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Abstract In this paper, a generalized modification of the Kumaraswamy distribution is proposed, and
its distributional and characterizing properties are studied. This distribution is closed under scaling and
exponentiation, and has some well-known distributions as special cases, such as the generalized uniform,
triangular, beta, power function, Minimax, and some other Kumaraswamy related distributions. Moment
generating function, Lorenz and Bonferroni curves, with its moments consisting of the mean, variance, moments
about the origin, harmonic, incomplete, probability weighted, L, and trimmed L moments, are derived. The
maximum likelihood estimation method is used for estimating its parameters and applied to six different
simulated data sets of this distribution, in order to check the performance of the estimation method through
the estimated parameters mean squares errors computed from the different simulated sample sizes. Finally, four
real-life data sets are used to illustrate the usefulness and the flexibility of this distribution in application to
real-life data.
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1. Introduction

There are a lot of popular statistical distributions that used for modeling and analyzing real data, and so
did their generalization by mixing these distributions with each other. In particular, the generalization
of some well-known statistical distributions provides flexible and effective modeling in the case when
the standard distribution cannot statistically fit the data. Even these generalization distributions may
have some limitations in modeling and analyzing some real data, especially, non-standard and abnormal
data. New modifications need to be considered and studied in order to use the modeling and analysis
such as non-standard data real-life data.
The Kumaraswamy distribution was first introduced in 1980, by Kumaraswamy [49] as a probability
density function for double-bounded random processes, then later so many researchers continued
further studied about the distribution. Garg [27], Nadarajah [59], Jones [45], Mitnik [56], Gholizadeh
et al [29], and Mitnik [57], developed further theoretical research on the distribution. In particular,
Gholizadeh et al [29] considered classical and Bayesian point and interval estimators for the shape
parameter of the Kumaraswamy distribution using Monte-Carlo simulation. Hussian [36] used the
maximum likelihood estimation and Bayesian estimation methods to estimate the parameters of the
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Kumaraswamy distribution using both simple random sampling and ranked set sampling techniques,
and used a simulation study to compare the resultant estimators in terms of their biases and mean
square errors.
Tables 1a and 1b show lists of distributions that are modified and/or generalized version of the
Kumaraswamy distribution. All researchers showed in Tables 1a and 1b studied some of its structural,
mathematical, statistical properties of their distribution, as well as some proposed parameters estimates
methods. In particular, de Pascoa et al [21] introduced the Kumaraswamy generalized gamma
distribution, as a capable distribution of modeling bathtub-shaped hazard rate functions, study some
of its properties, adopted the method of maximum likelihood and a Bayesian procedure to estimate its
parameters, and illustrated its usefulness on two real data.
Cordeiro and de Castro [14] introduced the Kumaraswamy generalized distribution, as a distribution
that has flexible different shapes for the hazard function to be used in modeling survival data.
Lemonte et al [50] proposed the exponentiated Kumaraswamy distribution as a generalization of
the Kumaraswamy distribution and studied some of its properties, then showed that it can be used
effectively in analyzing lifetime data. Bourguignon et al [10] introduced the Kumaraswamy Pareto
distribution, studied some of its structural properties, estimating its parameters using the method of
maximum likelihood, and used a real data set to compare this distribution with other well-known
distributions. Çkmakyapan and Kadılar [11] studied some mathematical properties of Kumaraswamy
Lindley distribution, and parameter estimation using the method of maximum likelihood and
concluded that this distribution is a useful tool to analyze customer lifetime duration in marketing
research. Sharma and Chakrabarty [74] introduced the size-biased form of Kumaraswamy distribution
and studied some of its distributional and characterizing properties, and used the maximum likelihood
and the matching quantiles methods to estimate its parameters in order to fit four simulated data sets, as
well as, a given real life data set, representing themeasurements of tensile strength of 30 polyester fibers.

Table 1a: List of Modified and/or Generalized Version of the Kumaraswamy Distribution

Year Name Reference

1997 The Marshall-Olkin Kumaraswamy distribution Marshall et al [53]

2011
The Kumaraswamy generalized distribution Cordeiro and de Castro [14]

The Kumaraswamy generalized gamma distribution De Pascoa et al [21]

2012

The Kumaraswamy normal distribution Correa et al [19]

The Kumaraswamy log-logistic distribution De Santana et al [22]

The Kumaraswamy Gumbel distribution Cordeiro et al [15]

The Kumaraswamy modified Weibull distribution Cordeiro et al [16]

The Kumaraswamy half -normal generalized distribution Cordeiro et al [17]

The Kumaraswamy inverse Weibull distribution Shahbaz et al [71]

2013

The exponentiated Kumaraswamy distribution Lemonte et al [50]

The Kumaraswamy Pareto distribution Bourguignon et al [10]

The Kumaraswamy generalized Pareto distribution Nadarajah and Eljabri [60]

The Kumaraswamy-generalized exponentiated Pareto distribution Shams [72]

The Kumaraswamy-generalized Lomax distribution Shams [73]

Kumaraswamy-power series distribution. Bidram and Nekoukhou [8]

The Kumaraswamy GP Distribution Nadarajah and Eljabri [59]

The Kumaraswamy Burr XII distribution Paranałba et al [65]

Kumaraswamy linear exponential distribution Elbatal [23]
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2014

The Kumaraswamy-geometric distribution Akinsete et al [4]

The Kumaraswamy Kumaraswamy distribution El-Sherpieny et al [25]

