and Ha, we apply the EM algorithm introduced by [17]

which is an iterative method to find the maximum likelihood estimates in the cases where the data can be viewed
as being incomplete or can be treated in a similar form like finite mixture models ([29] and [30]). To constitute
the incomplete data structure in mixture model, let us define the unobserved data Z = (Z1,Z2, ...,Zn) where
Zi = (Zi1, Zi2, ..., Zig), i = 1, ..., n and

Zij =

{
1 if observation i belongs to component j,
0 otherwise.

Therefore, the modified log-likelihood for the complete-data (T,Z) is given by

ℓ̃cn(θ|t,z) = log

n∏
i=1

g∏
j=1

{
[πjf(ti;αj , βj)]

zijδi [πj (1− F (ti;αj , βj))]
zij(1−δi)

}
+ p(π). (9)

In EM algorithm, each iteration contains two steps: the expectation step (E-step) and the maximization step
(M-step). In first iteration we start with randomly initial value θ0 of the parameter θ and for l ≥ 0, a sequence of
estimated value θ(l) of the parameter θ are constructed by repeating alternately between the E-step and M-step
until the difference of log-likelihoods between two steps is sufficiently small. In the case of the mixture of BS
distributions with θ = (πj , αj , βj), j = 1, 2, ..., g, the E and M steps in the (l + 1)th iteration can be written as
follows:
E-step:

Q(θ,θ(l)) =

n∑
i=1

g∑
j=1

Eθ(l) [Zij |ti]

{
log πj + δi

(
A− 1

2α2
j

[
ti
βj

+
βj

ti
− 2

]

+ log

[(
βj

ti

)1/2

+

(
βj

ti

)3/2
]
− logαjβj

)
+ (1− δi) log [1− Φ(υj)]

}
+p(π), (10)

where A is a constant independent of θ, p(π) = Cg
∑g

j=1 log(2πj) with Cg positive constant suggested by [10]
and

Eθ(l) [Zij |ti] =
π
(l)
j

[
f(ti;α

(l)
j , β

(l)
j )

]δi [
1− F (ti;α

(l)
j , β

(l)
j )

]1−δi

∑g
m=1 π

(l)
m

[
f(ti;α

(l)
m , β

(l)
m )

]δi [
1− F (ti;α

(l)
m , β

(l)
m )

]1−δi
.
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M-step: Maximizing of (10) with respect to αj , βj and πj , j = 1, ..., g, we obtain

πj
(l+1) =

[
n∑

i=1

z
(l)
ij + Cg

]
/
(
n+ gCg

)
,

and
∂Q

∂αj
=

n∑
i=1

z
(l)
ij

{
δi

(
α−3
j

[
ti
βj

+
βj

ti
− 2

]
− α−1

j

)
+ (1− δi)

α−1
j υjϕ(υj)

1− Φ(υj)

}
, (11)

∂Q

∂βj
=

n∑
i=1

z
(l)
ij

{
δi

(
ti

2α2
jβ

2
j

− 1

2α2
j ti

− 1

2βj
+

1

ti + βj

)
+ (1− δi)

ωjϕ(υj)

[1− Φ(υj)]

}
, (12)

where z
(l)
ij = Eθ(l) [Zij |ti], ωj =

1
2αjβj

[(
ti
βj

)1/2

+
(

ti
βj

)−1/2
]

.

We obtain α
(l+1)
j and β

(l+1)
j by setting (11) and (12) to zero and solving them for αj and βj , j = 1, 2, ..., g.

2.2. Size and power of the test

The size of the test or significance level is the probability of rejecting the null hypothesis when it is true and is also
called the type I error rate. It is an important input to hypothesis testing, which controls the critical value and power
of the test and therefore has a significant effect on the inferential result. The power of the test, the probability that
the test correctly rejects the null hypothesis when it is false, is an important aspect in research study which can help
to make conclusions about the factors that affect achieving a desired power level for the test. To compute the size
and power of the MLRT and shortcut method of bootstrap test, we need to construct the empirical distribution of
MLRT statistic under the null hypothesis to obtain estimates of the critical values and then construct the empirical
distribution of MLRT statistic under the null and alternative hypotheses to determine the size and power based on
the estimated critical values, respectively. In short, two algorithms are necessary for size and power computation
by simulation. The first algorithm, “CV Algorithm”, is used for computing the estimated critical value Ĉα and the
other one, “Size & Power Algorithm”, is used for computing the size and power using the Ĉα. In the MLRT and
shortcut method of bootstrap test there are some differences in the steps of CV Algorithm but the Size & Power
Algorithm is the same. The CV Algorithm used in MLRT can be explained as follows:

