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Abstract In this paper, we consider semi-infinite mathematical programming problems with equilibrium constraints
(SIMPEC). By using the notion of convexificators, we establish sufficient optimality conditions for the SIMPEC. We
formulate Wolfe and Mond-Weir type dual models for the SIMPEC under generalized convexity assumptions. Moreover,
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convexificators.
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1. Introduction

A semi-infinite programming (SIP) is an optimization problem in finitely many variables on a feasible set described
by infinitely many constraints. There are many applications of SIP in various fields such as robotics, mathematical
physics, Chebyshev approximation, optimal control, robust optimization, transportation problems, fuzzy sets,
cooperative games, engineering design etc. (see [41, 15]). For basic theory, survey articles on SIP we refer to
[30, 35, 18] and for monograph [11].

The notion of convexificators can be seen as a generalization of subdifferentials. Jeyakumar and Luc
[17] has shown that the Clarke subdifferentials[6], Michel-Penot subdifferentials[32], Ioffe-Mordukhovich
subdifferentials[16] and Treiman subdifferentials[47] of a locally Lipschitz real-valued function are convexificators
and these known subdifferentials may contain the convex hull of a convexificator. Unlike some of the
subdifferentials which are compact and convex objects, convexificators are not necessarily compact or convex.
We refer to the recent results [26, 29, 27, 4].

Generalized convex functions have been introduced in order to weaken the convexity requirements as much as
possible to obtain results related to optimization theory [19, 24, 25]. One of the significant generalization of convex
function is invex function [12, 8]. The class of invex functions preserves many properties of the class of convex
functions and has shown to be very useful in a variety of applications [33]. It is well known that optimality and
duality [43, 28, 44] theory provide the foundation of algorithms for a solution of an optimization problem and hence
constitute an important portion in the study of mathematical programming. Mond-Weir [37] and Wolfe [48] dual
models have been studied for semi-infinite programming problems [36, 39], bi-level problems [46], mathematical
programs with vanishing constraints [34], and mathematical programming problem with equilibrium constraints
[40, 20, 21, 22, 23].
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Mathematical programs with equilibrium constraints is an extension of the class of bilevel programming
problems[45, 31, 7, 9], which is also known as mathematical programs with complementary constraints. MPEC
plays a vital role in many fields such as capacity enhancement in traffic, dynamic pricing in telecommunication
networks, engineering design, economic equilibrium [42, 5, 13, 14]. Many practical problems in these fields have
been modeled using the MPEC formulation. In practice, it is natural that an MPEC problem may arise where
infinitely many restrictions are present rather than finite many restrictions in finitely many variables. This gives us
a motivation to formulate semi-infinite mathematical program with equilibrium constraints (SIMPEC).

Motivated by the earlier work of T. Antczak over (p, r)- invex functions [1], B-(p,r)-invex and generalized invex
functions [2] and nonsmooth version of r-invex functions [3], we will introduce the definitions of p-invex function
and generalized p-invex functions under the framework of convexificators. We will establish sufficient optimality
condition for the SIMPEC involving p-invex function and generalized p-invex functions and we will also provide
supportive example corresponding to the sufficient optimality condition. We will also derive weak and strong
duality theorems relating to the SIMPEC and two dual models (Wolfe and Mond-Weir) under the framework of
convexificators using generalized invexity assumptions.

The organization of this paper is as follows: in Section 2, we give some preliminaries, definitions, and results.
In Section 3, we establish sufficient optimality condition for the SIMPEC, using convexificators. In Section 4, we
derive weak and strong duality theorems relating to the SIMPEC and two dual models using generalized invex
functions. In Section 5, we conclude the results of this paper.

2. Preliminaries

Throughout the paper, Rn denotes the n-dimensional Euclidean space. Let C be a nonempty subset of Rn. The
convex hull of C and the convex cone generated by C are denoted by co C and cone C, respectively.

The negative polar cone is defined by C− = {u ∈ Rn| ∀ x ∈ C, ⟨x, u⟩ ⩽ 0}.
Let C be a nonempty subset of Rn and x ∈ cl C (closure of C) then the contingent cone T (x,C) to C at x is defined
by

T (x,C) = {u ∈ Rn | ∃ tn ↓ 0, ∃ un → u such that x+ tnun ∈ C}.
We consider SIMPEC in the following form:

SIMPEC min F (x)

subject to : g(x, t) ⩽ 0 ∀ t ∈ T, h(x) = 0,

Φ(x) ⩾ 0, Ψ(x) ⩾ 0, ⟨Φ(x),Ψ(x)⟩ = 0,

where the index set T is an infinite compact subset of Rn, F : Rn → R, g : Rn × T → R, h : Rn → Rp, Φ :
Rn → Rl and Ψ : Rn → Rl are given functions.

Along the lines of [36] for a given feasible vector x̃ for the SIMPEC, we define the following index sets:

Tg := Tg(x̃) := {t ∈ T : g(x̃, t) = 0},
δ := δ(x̃) := {i ∈ {1, 2, . . . , l} : Φi(x̃) = 0,Ψi(x̃) > 0},
α := α(x̃) := {i ∈ {1, 2, . . . , l} : Φi(x̃) = 0,Ψi(x̃) = 0},
κ := κ(x̃) := {i ∈ {1, 2, . . . , l} : Φi(x̃) > 0,Ψi(x̃) = 0},

where the set α is known as degenerate set.

Definition 1
Let F : Rn → R ∪ {+∞} be an extended real-valued function, x ∈ Rn and let F (x) be finite. Then, the lower and
upper Dini directional derivatives of F at x in the direction v are defined, respectively, by

F−
d (x, v) := lim inf

t→0+

F (x+ tv)− F (x)

t
,
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and

F+
d (x, v) := lim sup

t→0+

F (x+ tv)− F (x)

t
.

Definition 2
(see [17]) A function F : Rn → R ∪ {+∞} is said to admit an upper convexificator, ∂∗F (x) at x ∈ Rn if
∂∗F (x) ⊆ Rn is a closed set and, for every v ∈ Rn,

F−
d (x, v) ⩽ sup

ξ∈∂∗F (x)

⟨ξ, v⟩ .