The Kumaraswamy-inverse exponential distribution Oguntunde et al [64]

The Kumaraswamy Lindley distribution Çakmakyapan and Kadılar [11]

The Kumaraswamy-half-Cauchy distribution Ghosh [30]

The Kumaraswamy inverse Rayleigh distribution Hussian and Amin [37]

The Kumaraswamy generalized Rayleigh distribution Gomes et al [32]

The Exponentiated Kumaraswamy–Dagum distribution Huang and Oluyede [35]

2015

The exp-Kumaraswamy distributions Javanshiri et al [42]

The Kumaraswamy Kumaraswamy distribution Mahmoud et al [52]

The Kumaraswamy-G Poisson distribution Ramos et al [66]

The exponentiated Kumaraswamy-exponential distribution Rodrigues et al [68]

Table 1b: List of Modified and/or Generalized Version of the Kumaraswamy Distribution

Year Name Reference

2016

The Kumaraswamy generalized power Weibull distribution Selim et al [70]

The Kumaraswamy exponential-Weibull distribution Cordeiro et al [18]

The Kumaraswamy- Laplace Distribution Nassar [62]

The size-biased Kumaraswamy distribution Sharma and Chakrabarty [74]

The transmuted Kumaraswamy distribution King et al [48]

The Kumaraswamy Gompertz Makeham Distribution Chukwu and Ogunde [13]

2017

The generalized inverted Kumaraswamy distribution Iqbal et al [39]

The Marshall-Olkin-Kumaraswamy-G distribution Handique, et al [34]

The inverted Kumaraswamy distribution Abd AL-Fattah et al [1]

The Marshall-Olkin Kumaraswamy distribution George and Thobias [28]

2018

The exponentiated generalized Kumaraswamy distribution Elgarhy et al [24]

Kumaraswamy odd Burr G distribution Nasir et al [61]

The Kumaraswamy exponentiated U-quadratic distribution Muhammad et al [58]

The Gamma–Kumaraswamy distribution Ghosh and Hamedani [31]

The Kumaraswamy extension exponential distribution Ibrahim et al [38]

The odd generalized exponential Kumaraswamy distribution Kaile et al [46]

The Weibull- Kumaraswamy distribution Aminu et al [5]

The Kumaraswamy Marshall–Olkin log-logistic distribution Cakmakyapan et al [12]

Cubic rank transmuted Kumaraswamy distribution Saraçoǧlu and Tanis [69]

The Kumaraswamy generalized Kappa distribution Nawaz et al [63]

The Marshall-Olkin extended inverted Kumaraswamy distribution Usman and Ahsan ul Haq [77]

The beta Kumaraswamy Burr Type X Distribution Madaki et al [51]

The exponentiated Inverse Kumaraswamy Distribution Kawsar et al [47]

2019

The exponentiated Kumaraswamy-G class of distributions Silva et al [75]

The gamma Kumaraswamy-G family of distributions Arshad et al [6]

The Kumaraswamy log-logistic Weibull distribution Mdlongwa et al [55]

The Topp Leone generalized inverted Kumaraswamy distribution Reyad et al [67]

The Generalized inverted Kumaraswamy Jamal et al [41]

Inflated Kumaraswamy distributions Cribari-Neto and Santos [20]

Truncated Inverted Kumaraswamy Generated Family of Distributions Bantan et al [7]

Generalized Transmuted Kumaraswamy distribution Ishaq et al [40]

From Tables 1a and 1b above, we can see that through the large number of amendments on or
modifications of the Kumaraswamy distribution that have been studied over the past twenty years, we
can know the importance of this distribution on the one hand, and on the other hand, the multiplicity of
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generalization and modifications of this distribution, as these were among the most important reasons
that prompted us to do this study.
In this paper, a generalized modification of the Kumaraswamy distribution is proposed in Section 2,
and its properties consisting of boundaries, limits, mode, quantities, reliability and hazard functions,
and Renyi entropy, are studied in Section 3. In Section 4, we considered distributions related to this
distribution as special cases. In Section 5, order statistics distribution is derived. In Section 6, its
mean deviations, moment generating function, and with its moments consisting of the mean, variance,
moments about the origin, harmonic, incomplete, probability weighted, L, and the trimmed L moments
and its Lorenz and Bonferroni curves are obtained. The maximum likelihood estimation method for
estimating its parameters was used in Section 7 and its results were applied in Section 8 to six different
models simulated data sets of this distribution, in order to check the performance of the estimation
method through the estimated parameters mean squares errors computed from the different simulated
sample sizes. Finally, in Section 9, four real-life data sets are used in order to show the usefulness and
the flexibility of this distribution in application to real-life data.