CV Algorithm 1:

1. Generate a sample of size n according to the model under H0.
2. Use the simulated data in Step 1 to compute the modified maximum likelihood estimates for the parameters

of the models under H0 and Ha and after that compute the MLRT statistic given in (8).
3. Repeat Steps 1 and 2, M times.
4. For a given nominal significance level α, we obtain Ĉα as the quantile at M(1− α)th position in ordered

MLRT statistic values.

But, the CV Algorithm used in shortcut method can be explained as follows:

CV Algorithm 2:

1. Generate a sample of size 1000 according to the model under Ha and used it estimate the parameters of the
model under H0.

2. Given the estimated parameters of the model under H0, generate a sample of size n based on the model under
H0.

3. Use the simulated data in Step 2 to compute the modified maximum likelihood estimates for the parameters
of the models under H0 and Ha and after that compute the MLRT statistic given in (8).
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4. Apply the same Steps 3 and 4 of CV Algorithm 1.

The steps for Size & Power Algorithm can be explained as follows:

Size & Power Algorithm:

1. Generate two random samples of size n according to the model under H0 and Ha.
2. For each sample generated in Step 1, calculate the MLRT statistic given in (8).
3. Repeat Steps 1 and 2, M times.
4. For a given Ĉα obtained from CV Algorithm, the size and power are

size = P (Mn > Ĉα|H0) =
1

M

M∑
m=1

I(Mm
n > Ĉα), (13)

and

power = P (Mn > Ĉα|Ha) =
1

M

M∑
m=1

I(Mm
n > Ĉα), (14)

respectively, where I(.) is an indicator function.

3. Simulation studies

In this section, we conduct extensive simulation studies to examine the performance of the MLRT and shortcut
method of bootstrap test in controlling Type I error and compare the performance of the power of the proposed
tests by detecting the factors that affect the power of the test for assessing the number of components in a mixture of
BS distributions based on randomly right censored data. The simulations are performed using a program developed
in R version 3.3.1.

In order to compute the size (13) and power (14) as illustrated in the Size & Power Algorithm in the previous
section for the following hypotheses H0 : g = 1 vs. Ha : g = 2 and H0 : g = 2 vs. Ha : g = 3, we consider
sets of parameter combinations under the null and alternative models shown in Table 1. For each model, we
set nominal significance levels as α = 10%, 5%, 2.5%, 1%, censoring proportions as p = 0%, 10%, 30%, 50% and
sample sizes as n = 25, 50, 100, 250. The proportion p = 0% corresponds to the case of complete data whereas the
other proportions for p reflect the case of censored data. The number of simulation replicates are 10,000 and 1000
for the cases of complete data and censored data, respectively. The suggested distribution for generating random
censoring is the uniform distribution.

The EM algorithm is used in our simulation to find the modified maximum likelihood estimates. It has a common
drawback of getting trapped at local maxima and to avoid local maxima, we used several random starting values to
increase the chance of reaching the global maximum through picking the highest likelihood.

In hypothesis testing, it is desirable to have a small deviation between the empirical size of the proposed tests
and the nominal significance levels and also a higher power is desirable for the proposed tests. The estimated
critical values used for size and power computation will not be presented, to save space. In Tables 2 - 5, we present
the values of the empirical size of the MLRT(Cg = 1) and shortcut method. Overall in these tables, we noted the
empirical sizes are reasonably close to the nominal significance levels, but for small sample sizes and for very
high censoring levels the deviations were a little bit high. Hence, we conclude that the performance of the MLRT
statistic is reliable.