Definition 3
(see [17]) A function F : Rn → R ∪ {+∞} is said to admit a lower convexificator, ∂∗F (x) at x ∈ Rn if ∂∗F (x) ⊆
Rn is a closed set and, for every v ∈ Rn,

F+
d (x, v) ⩾ inf

ξ∈∂∗F (x)
⟨ξ, v⟩ .

The function F is said to have a convexificator ∂∗∗F (x) ⊆ Rn at x ∈ Rn, if ∂∗F (x) is both upper and lower
convexificator of F at x.

Definition 4
(see [10]) A function F : Rn → R ∪ {+∞} is said to admit an upper semi-regular convexificator, ∂∗F (x) at x ∈ Rn

if ∂∗F (x) ⊆ Rn is a closed set and, for every v ∈ Rn

F+
d (x, v) ⩽ sup

ξ∈∂∗F (x)

⟨ξ, v⟩ . (1)

If equality holds in (1), then ∂∗F (x) is called an upper regular convexificator of F at x.
Motivated by the definition of (p,r)- invex functions [1] and nonsmooth version of r-invex functions [3], we are

introducing the definitions of p-invex function and generalized p-invex functions in terms of convexificators.

Definition 5
Let η : Rn ×Rn → Rn be a kernel function and let F : Rn → R ∪ {+∞} be an extended real valued function,
which admit convexificator at x̃ ∈ Rn. Then F is said to be
(i) ∂∗∗ -p-invex at x̃ with respect to η if for every x ∈ Rn,

F (x) ⩾ F (x̃) +
1

p
⟨ξ, epη(x,x̃) − 1⟩,∀ ξ ∈ ∂∗∗F (x̃), p ̸= 0.

(ii) ∂∗∗ -p-pseudoinvex at x̃ with respect to η if for every x ∈ Rn,

∃ ξ ∈ ∂∗∗F (x̃),
1

p
⟨ξ, epη(x,x̃) − 1⟩ ⩾ 0 ⇒ F (x) ⩾ F (x̃), p ̸= 0.

(iii) ∂∗∗ -p-quasiinvex at x̃ with respect to η if for every x ∈ Rn,

F (x) ⩽ F (x̃) ⇒ 1

p
⟨ξ, epη(x,x̃) − 1⟩ ⩽ 0,∀ ξ ∈ ∂∗∗F (x̃), p ̸= 0.

Now we provide following examples in support of the definitions given above.

Example 2.1 Consider the function F : R → R is given by

F (x) =

{
1 + x; x ⩾ 0,

1 + | sinx|; x < 0,
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then the function becomes ∂∗∗ -p-invex at x̃ = 0 with respect to the kernel function, η(x, x̃) = cosx sin x̃ and
∂∗∗F (0) = {−1, 1}.
Example 2.2 Consider the function F : R → R is given by

F (x) =

{
2 + x; x ⩾ 0,

3− | cosx|; x < 0,

if we take point x̃ = 0, then the function becomes ∂∗∗ -p-pseudoinvex function at x̃ = 0 with respect to the kernel
function, η(x, x̃) = 1 + x sinx and ∂∗∗F (0) = {0, 1}.

Example 2.3 Consider the function F : R → R is given by

F (x) =

{
1− x

2 ; x ⩾ 0,

| cosx|; x < 0,

if we take point x̃ = 0 then the function becomes ∂∗∗ -p-quasiinvex function at x̃ = 0 with respect to the kernel
function, η(x, x̃) = cosx sin x̃, and ∂∗∗F (0) = {− 1

2 , 0}.

Remark 1
Based on the Definition 5, the definition of ∂∗∗ -p-invex function and generalized ∂∗∗ -p-invex functions can also be
given in terms of upper semi-regular convexificators.

Pandey and Mishra[38] presented the following notations for SIMPEC:

g =

m⋃
i=1

co∂∗g(z̃, ti), h =

p⋃
i=1

co∂∗hi(z̃) ∪ co∂∗(−hi)(z̃),

Φδ =
⋃
i∈δ

co∂∗Φi(z̃) ∪ co∂∗(−Φi)(z̃), Φα =
⋃
i∈α

co∂∗Φi(z̃),

Ψκ =
⋃
i∈κ

co∂∗Ψi(z̃) ∪ co∂∗(−Ψi)(z̃), Ψα =
⋃
i∈α

co∂∗Ψi(z̃),

(ΦΨ)α =
⋃
i∈α

co∂∗(−Φi)(z̃) ∪ co∂∗(−Ψi)(z̃),

Γ(z̃) := g− ∩ h− ∩ Φ−
δ ∩Ψ−

κ ∩ (ΦΨ)−α ,

where, t1, t2, . . . , tm ∈ Tg(z̃), m ⩽ n+ 1, and z̃ is a feasible point of the problem SIMPEC.

The following definitions are taken from Pandey and Mishra [38] for SIMPEC.

Definition 6
Let z̃ be a feasible point of SIMPEC, and assume that all functions have upper convexificators considered above at
z̃. We say that the generalized standard Abadie constraint qualification (GS Abadie CQ) holds at z̃ if at least one
of the dual sets used in the definition of Γ(z̃) is nonzero and

Γ(z̃) ⊂ T (C, z̃).