2. The Kumaraswamy Distribution and its Generalized Modification of

Definition 1 (Kumaraswamy, [49]):
The rv X having a probability density function (pdf), f is given by;

f (x) =

 abxa−1 [1− xa]b−1 , 0 < x < 1

0 otherwise
(1)

where a and b are non-negative numbers, is said to have the Kumaraswamy distribution with parameters
a and b.
We note that the domain of the function f given by (1) is [0,1], and the parameters a and b are shape
parameters. A generalized modification of (1) is given below;
Let 0 < a,b,c,α,β <∞, such thatα < β, and define the functionf by:

f (x;a,b,c,α,β) =


bc
a (β −α)

−c
(
x
a

)b−1 [
β −

(
x
a

)b]c−1
, aα

1
b < x < aβ

1
b

0 otherwise
(2)

Let us write f (x) instead of f (x;a,b,c,α,β) for simplicity.
Now, we have the following proposition
Proposition 1:
The function f defined by (2) is a pdf and its cumulative distribution function (CDF) F given by;

FX(x;a,b,c,α,β) =


0, x ≤ aα

1
b

1−
[
β−( xa )

b

β−α

]c
, aα

1
b < x < aβ

1
b

1, x ≥ aβ
1
b

(3)

Proof:

Since 0 < a,b,c,α,β <∞, α < β, and aα
1
b < x < α

1
b , then α <

(
x
a

)b
< β, hence β −

(
x
a

)b
> 0, implying that f

given in (2) is non negative. Now; let (x
a

)b
= βw (4)
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then x = αβ
1
bw

1
b , and dx = αβ

b β
1
b−1w

1
b−1dw, therefore;

∫ +∞

−∞
f (x)dx =

∫ aβ 1
b

aα 1
b

bc
a
(β −α)−c

(x
a

)b−1 [
β −

(x
a

)b]c−1
dx

= cβc(β −α)−c
∫ 1

α
β

(1−w)c−1dw = −βc(β −α)−c(1−w)c |1α
β
= 1.

It follows that, for any x such that, aα
1
b < x < aβ 1

b ;

F(x) =
∫ x

−∞
f (y)dy = − βc(β −α)−c(1−w)c

∣∣∣ 1β ( xa )bα
β

= 1−

β −
(
x
a

)b
β −α


c

Note that for, aα
1
b < x < αβ 1

b , we have that; ∂
∂xFX

(x;a,b,c,α,β) = f (x;a,b,c,α,β) .

Definition 2:
The rv X is said to have a generalized modification of the Kumaraswamy distribution (GMKD) with
parameters a,b,c,αandβ, written as X ∼ GMKD(a,b,c,α,β), if its pdf is given by (2), or equivalently, its
CDF is given by (3).
Figure 1 shows some plots of the pdf of the GMKD for some of its parameter’s values, inducting that
this distribution has a lot of various different flexible shapes.

Figure 1.Different pdf Plots of the GMKDModels

Stat., Optim. Inf. Comput. Vol. 8, June 2020



526 A GENERALIZED MODIFICATION OF THE KUMARASWAMY DISTRIBUTION

We first note that, f (x;1,b, c,1,1) is the pdf of Kumaraswamy distribution with parameters b and c, given
by (1).
Furthermore, we have the following represents the method or the transformation that can be used for
modifying the Kumaraswamy pdf given in (1) in order to get what we have called the GMKD.
Proposition 2:
Let the rv Y be a rv having the Kumaraswamy distribution with parameters b and c, and the rv

X = a
[
α + (β −α)Y b

] 1
b , where 0 < a,α,β <∞,such thatα < β, then X ∼ GMKD(a,b,c,α,β).

Proof:
First, it is easy to find that the CDF of Y is given, for 0 < y < 1, by;

FY (y) = 1−
[
1− yb

]c
Since 0 < a,b,c,α,β < ∞andα < β, then 0 < y < 1 is equivalent to aα

1
b < x < aβ

1
b , therefore; for

aα
1
b < x < aβ

1
b , we have that;

FX (x) = P (X ≤ x)

= P

(
a
[
α + (β −α)Y b

] 1
b ≤ x

)

= P

Y ≤

(
x
a

)b
− a

β −α


1
b


= FY



(
x
a

)b
− a

β −α


1
b
 = 1−

1−


(
x
a

)b
− a

β −α


1
b

b

c

= 1−

β −
(
x
a

)b
β −α


c

.

3. Some Properties of the GMKD

3.1. Boundaries and Some Limits of the pdf

Let us study the behavior of the pdf of the GMKD(a,b,c,α,β). At the boundary’s points, we have from
(2) that;

f
(
aα

1
b

)
=
bc
a

a1−
1
b

(β −α)

and;

f
(
aβ

1
b

)
=0,

Therefore;

lim
a→0+

f
(
aα

1
b

)
=0,

and

lim
b→1

f
(
aα

1
b

)
=

c
a(β −α)
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3.2. The Mode:

We have for aα
1
b < x < aβ 1

b that;

∂
∂x

f (x)=
bc
a

(β −α)−c
(x
a

)b−2 [
β −

(x
a

)b]c−2{(b − 1
a

)
β +

(
1− bc
a

)(x
a

)b}
Hence, if bc , 1, provided that α

β < 1−b
1−bc < 1, which is satisfied if b > 1 and c > 1, then ∂

∂x f (x)=0 has a
root given by;

x0=a
[(

1− b
1− bc

)
β

] 1
b

And that;

∂2

∂x2
f (x0)=

cbc−1 (1− bc)
a3(β −α)c

β
2b−3
b +c−2

(
1− b
1− bc

) 2b−3
b ( 1− c

1− bc

)c−2
,

Therefore, if b > 1 and c > 1, then bc > 1, 0 < 1−b
1−bc < 1 and 0 < 1−c

1−bc < 1, hence ∂2

∂x2
f (x0) is negative,

implying that a single mode exists. Note that the condition α
β < 1−b

1−bc < 1 implies that aα
1
b < x0 < αβ

1
b .

Therefore, we have proved the following.

3.3. Proposition 3:

If b > 1 and c > 1, then a single-mode exists for the GMKD(a,b,c,α,β).