We are concerned with studying some factors that may influence the power of the test: the first factor is
Mahalanobis distance ∆ = |µ1 − µ2|/σ which means the distance between the two components of the mixture
model, where µ1 and µ2 are the two means of the two BS components in Ha and σ is the common standard
deviation for the mixture of BS distribution. The other factors are the mixing proportion π, the censoring proportion
p, the penalty term Cg in MLRT and the sample size n. In Table 1, models M1, M2, M3 and M6, M7, M8 are used
to study the effect of ∆ on the power with Ha : g = 2 and Ha : g = 3, respectively.
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Table 1. parameter settings in the null and alternative models for mixture of BS distributions with g0 = 1 and g0 = 2.

Model parameter ∆

M1 H0: BS(0.5,3) 1.1
Ha: 0.5BS(0.5,3)+0.5BS(0.75,7)

M2 H0: BS(0.25,0.5) 2.5
Ha: 0.5BS(0.25,0.5)+0.5BS(0.25,1)

M3 H0: BS(0.25,1) 4.4
Ha: 0.5BS(0.25,1)+0.5BS(0.25,5)

M4 H0: BS(0.25,0.5) 2.5
Ha: 0.1BS(0.25,0.5)+0.9BS(0.25,1)

M5 H0: (0.25,0.5) 2.5
Ha: 0.9BS(0.25,0.5)+0.1BS(0.25,1)

M6 H0: 0.5BS(0.25,0.5)+0.5BS(0.5,0.75) 1.1
Ha: 1/3BS(0.25,0.5)+1/3BS(0.5,0.75)+1/3BS(0.5,1.5)

M7 H0: 0.5BS(0.25,0.5)+0.5BS(0.25,1) 2.5
Ha: 1/3BS(0.25,0.5)+1/3BS(0.25,1)+1/3BS(0.25,2)

M8 H0: 0.5BS(0.25,1)+0.5BS(0.25,5) 4.4
Ha: 1/3BS(0.25,1)+1/3BS(0.25,5)+1/3BS(0.1,10.25)

The results showing the effect of both ∆ and n on the power are presented in Tables 6 and 10 for the case of
complete data. From Table 6, where the results of the power are reported for Ha = 2, we observe that the power
increases with the value of ∆. In other words, the proposed tests can not detect the true model when the value of ∆
is small. Also, we observe that the power increases with sample size. In all methods, when ∆ = 1.1, the power is
low with n = 25, 50, 100 and is moderately high with n = 250. When ∆ = 2.5, the power is low with n = 25, 50,
is moderately high with n = 100 and high with n = 250. When ∆ = 4.4, the power is high with n = 25, 50 and it
is one with n = 100, 250. That is, as the value of ∆ decreases, we need to increase the sample size for detecting the
true model.

In Table 10, the results of the power are reported for Ha : g = 3 based on complete data. Similarly from the
results shown in Table 6, it is observed that the power increases with ∆ and sample size. In all methods, when
∆ = 1.1, the power remains low even for n as large as 250. Whereas, when ∆ = 2.5, the power becomes moderately
large with n = 250. However, when ∆ = 4.4, the power is moderately large for even a value as small as n = 25 and
approaching one when n = 50, 100 and it is equal to one when n = 250. Comparing Tables 6 and 10, we observe
that the values of the power of Table 6 are higher than those of Table 10. That is, if adjacent components have the
same ∆ from each other, it is harder to detect the mixture model having more components. This same conclusion
was given in [40].

Models M2, M4 and M5 in Table 1 are used to study the effect of mixing proportion on the power for the case
of Ha : g = 2 based on complete data. The results are reported in Table 7. It is observed that the power of the tests
for models having equal mixing proportions is higher than for those models having unequal mixing proportions.
Moreover, the power for the case π = 0.1 is considerably larger than for π = 0.9.

Also we study the effect of Cg on the power as Cg = 0, 1. For Cg = 0, the Mn given in (8) becomes the ordinary
likelihood ratio statistic whereas for Cg = 1, the Mn becomes the modified likelihood ratio statistic. In Tables 6 -
10, we present the values of the empirical power of LRT(Cg = 0), MLRT(Cg = 1) and shortcut method, for testing
the number of components when Ha : g = 2 and Ha : g = 3. As noted from these tables, the power of the MLRT
is slightly higher than of the LRT, consequently the value of Cg has an effect on the power. Whereas, the power of
the shortcut method is higher than of the MLRT. But the drawback of the shortcut method is that its computation
time is higher than that of MLRT.