Definition 7
A feasible point z̃ of SIMPEC is called the generalized alternatively stationary point (GA-stationary) point if there
exist β = (βg, βh, βΦ, βΨ) ∈ Rk+p+2l, γ ∈ (γh, γΦ, γΨ) ∈ Rp+2l and t1, t2, . . . , tm ∈ Tg(z̃), m ⩽ n+ 1, such that
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the following conditions hold:

0 ∈ co∂∗F (z̃) +

m∑
i=1

βg
i co∂

∗g(z̃, ti) +

p∑
r=1

[
βh
r co∂

∗hr(z̃) + γhr co∂
∗(−hr)(z̃)

]
+

l∑
i=1

[
βΦ
i co∂

∗(−Φi)(z̃) + βΨ
i co∂

∗(−Ψi)(z̃)
]

+

l∑
i=1

[
γΦi co∂

∗(Φi)(z̃) + γΨi co∂
∗(Ψi)(z̃)

]
,

βg
i ⩾ 0, (i = 1, 2, . . . ,m), βh

r , γ
h
r ⩾ 0, (r = 1, 2, . . . , p), (2)

βΦ
i , β

Ψ
i , γ

Φ
i , γ

Ψ
i ⩾ 0, (i = 1, 2, . . . , l), (3)

βΦ
κ = βΨ

δ = γΦκ = γΨδ = 0, ∀ i ∈ α, γΦi = 0 or γΨi = 0. (4)

Definition 8
A feasible point z̃ of SIMPEC is called the generalized strong stationary (GS-stationary) point if there exist
β = (βg, βh, βΦ, βΨ) ∈ Rk+p+2l, γ ∈ (γh, γΦ, γΨ) ∈ Rp+2l and t1, t2, . . . , tm ∈ Tg(z̃), m ⩽ n+ 1, satisfying
conditions (2) and (3) together with the following condition:

βΦ
κ = βΨ

δ = γΦκ = γΨδ = 0, ∀ i ∈ α, γΦi = 0, γΨi = 0.

The following result shows that GS-stationarity is a necessary optimality condition for SIMPEC.

Theorem 1
[38] Let z̃ be a local optimal solution of SIMPEC. Suppose that F is locally Lipschitz function at z̃, which admits
a bounded upper semi-regular convexificator ∂∗F (z̃). Assume also that GS-ACQ holds at z̃ and that the cone

δ = cone co g + cone co h+ cone co Φδ + cone co Ψκ + cone co (ΦΨ)α,

is closed, then z̃ is a GS-stationary point.

Corollary 1
[38] Let z̃ be a local optimal solution of SIMPEC. Suppose that F is locally Lipschitz near z̃. Assume also that F
and effective constraint functions admit bounded upper semi-regular convexificators at z̃. If GS-ACQ holds at z̃,
then z̃ is a GS-stationary point.

Note: The following index sets will be used in Section 3 and 4, respectively:

αΦ
γ := {i ∈ α : γΨi = 0, γΦi > 0},
αΨ
γ := {i ∈ α : γΨi > 0, γΦi = 0},
δ+γ := {i ∈ δ : γΦi > 0},
κ+γ := {i ∈ κ : γΨi > 0}.

In the next section, we will obtain sufficient optimality condition under generalized invexity assumptions using
the notion of convexificators.

3. Sufficient Optimality condition

The following theorem shows that under generalized ∂∗-p-invexity assumptions, GA-stationarity turns into a global
sufficient optimality condition.
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Theorem 2
Let z̃ be a feasible GA-stationary point of SIMPEC and assume there is a real number p ̸= 0 such that F is ∂∗-p-
pseudoinvex at z̃ with respect to the kernel η and g(., t) (t ∈ Tg),±hr (r = 1, 2, . . . , p), −Φi (i ∈ δ ∪ α),−Ψi (i ∈
α ∪ κ) are ∂∗-p- quasiinvex at z̃ with respect to the common kernel η. If αΦ

γ ∪ αΨ
γ ∪ δ+γ ∪ κ+γ = ∅ then z̃ is a

global optimal solution of SIMPEC.

Proof
Let us consider that x be any arbitrary feasible point of SIMPEC. Then for any ti ∈ Tg(z̃).

g(x, ti) ⩽ g(z̃, ti),

by ∂∗-p-quasiinvexity of g(x, ti) at z̃, it follows that

1

p
⟨ξgi , e

pη(x,z̃) − 1⟩ ⩽ 0, ∀ ξgi ∈ ∂∗g(z̃, ti), ∀ ti ∈ Tg(z̃). (5)

Similarly, we have

1

p

〈
ζr, e

pη(x,z̃) − 1
〉
⩽ 0, ∀ ζr ∈ ∂∗hr(z̃), ∀ r = {1, 2, . . . , p}, (6)

1

p

〈
νr, e

pη(x,z̃) − 1
〉
⩽ 0, ∀ νr ∈ ∂∗(−hr)(z̃), ∀ r = {1, 2, . . . , p}, (7)

1

p

〈
ξΦi , e

pη(x,z̃) − 1
〉
⩽ 0, ∀ ξΦi ∈ ∂∗(−Φi)(z̃), ∀ i ∈ δ ∪ α, (8)

1

p

〈
ξΨi , e

pη(x,z̃) − 1
〉
⩽ 0, ∀ ξΨi ∈ ∂∗(−Ψi)(z̃), ∀ i ∈ α ∪ κ. (9)

If αΦ
γ ∪ αΨ

γ ∪ δ+γ ∪ κ+γ = ∅, multiplying (5)-(9) by βg
i ⩾ 0 (i = 1, 2, . . . ,m), βh

r > 0 (r = 1, 2, . . . , p), γhr >

0 (r = 1, 2, . . . , p), βΦ
i > 0 (i ∈ δ ∪ α), βΨ

i > 0 (i ∈ α ∪ κ), respectively and adding, we obtain

1

p

〈
m∑
i=1

βg
i ξ

g
i , e

pη(x,z̃) − 1

〉
⩽ 0,

1

p

〈
p∑

r=1

[
βh
r ζr + γhr νr

]
, epη(x,z̃) − 1

〉
⩽ 0,

1

p

〈∑
δ∪α

βΦ
i ξ

Φ
i , e

pη(x,z̃) − 1

〉
⩽ 0,

1

p

〈∑
α∪κ

βΨ
i ξ

Ψ
i , e

pη(x,z̃) − 1

〉
⩽ 0.

Therefore,

1

p

〈(
m∑
i=1

βg
i ξ

g
i +

p∑
r=1

[
βh
r ζr + γhr νr

]
+
∑
δ∪α

βΦ
i ξ

Φ
i +

∑
α∪κ

βΨ
i ξ

Ψ
i

)
, epη(x,z̃) − 1

〉
⩽ 0,

for all ξgi ∈ co∂∗g(z̃, ti), ζr ∈ co∂∗hr(z̃), νr ∈ co∂∗(−hr)(z̃), ξΦi ∈ co∂∗(−Φi)(z̃) and ξΨi ∈ co∂∗(−Ψi)(z̃). Thus
by GA-stationarity of z̃, we can choose ξ ∈ co∂∗F (z̃), such that,

1

p
⟨ξ, epη(x,z̃) − 1⟩ ⩾ 0.