3.4. Quantile Function

Let 0 < p < 1, then the quantile function of the rv X ∼ GMKD(a, b,c,α,β), Q, defined by;

Q (u) = inf {x ∈R;p ≤ F(x)}

can be found using (3), to be;

Q (u) = a
[
β − (β − a)(1−u)

1
c

] 1
b

(5)

In particular, the median of X, Med (X); is given by;

Med (X) = a

[
β −

(β − a)
2

1
c

] 1
b

3.5. Reliability Function

The survival function of X ∼ GMKD(a,b,c,α,β), using (3), is given by;

F (x) = 1−F(x) =


1, x ≤ aα

1
b[

β−( xa )
b

β−a

]c
, aa

1
b < x < aβ

1
b

0, x ≥ aβ
1
b

(6)
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3.6. Hazard Function

The hazard function of the rv X ∼ GMKD(a,b,c,α,β), h (x), using (2) and (6), is given for aα
1
b < x < aβ

1
b ,

by;

h (x)=
f(x)

1−F(x)
=
bc
a

(
x
a

)b−1
β −

(
x
a

)b
If b ≥ 1, then h (x) is increasing; and if b < 1, then h (x) is increasing for x>a[(1− b)β]

1
b , =0 for

x=a[(1− b)β]
1
b , and decreasing for x <a[(1− b)β]

1
b .

3.7. Renyi Entropy

Let us compute the Renyi entropy as a measure of variation of the uncertainty of the rv X X ∼
GMKD(a,b,c,α,β). For θ > 0 such that θ , 1, we have for the rv X ∼ GMKD(a,b,c,α,β) that;

IX(θ) =
1

1−θ
log

∫ +∞

−∞
[f (x)]θdx (7)

IX (θ) =
1

1−θ
log

[
bc

a (β − a)

]θ∫ aβ 1
b

aα
1
b

bc
a

(x
a

)(b−1)θ β −
(
x
a

)b
β − a


(c−1)θ

dx

Using the transformation given by (4), we have that;

IX(θ) = log(a)− log(b) + θ
1−θ

log(c) +
1

1−θ

{[(
c − 1

b

)
θ +

1
b
− 1

]
log(β)− cθ log(β −α) +

log
[
B∗

((
1− 1

b

)
(θ − 1)− 1, (c − 1)θ − 1; α

β

)]}
(8)

where B∗ (a,b;c) is defined by;

B∗ (a,b;z) =
∫ 1

z
xa−1(1− x)b−1dx (9)

Or equivalently;

B∗ (a,b;z) = B (a,b)−Bz (a,b)

where B and By are, respectively, the beta and the incomplete beta functions, Abramowitz and Stegun
([3], p. 258), defied by;

B (a,b) =
∫ 1

0
xa−1(1− x)b−1dx (10)

and

Bz (a,b) =
∫ z

0
xa−1(1− x)b−1dx (11)

We may call B∗ ( a, b;z) given by (9), “the upper beta function at z”.
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4. Distributions Related to GMKD

4.1. Special Cases of GMKD

4.1.1. GMKD(1, a, b, 0, 1) is the Kumaraswamy distribution, Kumaraswamy [49], with pdf;

f (x)=ab xa−1 [β − xa]b−1, 0 < x < 1

4.1.2. GMKD(1, 1, 1, 0, 1) is the standard uniform distribution with pdf;

f (x)=1, 0 < x < 1

4.1.3. GMKD(1, 2, 1, 0, 1) is the triangular distribution with pdf;

f (x)=2 x, 0 < x < 1

4.1.4. GMKD(1, b, 1, 0, 1) is the beta distribution with parameters 1 and b, with pdf;

f (x)=b xb−1, 0 < x < 1

4.1.5. GMKD(1, 1, c, 0, 1) is the beta distribution with parameters c and 1, with pdf;

f (x)=c [1− x]c−1, 0 < x < 1

4.1.6. GMKD(1, 1,δ,α,β) is the power function distribution with pdf;

f (x)=
δ

(β −α)

[
β − x
β −α

]δ−1
, a < x < β

4.1.7. GMKD(λ,aθ,b,0,1) is the Kumaraswamy power function distribution, Abdul-Moniem [2], with
pdf;

f (x)=
abθ
λ

( x
λ

)aθ−1 [
1−

( x
λ

)aθ]b−1
, 0 < x < λ

4.1.8.GMKD(1,β,γ, 0, 1) is the Minimax distribution, McDonald [54], with pdf;

f (x)=βγxβ−1
[
1− xβ

]γ−1
, 0 < x < 1

4.1.9. GMKD(c, −a, θ, 0, 1) is the exponentiated Pareto distribution, Gupta et al [33], with pdf;

f (x)=θacαx−(a+1)
[
1−

(x
c

)−a]θ−1
, 0 < c < x

4.1.10. GMKD(α,β,1, 0, 1) is the generalized uniform distribution, Tiwari et al [76], with pdf;

f (x)=
β

α

( x
α

)β−1
, 0 < x < a

4.2. Exponentiation Property

Proposition 4: GMKD is closed under exponentiation.
Let the rv X ∼ GMKD(a,b,c,α,β) and the rv Y = Xk , where 0 < k <∞, then Y ∼ GMKD(ak , b

k , c,α,β).
Proof:

FY (y) = P (Y ≤ y) = P
(
Xk ≤ y

)
= P

(
X ≤ y

1
k

)
= FX

(
y

1
k ;a,b,c,α, β

)
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Therefore;