The results in Tables 8 - 9 show the effect of the censoring proportions p on the power of the proposed tests for
Ha : g = 2. For fixed ∆ and sample size, the power decreases as censoring proportion increases, and for fixed ∆
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and censoring proportion, the power increases with the sample size, whereas for fixed sample size and censoring
proportion, the power increases with ∆. In all methods, when ∆ = 1.1, the power is moderately large with n = 250
and p = 10%. However for p = 30%, 50%, the power does not become moderately large even when n = 250.
Whereas, when ∆ = 4.4 and p = 10%, 30% the power is high for n = 25, almost one for n = 50, 100 and equal to
one for n = 250. The same behavior is encountered when ∆ = 4.4 and p = 50% with the only exception that the
power is moderately large when n = 25. Consequently, to detect the true model for the case of random censoring,
we need to increase the sample size whenever ∆ decreases and censoring proportion increases.

4. Application

We consider a real data set on failures of aircraft Windshields given by [5] and analyzed previously by [34]. The
data set contains 153 observations which are classified as 88 failure times and 65 censored times. [34] proposed a
twofold Weibull mixture model to fit the data. We suggest a mixture of BS distributions to fit this data rather than
a twofold Weibull mixture model.

Table 11 summarizes the results of the comparison of the log-likelihood, AIC and BIC for twofold Weibull
mixture model and a mixture of BS distributions with different number of components fitted to aircraft Windshield
data. From this table, it is observed that the two-component mixture model of BS distributions has the highest
value of log-likelihood and the lowest values of AIC and BIC and consequently its provides the best fit for aircraft
Windshield data. This result is further confirmed by applying the MLRT to test the hypotheses H0 : g = 1 vs.
Ha : g = 2. The calculated value of the MLRT statistic with Cg = 1 and estimated critical values for the significance
levels (1%, 2.5%, 5%, 10% ) are found to be 65.9526 and (12.0264, 10.3205, 8.3103, 6.1958), respectively. Hence,
we reject the null hypothesis at all significance levels. Thus, the two-component mixture model of BS distributions
fits the data well.

5. Conclusion

In this paper, we introduced the problem of testing the number of components in a mixture of BS distributions
under a random right censoring scheme. The MLRT and shortcut method of bootstrap test were discussed in the
hypothesis testing procedure. Both the MLRT and the shortcut method were evaluated and compared. Extensive
Monte Carlo simulation studies were performed to compute the empirical size and power of the tests. The
simulation results show that the empirical size is quite close to the nominal significance level in most cases, which
indicates that the MLRT statistic performs well. The simulation results also show that the power obtained using
the shortcut method is greater than that obtained using the MLRT. Moreover, the results are helpful in detecting
the factors which affect the power. The overall findings for factors that affect power in the case of Ha : g = 2
one compatible with previous studies of [18] and there is a strong indication for the influence of the Mahalanobis
distance ∆ on power. Also, the sample size has a direct and clear influence on power, but its effect is less as
compared to the Mahalanobis distance ∆. For the case of complete data and a low value of ∆, a large sample size
is needed to get a value for the power greater than 0.5. Whereas, if a high proportion of observations is censored,
a much larger sample size is required to obtain a value for the power greater than 0.5 using the same value of ∆.
However, the increase in the power achieved if complete data used instead of censoring should be balanced against
the time and the cost of the experiment which are greatly reduced if random censoring is used instead of complete
sampling.
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Table 11. log-lik, AIC and BIC of for twofold Weibull mixture model and mixture of BS distributions with different number
of components assuming aircraft Windshield data.

Model log-lik AIC BIC
Weibull g=2 -295.1025 600.2049 615.3571

BS g=1 -205.2172 414.4343 420.4952
g=2 -170.5480 351.0960 366.2482
g=3 -292.7557 603.5115 630.7854
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