By ∂∗-p-pseudoinvexity of F at z̃ with respect to the common kernel η and for the same real number p ̸= 0, we
have F (x) ⩾ F (z̃) for all feasible points x. Hence z̃ is a global optimal solution of SIMPEC. This completes the
proof.

The following example illustrates Theorem 2.
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Example 1
Consider the following SIMPEC problem

SIMPEC

min F (x) =

{
x2|cosπx |, x ̸= 0

0, x = 0

,
subject to :

g(x, t) =

{
−2x2 − t ⩽ 0, ∀ t ∈ [0, 1], x ∈ [−2, 2]

0, x /∈ [−2, 2]

θ(x) =

{
0, x = {−2, 2}
|x|, otherwise

ψ(x) =

{
0, x = {−2, 2}
x2, otherwise

⟨θ(x),Ψ(x)⟩ = 0.
Now, one can see that the feasible points of SIMPEC are {-2,0,2}. Here F is ∂∗-p-pseudoinvex at z̃ = 0 with

respect to the kernel, η(x, z̃) = cosx sin z̃ and for a nonzero real no p = 1. Further, g,−θ and −Ψ are ∂∗-p-
quasiinvex at z̃ = 0 with respect to the common kernel, η(x, z̃) = cosx sin z̃ and for the same nonzero real no p = 1.
We have co∂∗F (0) = [−π, π], co∂∗g(0, t1) = {0}, t1 = 0, co∂∗(−θ)(0) = {−1, 1} and co∂∗(−Ψ)(0) = {0}.One
can easily verify that, there exist βg = 1, βθ = 1 and βΨ = 1 such that the feasible point z̃ = 0 is a GA- stationary
point and z̃ = 0 is a global optimal solution for the given primal problem SIMPEC. Hence the assumptions of the
Theorem 2, are satisfied.

4. Duality

In this section, we formulate and study a Wolfe type dual problem for SIMPEC using ∂∗-p-invexity. We also
formulate Mond-Weir type dual problem and study SIMPEC using ∂∗-p-invexity and generalized ∂∗-p-invexity
assumptions.

The Wolfe type dual for the problem SIMPEC is formulated as follows:

WD(x̃) max
z,β,γ

{
F (z) +

m∑
i=1

βg
i g(z, ti) +

p∑
r=1

ρhrhr(z)−
l∑

i=1

[
βΦ
i Φi(z) + βΨ

i Ψi(z)
]}

subject to :

0 ∈ co∂∗F (z) +

m∑
i=1

βg
i co∂

∗g(z, ti) +

p∑
r=1

[
βh
r co∂

∗hr(z) + γhr co∂
∗(−hr)(z)

]
+

l∑
i=1

[
βΦ
i co∂

∗(−Φi)(z) + βΨ
i co∂

∗(−Ψi)(z)
]
,

βg
i ⩾ 0, (i = 1, 2, . . . ,m), βh

r , γ
h
r ⩾ 0, (r = 1, 2, . . . , p),

βΦ
i , β

Ψ
i , γ

Φ
i , γ

Ψ
i ⩾ 0, (i = 1, 2, . . . , l),

βΦ
κ = βΨ

δ = γΦκ = γΨδ = 0, ∀ i ∈ α, γΦi = 0, γΨi = 0, (10)
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where, ρhr = βh
r − γhr , β = (βg, βh, βΦ, βΨ) ∈ Rk+p+2l, γ = (γh, γΦ, γΨ) ∈ Rp+2l and t1, t2, . . . , tm ∈ Tg, m ⩽

n+ 1.

Theorem 3
(Weak Duality) Let x̃ be feasible for SIMPEC, (z, β) be feasible for the dual WD and the index sets
Tg, δ, α, κ are defined accordingly. Suppose there is a real number p ̸= 0 such that F, g(., t) (t ∈ T ), ±hr (r =
1, 2, . . . , p), −Φi (i ∈ δ ∪ α), −Ψi (i ∈ α ∪ κ) admit bounded upper semi-regular convexificators and are ∂∗-p-
invex functions at z, with respect to the common kernel η. If αΦ

γ ∪ αΨ
γ ∪ δ+γ ∪ κ+γ = ∅, then for any x feasible for

the SIMPEC, we have

F (x) ⩾ F (z) +

m∑
i=1

βg
i g(z, ti) +

p∑
r=1

ρhrhr(z)−
l∑

i=1

[
βΦ
i Φi(z) + βΨ

i Ψi(z)
]
.

Proof
Suppose that x be any arbitrary feasible point for the SIMPEC. It follows that

g(x, t) ⩽ 0, ∀ t ∈ T and hr(x) = 0, r = 1, 2, . . . , p.

Since F is ∂∗-p-invex at z, with respect to the kernel η, we have

F (x)− F (z) ⩾
1

p
⟨ξ, epη(x,z) − 1⟩, ∀ ξ ∈ ∂∗F (z). (11)

Similarly,

g(x, ti)− g(z, ti) ⩾
1

p

〈
ξgi , e

pη(x,z) − 1
〉
, ∀ ξgi ∈ ∂∗g(z, ti), ∀ ti ∈ Tg(x̃), (12)

hr(x)− hr(z) ⩾
1

p

〈
ζr, e

pη(x,z) − 1
〉
, ∀ ζr ∈ ∂∗hr(z), ∀ r = {1, 2, . . . , p}, (13)

−hr(x) + hr(z) ⩾
1

p

〈
νr, e

pη(x,z) − 1
〉
, ∀ νr ∈ ∂∗(−hr)(z), ∀ r = {1, 2, . . . , p}, (14)

−Φi(x) + Φi(z) ⩾
1

p

〈
ξΦi , e

pη(x,z) − 1
〉
, ∀ ξΦi ∈ ∂∗(−Φi)(z), ∀ i ∈ δ ∪ α, (15)