FY (y) = 1−


β −

(
y
1
k

a

)b
β − a


c

= 1−

β −
(
y
ak

) b
k

β − a


c

= FX

(
y;ak ,

b
k
, c,α,β

)

4.3. Scaling Property

Proposition 5: GMKD is closed under scaling.
Let the rv X ∼ GMKD(a,b,c,α,β) and the rv Y = kX, where 0 < k <∞, then Y ∼ GMKD(ka, b, c,α,β).
Proof:

FY (y) = P (Y ≤ y)
= P (kX ≤ y)

= P
(
X ≤

y

k

)
= FX

(y
k
;a, b, c,α, β

)
= 1−

β −
(
y
ka

)b
β − a


c

= FX(y;ka, b, c,α,β)

4.4. Related Distributions of GMKD

Lemma 1:
Let the rv X ∼ GMKD(1, b, 1, 0, 1) then;
(1.1) The rv Y defined by Y = θ − b2log(X) has an exponential distribution with parameters θ and b,
Johnson et al [43] p. 494, with CDF given by;

FY (y)=1− e−(
y−θ
b ), x > θ

(1.2) The rv Y defined by Y = µ − βlog
[
−blog(Xb)

]
has a Gumbel (generalized extreme value type-I)

distribution with parameters µ andβ, Forbes et al [26] p. 98 , with CDF given by;

FY (y) = e−e
−( y−µβ )

(1.3) The rv Y defined by Y = a+βlog( Xb

1−Xb ) has a logistic distribution with parameters α and β, Johnson
et al [44] p. 115, with CDF given by;

FY (y) =
[
1+ e

−( y−αβ )
]−1

(1.4) The rv Y defined by Y = k
X , where k is a positive constant, has a Pareto distribution with

parameters k and b, Johnson et al [43] p. 574, with CDF given by;

FY (y) = 1− (k
y
)
b

(1.5) The rv Y defined by Y = ξ + a
[
−log(Xb)

] 1
θ has a Weibull distribution with parameters ξ, α, and θ,

Johnson et al [43] p. 629, with its CDF given by;

FY (y) = 1− e−(
y−ξ
a )

θ
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Proof;
(1.1) Consider the distribution of the rv Y = 1

X ;

FY (y) = P (Y ≤ y) = P
( 1
X
≤ y

)
= P

(
1
y
≤ X

)
= 1− P

(
X <

1
y

)
= 1−FX

(
1
y
;1,β, 1, 0, 1

)
= 1−

1−
1− (

1
y

)β


= 1− (y)−β

Therefore, the rv Y has a Pareto distribution with parameters γnd0.
Proof of (1.2) through (1.5) can be shown on the same lines as the proof of (1.1).
Lemma 2:
(2.1) Let the rv X ∼GMKD(1, 1, 1, 0, 1) then the rv Y defined by Y =(1−XX )

1
δ .e−

γ
δ has a log-logistic

distribution with parameters δ and γ , Johnson et al [42] p. 151, with CDF given by;

FY (y) = 1−
[
1+ yδeγ

]−1
, y ≥ 0

(2.2) Let the rv X ∼GMKD(a,b,c,α,β) then the rv Y defined by Y =β −
(
x
a

)b
has the generalized uniform

distribution, Tiwari et al [76], with CDF given by;

FY (y) =
[

y

β − a

]c
, 0 ≤ y ≤ β − a

(2.3) Let the rv X ∼GMKD(a,b,c,α,β) then the rv Y defined by Y =(β − a)−1
[
β −

(
x
a

)b]
has the beta

distribution with parameters 1 and c, with CDF given by;

FY (y) = yc, 0 ≤ y ≤ 1

(2.4) Let the rv U has the standard uniform distribution, U(0,1), then the rv X defined by X =

a
[
β − (β − a)(1−u)

1
c

] 1
b
, then X ∼GMKD(a,b,c,α,β).

Proof;
On the same lines as the proof of Lemma 1.

4.5. Generate GMKD random variates

Using result Lemma 2(4), we can generate GMKD(a,b,c,α,β) random variates as follows;

1. Generate u ∼U (0,1) .

2. Set x = a
[
β − (β − a)(1−u)

1
c

] 1
b
.
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5. Order Statistics

Let X1 , X2 , . . . , Xn be a random sample of size n from GMKD(a,b,c,α,β), and let X1:n , X2:n , . . . , Xn:n
be their order statistics, then for i = 1, 2, 3, . . . ,n, the pdf of i-th order statistics Xi:n, is given for by;

fi:n (x;a, b, c,α, β)=


n!

(i−1)!(n−i)! f (x) [F(x)]
i−1 [1−F(x)]

n−i
, aα

1
b < x < aβ

1
b

0 otherwise,

Hence, for aα
1
b < x < aβ

1
b , we have from (2) and (3) that;

fi:n (x;a, b, c,α, β)=
n!

(i − 1)! (n− i)!
bc

a (β − a)

(x
a

)b−11−
β −

(
x
a

)b
β −α


c

i−1 β −
(
x
a

)b
β − a


c(n−i)+c−1

(12)

Since i = 1, 2, 3, . . . ,n, we have that;1−
β −

(
x
a

)b
β −α


c

i−1

=
i−1∑
j=0

(
i − 1
j

)
(−1)j

β −
(
x
a

)b
β −α


cj

(13)

Hence, using (13), we can write (12) as;

fi:n (x;a, b, c,α, β)=
n!