−Ψi(x) + Ψi(z) ⩾
1

p

〈
ξΨi , e

pη(x,z) − 1
〉
, ∀ ξΨi ∈ ∂∗(−Ψi)(z), ∀ i ∈ α ∪ κ. (16)

If αΦ
γ ∪ αΨ

γ ∪ δ+γ ∪ κ+γ = ∅, then multiplying (12)-(16) by βg
i ⩾ 0 (i = 1, 2, . . . ,m), βh

r > 0 (r =

1, 2, . . . , p), γhr > 0 (r = 1, 2, . . . , p), βΦ
i > 0 (i ∈ δ ∪ α), βΨ

i > 0 (i ∈ α ∪ κ), respectively and adding (11)- (16),
it follows that

F (x)− F (z) +

m∑
i=1

βg
i g(x, ti)−

m∑
i=1

βg
i g(z, ti) +

p∑
r=1

βh
r hr(x)−

p∑
r=1

βh
r hr(z)−

p∑
r=1

γhr hr(x)

+

p∑
r=1

γhr hr(z)−
l∑

i=1

βΦ
i Φi(x) +

l∑
i=1

βΦ
i Φi(z)−

l∑
i=1

βΨ
i Ψi(x) +

l∑
i=1

βΨ
i Ψi(z)

⩾
1

p

〈
ξ +

m∑
i=1

βg
i ξ

g
i +

p∑
r=1

[
βh
r ζr + γhr νr

]
+

l∑
i=1

[
βΦ
i ξ

Φ
i + βΨ

i ξ
Ψ
i

]
, epη(x,z) − 1

〉
.
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From (10), ∃ ξ̃ ∈ co∂∗F (z), ξ̃gi ∈ co∂∗g(z, ti) (ti ∈ Tg), ζ̃r ∈ co∂∗hr(z), ν̃r ∈ co∂∗(−hr)(z), ξ̃Φi ∈
co∂∗(−Φi)(z) and ξ̃Ψi ∈ co∂∗(−Ψi)(z), such that

ξ̃ +

m∑
i=1

βg
i ξ̃

g
i +

p∑
r=1

[
βh
r ζ̃r + γhr ν̃r

]
+

l∑
i=1

[
βΦ
i ξ̃

Φ
i + βΨ

i ξ̃
Ψ
i

]
= 0.

Therefore,

F (x)− F (z) +

m∑
i=1

βg
i g(x, ti)−

m∑
i=1

βg
i g(z, ti) +

p∑
r=1

βh
r hr(x)−

p∑
r=1

βh
r hr(z)−

p∑
r=1

γhr hr(x)

+

p∑
r=1

γhr hr(z)−
l∑

i=1

βΦ
i Φi(x) +

l∑
i=1

βΦ
i Φi(z)−

l∑
i=1

βΨ
i Ψi(x) +

l∑
i=1

βΨ
i Ψi(z) ⩾ 0.

Using the feasibility of x for SIMPEC, i.e., g(x, ti) ⩽ 0, hr(x) = 0, Φi(x) ⩾ 0, Ψi(x) ⩾ 0, it follows that

F (x)− F (z)−
m∑
i=1

βg
i g(z, ti)−

p∑
r=1

βh
r hr(z) +

p∑
r=1

γhr hr(z) +

l∑
i=1

βΦ
i Φi(z) +

l∑
i=1

βΨ
i Ψi(z) ⩾ 0.

Hence,

F (x) ⩾ F (z) +

m∑
i=1

βg
i g(z, ti) +

p∑
r=1

ρhrhr(z)−
l∑

i=1

[
βΦ
i Φi(z) + βΨ

i Ψi(z)
]
,

where, ρhr = βh
r − γhr . This completes the proof.

Theorem 4
(Strong Duality) Let x̃ be a local optimal solution of SIMPEC and let F be locally Lipschitz near x̃. Suppose
that F, g(., t) (t ∈ T ), ±hr(r = 1, 2, . . . , p),−Φi(i ∈ δ ∪ α),−Ψi(i ∈ α ∪ κ) admit bounded upper semi-regular
convexificators and are ∂∗-p-invex functions at x̃ with respect to the common kernel η and for the same real
number p ̸= 0. If GS-ACQ holds at x̃, then there exists β̃ = (β̃g, β̃h, β̃Φ, β̃Ψ) ∈ Rk+p+2l, such that (x̃, β̃) is an
optimal solution of the dual WD and the respective objective values are equal.

Proof
Since, x̃ is a local optimal solution of SIMPEC and GS-ACQ is satisfied at x̃, now, using Corollary 1,
∃ β̃ = (β̃g, β̃h, β̃Φ, β̃Ψ) ∈ Rk+p+2l, γ̃ ∈ (γ̃h, γ̃Φ, γ̃Ψ) ∈ Rp+2l, and indices t1, t2, . . . , tm ∈ Tg(x̃), m ⩽ n+ 1,

such that GS-stationarity conditions for SIMPEC are satisfied, that is, ∃ ξ̃ ∈ co∂∗F (x̃), ξ̃gi ∈ co∂∗g(x̃, ti), ζ̃r ∈
co∂∗hr(x̃), ν̃r ∈ co∂∗(−hr)(x̃), ξ̃Φi ∈ co∂∗(−Φi)(x̃) and ξ̃Ψi ∈ co∂∗(−Ψi)(x̃), such that

ξ̃ +

m∑
i=1

β̃g
i ξ̃

g
i +

p∑
r=1

[
β̃h
r ζ̃r + γ̃hr ν̃r

]
+

l∑
i=1

[
β̃Φ
i ξ̃

Φ
i + β̃Ψ

i ξ̃
Ψ
i

]
= 0,

β̃g
i ⩾ 0, (i = 1, 2, . . . ,m), β̃h

r , γ̃
h
r ⩾ 0, (r = 1, 2, . . . , p),

β̃Φ
i , β̃

Ψ
i , γ̃

Φ
i , γ̃

Ψ
i ⩾ 0, (i = 1, 2, . . . , l),

β̃Φ
κ = β̃Ψ

δ = γ̃Φκ = γ̃Ψδ = 0, ∀ i ∈ α, γ̃Φi = 0, γ̃Ψi = 0.

Therefore (x̃, β̃) is feasible for the dual WD. Now, using Theorem 3, we obtain

F (x̃) ⩾ F (z) +

m∑
i=1

βg
i g(z, ti) +

p∑
r=1

ρhrhr(z)−
l∑

i=1

[
βΦ
i Φi(z) + βΨ

i Ψi(z)
]
, (17)

Stat., Optim. Inf. Comput. Vol. 11, June 2023



B.C. JOSHI 649

where, ρhr = βh
r − γhr , for any feasible solution (z, β) for the dual WD. Using the feasibility condition of

SIMPEC and dual WD, that is, for ti ∈ Tg(x̃), g(x̃, ti) = 0, hr(x̃) = 0, (r = 1, 2, . . . , p), Φi(x̃) = 0,∀i ∈ δ ∪
α, and Ψi(x̃) = 0,∀i ∈ α ∪ κ, then, we have

F (x̃) = F (x̃) +

m∑
i=1

β̃g
i g(x̃, ti) +

p∑
r=1

ρ̃hrhr(x̃)−
l∑

i=1

[
β̃Φ
i Φi(x̃) + β̃Ψ

i Ψi(x̃)
]
, (18)

where, ρ̃hr = β̃h
r − γ̃hr . Using (17) and (18), it follows that

F (x̃) +

m∑
i=1

β̃g
i g(x̃, ti) +

p∑
r=1

ρ̃hrhr(x̃)−
l∑

i=1

[
β̃Φ
i Φi(x̃) + β̃Ψ

i Ψi(x̃)
]

⩾ F (z) +

m∑
i=1

βg
i g(z, ti) +

p∑
r=1

ρhrhr(z)−
l∑

i=1

[
βΦ
i Φi(z) + βΨ

i Ψi(z)
]
.

Hence, (x̃, β̃) is an optimal solution for the dual WD and the respective objective values are equal. This completes
the proof.

Now, we formulate the Mond-Weir type dual problem (MWD) for SIMPEC and establish duality theorems using
convexificators.

MWD(x̃) max
z,β,γ

F (z)

subject to:

0 ∈ co∂∗F (z) +

m∑
i=1

βg
i co∂

∗g(z, ti) +

p∑
r=1

[
βh
r co∂

∗hr(z) + γhr co∂
∗(−hr)(z)

]
+

l∑
i=1

[
βΦ
i co∂

∗(−Φi)(z) + βΨ
i co∂

∗(−Ψi)(z)
]
,

g(z, ti) ⩾ 0 (ti ∈ Tg(x̃)), hr(z) = 0 (r = 1, 2, . . . , p),

Φi(z) ⩽ 0 (i ∈ δ ∪ α), Ψi(z) ⩽ 0 (i ∈ α ∪ κ),
βg
i ⩾ 0 (i = 1, 2, . . . ,m), βh

r , γ
h
r ⩾ 0 (r = 1, 2, . . . , p),

βΦ
i , β

Ψ
i , γ

Φ
i , γ

Ψ
i ⩾ 0 (i = 1, 2, . . . , l),

βΦ
κ = βΨ

δ = γΦκ = γΨδ = 0 ∀ i ∈ α, γΦi = 0, γΨi = 0, (19)

where, β = (βg, βh, βΦ, βΨ) ∈ Rk+p+2l, γ = (γh, γΦ, γΨ) ∈ Rp+2l and t1, t2, . . . , tm ∈ Tg(x̃), m ⩽ n+ 1.

Theorem 5
(Weak Duality) Let x̃ be feasible for SIMPEC, (z, β) be feasible for the dual MWD and the index sets Tg, δ, α, κ be
defined accordingly. Suppose that F, g(., t) (t ∈ T ),±hr(r = 1, 2, . . . , p),−Φi(i ∈ δ ∪ α),−Ψi(i ∈ α ∪ κ) admit
bounded upper semi-regular convexificators and are ∂∗-p-invex functions at z, with respect to the common kernel
η and for the same real number p ̸= 0. If αΦ

γ ∪ αΨ
γ ∪ δ+γ ∪ κ+γ = ∅, then for any x feasible for SIMPEC, we have

F (x) ⩾ F (z).

Proof
Since F is ∂∗-p-invex at z, with respect to the kernel η, then, we have

F (x)− F (z) ⩾
1

p

〈
ξ, epη(x,z) − 1

〉
, ∀ ξ ∈ ∂∗F (z). (20)
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Similarly, we have

g(x, ti)− g(z, ti) ⩾
1

p

〈
ξgi , e

pη(x,z) − 1
〉
, ∀ ξgi ∈ ∂∗g(z, ti), ∀ ti ∈ Tg, (21)

hr(x)− hr(z) ⩾
1

p

〈
ζr, e

pη(x,z) − 1
〉
, ∀ ζr ∈ ∂∗hr(z), ∀ r = {1, 2, . . . , p}, (22)

−hr(x) + hr(z) ⩾
1

p

〈
νr, e

pη(x,z) − 1
〉
, ∀ νr ∈ ∂∗(−hr)(z), ∀ r = {1, 2, . . . , p}, (23)

−Φi(x) + Φi(z) ⩾
1

p

〈
ξΦi , e

pη(x,z) − 1
〉
, ∀ ξΦi ∈ ∂∗(−Φi)(z), ∀ i ∈ δ ∪ α, (24)

−Ψi(x) + Ψi(z) ⩾
1

p

〈
ξΨi , e

pη(x,z) − 1
〉
, ∀ ξΨi ∈ ∂∗(−Ψi)(z), ∀ i ∈ α ∪ κ. (25)

If αΦ
γ ∪ αΨ

γ ∪ δ+γ ∪ κ+γ = ∅, multiplying (21)-(25) by βg
i ⩾ 0 (i = 1, 2, . . . ,m), βh

r > 0 (r = 1, 2, . . . , p), γhr >

0 (r = 1, 2, . . . , p), βΦ
i > 0 (i ∈ δ ∪ α), βΨ

i > 0 (i ∈ α ∪ κ), respectively and adding (20)-(25), we obtain

F (x)− F (z) +

m∑
i=1

βg
i g(x, ti)−

m∑
i=1

βg
i g(z, ti) +

p∑
r=1

βh
r hr(x)−

p∑
r=1

βh
r hr(z)−

p∑
r=1

γhr hr(x)