(i − 1)! (n− i)!
bc

a (β − a)

(x
a

)b−1 i−1∑
j=0

(
i − 1
j

)
(−1)j

β −
(
x
a

)b
β −α


c(n−i)+c+cj−1

Let for 0 ≤ j ≤ i ≤ n;

A (i, j;n) = (−1)j n!
(n− i)! (i − j − 1)!j!

And using the fact that the pdf of the rv X, f , given by (2), satisfies that;

a(β − a)
bc

f (x;a, b, c,α, β)=
(x
a

)b−1 β −
(
x
a

)b
β −α


c−1

Then the pdf of the rv Xi:n, fi:n, given by (12), can be written as;

fi:n (x;a, b, c,α, β)=
i−1∑
j=0

A(i, j;n)
(n− i + j +1)

f (x;a, b, (n− i + j +1)c, α, β) (14)

6. Moments

6.1. Moments about the Origin

Let k = 1, 2, 3, . . . , then the moment of the rv X ∼ GMKD(a,b,c,α,β), of order k about zero is given by;

E(Xk) =
∫ aβ 1

b

aα
1
b

xk
bc
a

(β − a)−c
(x
a

)b−1 [
β −

(x
a

)b]c−1
dx
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Using the transformation given by (4), we have that;

E
(
Xk

)
= cakβ

k
b

(
β

β −α

)c∫ 1

α
β

w
k
b (1−w)c−1dw (15)

= cakβ
k
b (

β

β −α
)
c

B∗
(
k
b
+1, c;

a
β

)
, (16)

where B∗ ( , ;z) is “the upper beta function at z” given by (9).
Now expand (1−w)c−1 in the integral of (15), using the binomial series expansion, Abramowitz and
Stegun [3] p.14, to get that;

E
(
Xk

)
= cakβ

k
b

(
β

β −α

)c ∞∑
i=0

 c − 1

i

 (−1)i(
k
b + i +1

) 1−
(
α
β

) k
b+i+1

 (17)

Therefore, an interesting relation can be seen from (16) and (17), for the upper beta function, is given
by;

B∗
(
k
b
+1, c;

α
β

)
=
∞∑
i=0

(c − 1
i

) (−1)i

( kb + i +1)

1−
(
α
β

) k
b+i+1


or equivalently, in a general form, given in the following proposition;
Proposition 6:

B∗ (x,c;y) =
∞∑
i=0

(c − 1
i

) (−1)i

(x+ i)

[
1− yx+i

]
6.2. Mean and Variance

Using (16), the mean of X ∼ GMKD(a,b,c,α,β) is given by;

E(X) = caβ
1
b (

β

β −α
)
c

B∗
(
1
b
+1, c;

α
β

)
(18)

And hence the variance;

V ar(X) = ca2β
2
b

B∗
(
2
b
+1, c;

α
β

)
− c(

β

β −α
)
c[
B∗

(
1
b
+1, c;

a
β

)]2
In particular, if α = 0 and β = 1,then

E(X) = ca
Γ (1b +1)Γ (c)

Γ (1b + c+1)

V (X) = ca2
Γ (2b +1)Γ (c)

Γ (2b + c+1)
− c

Γ (1b +1)Γ (c)

Γ (1b + c+1)

2


and;

E(Xk) = cak
Γ ( kb +1)Γ (c)

Γ ( kb + c+1)
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6.3. The Moment Generating Function

Similarly, the moment generating function of the rv X ∼ GMKD(a,b,c,α,β), MX(t) , can be found to be;

MX(t) = E
(
etX

)
= c

(
β

β −α

)c ∞∑
i=0

(
atβ

1
b

)i
i!

B∗
(
i
b
+1, c;

α
β

)

6.4. Harmonic Mean

The harmonic mean of X ∼ GMKD(a,b,c,α,β), on the same lines as that of the moment of X, is given by;

E(
1
X
) =

c

αβ
1
b

(
β

β −α
)
c

B∗
(
1− 1

b
,c;

α
β

)

6.5. Incomplete Moments

The k-th incomplete moment of X ∼ GMKD(a,b,c,α,β), I (z,k), is defined by;

I(z,k) =
∫ z

−∞
xkf (x)dx

=
∫ z

aa
1
b

xk
bc
a

(β −α)−c
(x
a

)b−1 [
β −

(x
a

)b]c−1
dx

= cakβ
k
b (

β

β −α
)
c [
B 1

β (
z
a )

b

(
k
b
+1, c

)
−B a

β
(
k
b
+1, c)

]
(19)

6.6. Mean Deviations

The mean deviation of X about its mean µ = E(X), MD(µ), is given by;

MD (µ)=E
∣∣∣X−µ∣∣∣

Which can be found, Cordeiro et al [15], to be;

MD (µ) = 2[µF (µ)− I(µ− 1)]

Hence, using (3), (18) and (19), for the rev X ∼ GMKD(a,b,c,α,β), we have that;

MD (µ) = 2cαβ
1
b (

β

β −α
)
c
B∗

(
1
b
+1, c;

1
β

(µ
a

)b)
−B∗

(
1
b
+1, c;

α
β

)β −
(
µ
a

)b
β −α


c

Similarly, the mean deviation of X about its median m, MD(m), is given by;

MD (m) = µ− 2I(m,1)

MD(m) = caβ
1
b

(
β

β −α

)c [
B
(1
b
+1, c

)
+B α

β

(1
b
+1, c

)
− 2B 1

β (ma )
b

(1
b
+1, c

)]
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6.7. Probability Weighted Moments