+

p∑
r=1

γhr hr(z)−
l∑

i=1

βΦ
i Φi(x) +

l∑
i=1

βΦ
i Φi(z)−

l∑
i=1

βΨ
i Ψi(x) +

l∑
i=1

βΨ
i Ψi(z)

⩾
1

p

〈
ξ +

m∑
i=1

βg
i ξ

g
i +

p∑
r=1

[
βh
r ζr + γhr νr

]
+

l∑
i=1

[
βΦ
i ξ

Φ
i + βΨ

i ξ
Ψ
i

]
, epη(x,z) − 1

〉
.

From (19), ∃ ξ̃ ∈ co∂∗F (z), ξ̃gi ∈ co∂∗g(z, ti), ζ̃r ∈ co∂∗hr(z), ν̃r ∈ co∂∗(−hr)(z), ξ̃Φi ∈
co∂∗(−Φi)(z) and ξ̃Ψi ∈ co∂∗(−Ψi)(z), such that

ξ̃ +

m∑
i=1

βg
i ξ̃

g
i +

p∑
r=1

[
βh
r ζ̃r + γhr ν̃r

]
+

l∑
i=1

[
βΦ
i ξ̃

Φ
i + βΨ

i ξ̃
Ψ
i

]
= 0.

Therefore,

F (x)− F (z) +

m∑
i=1

βg
i g(x, ti)−

m∑
i=1

βg
i g(z, ti) +

p∑
r=1

βh
r hr(x)−

p∑
r=1

βh
r hr(z)−

p∑
r=1

γhr hr(x)

+

p∑
r=1

γhr hr(z)−
l∑

i=1

βΦ
i Φi(x) +

l∑
i=1

βΦ
i Φi(z)−

l∑
i=1

βΨ
i Ψi(x) +

l∑
i=1

βΨ
i Ψi(z) ⩾ 0.

Using the feasibility of x and z for SIMPEC and MWD, respectively, we obtain

F (x) ⩾ F (z).

This completes the proof.

Theorem 6
(Strong Duality): Let x̃ be a local optimal solution of SIMPEC and let F be locally Lipschitz near x̃. Suppose
there is a real number p ̸= 0 such that F, g(., t) (t ∈ T ), ±hr (r = 1, 2, . . . , p), −Φi (i ∈ δ ∪ α), −Ψi (i ∈ α ∪ κ)
admit bounded upper semi-regular convexificators and are ∂∗-p-invex functions at x̃ with respect to the common
kernel η. If GS-ACQ holds at x̃, then there exists β̃, such that (x̃, β̃) is an optimal solution of the dual MWD and
the respective objective values are equal.
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Proof
Since, x̃ is a local optimal solution of SIMPEC and the GS-ACQ is satisfied at x̃, now using Corollary
1, ∃ β̃ = (β̃g, β̃h, β̃Φ, β̃Ψ) ∈ Rk+p+2l, γ̃ ∈ (γ̃h, γ̃Φ, γ̃Ψ) ∈ Rp+2l, and indices t1, t2, . . . , tm ∈ Tg(x̃), m ⩽ n+ 1,

such that the GS-stationarity conditions for SIMPEC are satisfied, that is, ∃ ξ̃ ∈ co∂∗F (x̃), ξ̃gi ∈ co∂∗g(x̃, ti), ζ̃r ∈
co∂∗hr(x̃), ν̃r ∈ co∂∗(−hr)(x̃), ξ̃Φi ∈ co∂∗(−Φi)(x̃) and ξ̃Ψi ∈ co∂∗(−Ψi)(x̃), such that

ξ̃ +

m∑
i=1

β̃g
i ξ̃

g
i +

p∑
r=1

[
β̃h
r ζ̃r + γ̃hr ν̃r

]
+

l∑
i=1

[
β̃Φ
i ξ̃

Φ
i + β̃Ψ

i ξ̃
Ψ
i

]
= 0,

β̃g
i ⩾ 0, (i = 1, 2, . . . ,m), β̃h

r , γ̃
h
r ⩾ 0, (r = 1, 2, . . . , p),

β̃Φ
i , β̃

Ψ
i , γ̃

Φ
i , γ̃

Ψ
i ⩾ 0, (i = 1, 2, . . . , l),

β̃Φ
κ = β̃Ψ

δ = γ̃Φκ = γ̃Ψδ = 0,∀ i ∈ α, γ̃Φi = 0, γ̃Ψi = 0.

Since x̃ is an optimal solution for SIMPEC, we have

m∑
i=1

β̃g
i g(x̃, ti) = 0,

p∑
i=1

β̃h
i hi(x̃) = 0,

l∑
i=1

β̃Φ
i Φi(x̃) = 0,

l∑
i=1

β̃Ψ
i Ψi(x̃) = 0.

Therefore (x̃, β̃) is feasible for MWD. By Theorem 4.3, for any feasible (z, β), we have

F (x̃) ⩾ F (z).

It follows that (x̃, β̃) is an optimal solution for MWD and the respective objective values are equal. This completes
the proof.

Now, we establish weak and strong duality theorems for SIMPEC and its Mond-Weir type dual problem (MWD)
under generalized ∂∗-p-invexity assumptions.

Theorem 7
(Weak Duality) Let x̃ be feasible for SIMPEC, (z, β) be feasible for the dual MWD and the index sets Tg, δ, α, κ
are defined accordingly. Suppose that F is ∂∗-p-pseudoinvex at z, with respect to the kernel η and g(., t) (t ∈
T ), ±hr (r = 1, 2, . . . , p), −Φi (i ∈ δ ∪ α), −Ψi (i ∈ α ∪ κ) admit bounded upper semi-regular convexificators
and are ∂∗-p-quasiinvex functions at z, with respect to the common kernel η and for the same real number p ̸= 0.
If αΦ

γ ∪ αΨ
γ ∪ δ+γ ∪ κ+γ = ∅, then for any x feasible for the problem SIMPEC, we have

F (x) ⩾ F (z).

Proof
Suppose that for some feasible point x, such that F (x) < F (z), then by ∂∗-p-pseudoinvexity of F at z, with respect
to the kernel η, we have

1

p
⟨ξ, epη(x,z) − 1⟩ < 0,∀ ξ ∈ ∂∗F (z). (26)

From (19), ∃ ξ̃ ∈ co∂∗F (z), ξ̃gi ∈ co∂∗g(z, ti), ζ̃r ∈ co∂∗hr(z), ν̃r ∈ co∂∗(−hr)(z), ξ̃Φi ∈
co∂∗(−Φi)(z) and ξ̃Ψi ∈ co∂∗(−Ψi)(z), such that

−
m∑
i=1

βg
i ξ̃

g
i −

p∑
r=1

[
βh
r ζ̃r + γhr ν̃r

]
−
∑
δ∪α

βΦ
i ξ̃

Φ
i −

∑
α∪κ

βΨ
i ξ̃

Ψ
i ∈ ∂∗F (z). (27)

By (26), we have

1

p

〈(
m∑
i=1

βg
i ξ̃

g
i +

p∑
r=1

[
βh
r ζ̃r + γhr ν̃r

]
+
∑
δ∪α

βΦ
i ξ̃

Φ
i +

∑
α∪κ

βΨ
i ξ̃

Ψ
i

)
, epη(x,z) − 1

〉
> 0. (28)
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For each ti ∈ Tg, g(x, ti) ⩽ 0 ⩽ g(z, ti). Hence, by ∂∗-p-quasiinvexity, it follows that

1

p

〈
ξgi , e

pη(x,z) − 1
〉
⩽ 0,∀ ξgi ∈ ∂∗g(z, ti), ∀ ti ∈ Tg. (29)

Similarly, we have
1

p

〈
ζr, e

pη(x,z) − 1
〉
⩽ 0, ∀ ζr ∈ ∂∗hr(z), ∀ r = {1, 2, . . . , p}. (30)

For any feasible point z of the dual MWD, and for every r,−hr(z) = hr(x) = 0. On the other hand, −Φi(x) ⩽
−Φi(z),∀i ∈ δ ∪ α, and −Ψi(x) ⩽ −Ψi(z),∀i ∈ α ∪ κ. By ∂∗-p- quasiinvexity, we have

1

p

〈
νr, e

pη(x,z) − 1
〉
⩽ 0, ∀ νr ∈ ∂∗(−hr)(z), ∀ r = {1, 2, . . . , p}, (31)

1

p

〈
ξΦi , e

pη(x,z) − 1
〉
⩽ 0,∀ ξΦi ∈ ∂∗(−Φi)(z),∀ i ∈ δ ∪ α, (32)

1

p

〈
ξΨi , e

pη(x,z) − 1
〉
⩽ 0,∀ ξΨi ∈ ∂∗(−Ψi)(z),∀ i ∈ α ∪ κ. (33)

From Eqs, (29)-(33), we have

1

p

〈
ξ̃gi , e

pη(x,z) − 1
〉
⩽ 0, (i = 1, 2, . . . ,m),

1

p

〈
ζ̃r, e

pη(x,z) − 1
〉
⩽ 0,

1

p

〈
ν̃r, e

pη(x,z) − 1
〉
⩽ 0, (r = 1, 2, . . . , p),

1

p

〈
ξ̃Φi , e

pη(x,z) − 1
〉
⩽ 0,∀ i ∈ δ ∪ α, 1

p

〈
ξ̃Ψi , e

pη(x,z) − 1
〉
⩽ 0,∀ i ∈ α ∪ κ.

Since αΦ
γ ∪ αΨ

γ ∪ δ+γ ∪ κ+γ = ∅, we have

1

p

〈
m∑
i=1

βg
i ξ̃

g
i , e

pη(x,z) − 1

〉
⩽ 0,

1

p

〈
p∑

r=1

[
βh
r ζ̃r + γhr ν̃r

]
, epη(x,z) − 1

〉
⩽ 0,

1

p

〈∑
δ∪α

βΦ
i ξ̃

Φ
i , e

pη(x,z) − 1

〉
⩽ 0,

1

p

〈∑
α∪κ

βΨ
i ξ̃

Ψ
i , e

pη(x,z) − 1

〉
⩽ 0.

Therefore,

1

p

〈(
m∑
i=1

βg
i ξ̃

g
i +

p∑
r=1

[
βh
r ζ̃r + γhr ν̃r

]
+
∑
δ∪α

βΦ
i ξ̃

Φ
i +

∑
α∪κ

βΨ
i ξ̃

Ψ
i

)
, epη(x,z) − 1

〉
⩽ 0.

which contradicts (28). Hence F (x) ⩾ F (z). This completes the proof.

Theorem 8
(Strong Duality) Let x̃ be a local optimal solution of SIMPEC and let F be locally Lipschitz near x̃. Suppose that
F is ∂∗-p-pseudoinvex at x̃, with respect to the kernel η, further g(., t) (t ∈ T ), ±hr (r = 1, 2, . . . , p), −Φi (i ∈
δ ∪ α), −Ψi (i ∈ α ∪ κ) admit bounded upper semi-regular convexificators and are ∂∗-p-quasiinvex functions at
x̃ with respect to the common kernel η. If GS-ACQ holds at x̃, then there exists β̃, such that (x̃, β̃) is an optimal
solution of the dual MWD and the respective objective values are equal.
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Proof
The proof follows on the lines of the proof of Theorem 4.4 by using Theorem 4.5.

5. Conclusion

We have studied SIMPEC and established sufficient optimality condition under generalized invexity assumptions.
We have introduced Wolfe and Mond –Weir type dual models for the SIMPEC in the framework of convexificators.
We have established weak and strong duality theorems relating to the SIMPEC and two dual models using ∂∗-p-
invexity, ∂∗-p-pseudoinvexity and ∂∗-p-quasiinvexity assumptions.
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