The probability weighted moments of order s and r of X ∼ GMKD(a,b,c,α,β), ρs,r , is given by;

ρs,r = E(Xs[f (X)]r )

Using the transformation given in (4), we have that;

ρs,r = as−r+1br−1cr
β

s
b+r(c−1)+1

(β −α)rc
B∗

(
s
b
+1, r (c − 1) + 1;

a
β

)
6.8. Moments of Order Statistics

Let X1,X2, . . .,Xn be a random sample of size n from GMKD(a,b,c,α,β), and let X1:n,X2:n, . . .,Xn:n be their
order statistics, then for i = 1, 2, 3, . . . ,n, we have that;

E(Xm
i:n) =

∫ αβ
1
b

aα
1
b

xmfi:n (x;a, b, c, α, β)dx

Hence, using (14) we have that;

E(Xm
i:n) =

i−1∑
j=0

A(i, j;n)
(n− i + j +1)

∫ αβ
1
b

aα
1
b

xmf (x;a, b, (n− i + j +1)c, α, β)dx

Therefore, using (16), we have that;

E(Xm
i:n) = camβ

m
b

i−1∑
j=0

A (i, j;n)B∗
(
m
b
+1, (n− i + j +1)c;

a
β

)(
β

β −α

)(n−i+j+1)c
(20)

6.9. L-Moments

Let r = 1, 2, 3, . . . then the r-th L-moment γr of X ∼ GMKD(a,b,c,α,β), is given by;

γr =
1
r

r−1∑
i=0

(−1)i
( r − 1

i

)
E(Xr−i:r )

which is, with the use of (20), can be found to be;

γr =
cαβ

1
b

r

r−1∑
i=0

(−1)i
( r − 1

i

) i−1∑
j=0

A (r − i, j;r)B∗
(
1
b
+1, (i + j +1)c;

a
β

)(
β

β −α

)(i+j+1)c
In particular, the first L-moments are given by;

γ1 = caβ
1
b

(
β

β −α

)c
B
∗ (
1
b
+1, c;

a
β

)
And;

γ2 = caβ
1
b

(
β

β −α

)c [
1− 2

(
β

β −α

)c]
B
∗ (
1
b
+1,2c;

a
β

)
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Hence, the L-coefficient of variation τ , Bilkova[9], defined by;

τ =
γ2
γ1

is given by;

τ =
[
1− 2

(
β

β −α

)c] B∗ (1b +1,2c; aβ
)

B∗
(
1
b +1, c; aβ

)
6.10. The L and the Trimmed L-Moments

Let r = 1, 2, 3, . . . then the r-th trimmed L-moments (TL-moments) of the rv X ∼ GMKD(a,b,c,α,β),

γ
(s,t)
r , is given by;

γ
(s,t)
r =

1
r

r−1∑
k=0

(−1)k
( r − 1

k

)
E(Xr+s−k:r+s+t)

which is, with the use of (20), can be found to be;

γ
(s,t)
r =

caβ
1
b

r

r−1∑
k=0

(−1)k
( r − 1

k

)
r+s−k−1∑

j=0

A (r + s − k, j;r + s+ t)B∗
(
1
b
+1, (t + k + j +1)c;

α
β

)(
β

β −α

)(t+k+j+1)c
Hence, the r-th L-moments of the rv X, γr , can be found, since the L-moments is a special case of the

TL-moments, namely, when s = t = 0, that is γr = γ
(0,0)
r .

6.11. Lorenz and Bonferroni Curves

For 0 < π < 1, the Lorenz curve, L(π), and Bonferroni curves, B(π), for the rv X ∼ GMKD(a,b,c,α,β), are
given by;

L (π) =
I(Q(π),1)

µ

and

B (π) =
I(Q(π),1)

πµ

where Q(π) is the quantile function of the rv X at π, and I (z,k) is the incomplete moment of the rv X
given by (19). Therefore, using (16) and (19), we have that;

L(π) =
B 1

β (
Q(π)
a )b

(1b +1, c)−B α
β

(
1
b +1, c

)
B∗

(
1
b +1, c; αβ

)
And similarly, that;

B(π) =
B 1

β (
Q(π)
a )b

(1b +1, c)−B α
β

(
1
b +1, c

)
πB∗

(
1
b +1, c; αβ

)
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7. Parameters Estimation of the GMKD

We will use the maximum likelihood estimation (MLE) method for estimating the parameters of the
GMKD. Let x1,x2, . . . ,xn be a random sample fromGMKD(a,b,c,α,β), as given by (2), then the likelihood
functionL = L(a,b,c,α,β;x1,x2, . . . ,xn) can be written as,

L =
n∏
i=1

bca (β −α)−c
(xi
a

)b−1 [
β −

(xi
a

)b]c−1
=

[
bc

ab(β −α)c

]n n∏
i=1

 (xi
a

)b−1 [
β −

(xi
a

)b]c−1
Hence;

logL = nlog (b) +nlog (c)−nblog (a)−nclog (β −α) + (b − 1)
n∑
i=1

log (xi) + (c − 1)
n∑
i=1

log

[
β −

(xi
a

)b]
Therefore;

∂
∂a

logL = −nb
a

+
b
a
(c − 1)

n∑
i=1

(
xi
a

)b
β −

(
xi
a

)b (21)

Since, ∂2

∂a2
logL can be shown to be not in a simple form, therefore a local maximum of L at a has to be

explicitly examined. Now;

∂
∂b

logL =
n
b
−nlog (a) +

n∑
i=1

log (xi) − (c − 1)
n∑
i=1

(
xi
a

)b
log

(
xi
a

)
β −

(
xi
a

)b (22)

Hence also, ∂2

∂b2
logL can be shown to be not in a simple form, therefore a local maximum of L at b has to

be explicitly examined. Now;

∂
∂c

logL =
n
c
−nlog (β −α) +

n∑
i=1

log

[
β −

(xi
a

)b]
(23)

Hence;
∂2

∂c2
logL = − n

c2

Therefore, ∂2

∂c2
logL < 0, which indicates that L has a local maximum at c. Similarly,

∂
∂β

logL = − nc
β −α

+ (c − 1)
n∑
i=1

1

β −
(
xi
a

)b (24)

Hence;
∂2

∂β2
logL =

nc

(β −α)2
− (c − 1)

n∑
i=1

1[
β −

(
xi
a

)b]2
Or equivalently;

∂2

∂β2
logL = (a1 − a2)c+ a1
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where;
a1 =

n

(β −α)2

and

a2 =
n∑
i=1

1[
β −

(
xi
a

)b]2
Therefore, if a1 > a2 and c < a2

a1−a2 , then
∂2

∂β2
logL < 0, or if a1 < a2 and c > a2

a1−a2 , then
∂2

∂β2
logL < 0 , and

therefore, a local maximum of L at β has to be explicitly examined. Finally;

∂
∂α

logL =
nc

β −α

and that;
∂2

∂α2 logL =
nc

(β −α)2

implying that ∂
∂α logL > 0 and that ∂2

∂α2 logL > 0, then an alternative way to find the MLE of α has to

be considered. Since aα
1
b < x < aβ 1

b , then the MLE of aα
1
b and aβ

1
b are; respectively, x1:n and xn:n, and

hence;
aα

1
b

aβ
1
b

=
x1:n
xn:n

Or equivalently;

a
β
=

(
x1:n
xn:n

)b
And hence;

α̂ =
(
x1:n
xn:n

)b̂
β̂

Now, letting ∂
∂a logL = 0 , we have from (21) that;

(c − 1)
n∑
i=1

(
xi
a

)b
β −

(
xi
a

)b −n = 0

And letting ∂
∂b logL = 0 , then from (22) we have that;

n
b
−nlog (a) +

n∑
i=1

log (xi) − (c − 1)
n∑
i=1

(
xi
a

)b
log

(
xi
a

)
β −

(
xi
a

)b = 0

Similarly, letting ∂
∂c logL = 0 , then from (23) we have that;

n
c
−nlog (β −α) +

n∑
i=1

log

[
β −

(xi
a

)b]
= 0 (25)
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Hence, from (25) we have that;

c =
n

nlog (β −α)−
∑n

i=1 log
[
β −

(
xi
a

)b]
And finally, letting ∂

∂β logL = 0 , then from (24), we have that;

(c − 1)
n∑
i=1

1

β −
(
xi
a

)b − nc
β −α

= 0

Then the MLE of the parameters a, b, c, α and β, can be found by solving the following equations;

A1 (â)= 0

A2

(
b̂
)
= 0

ĉ =
n

nlog
(
β̂ − â

)
−
∑n

i=1 log
[
β̂ −

(
xi
â

)b]
α̂ =

(
x1:n
xn:n

)b̂
β̂

and,
A3

(
β̂
)
= 0

using any numerical procedure, say, Newton Rapson method, where;

A1 (â)=(ĉ − 1)
n∑
i=1

(
xi
â

)b
β̂ −

(
xi
â

)b −n

A2(b̂) =
n

b̂
−n log(â) +

n∑
i=1

log(xi)− (ĉ − 1)
n∑
i=1

(
xi
â

)b̂
log

(
xi
â

)
β̂ −

(
xi
â

)b̂
A3

(
β̂
)
=(ĉ − 1)

n∑
i=1

1

β̂ −
(
xi
â

)b̂ − nĉ

β̂ − α̂

8. A Simulation Study

Using the results given in Section 7 and the Absoft Pro Fortran compiler for computing, different GMKD
models data sets were simulated, in order to check the performance of the MLEs of the parameters of
each model through their mean squares errors (MSE) computed from different simulated sample sizes.
The steps are given below;

1. Six different GMKD models are considered, that have different pdf’s shapes and variable ranges.
2. Six sample sizes, namely; 15, 30, 50, 100, 200, and 300 are used.
3. For each sample size, 5,000 random variates are generated from each of the given GMKD models.
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4. For each sample size and for each GMKD model, the parameters are estimated using the MLE
method given in Section 9.

5. The means, standard deviation (SD), bias, and MSE for each of the parameters are computed for
each random sample for each sample size of the given GMKD models.

Table 2 shows the actual and the MLEs parameters values of the different simulated GMKD data sets,
and Figure 2 shows their corresponding pdf’s plots, while Tables 3a and 3b present the bias of the
parameters of the different simulated GMKD data sets for each sample size, while Tables 4a and 4b
present the MSE of the parameters of the different simulated GMKD data sets for each sample size,
while.

Table 2: Actual and MLE Parameters Values of the Simulated GMKDData Sets
Data
Set

Value Parameters Variable Range

a b c α β Minimum Maximum

1
Actual 1.3 1.3 2 0.2 1 0.377 1.3

MLE 1.280123 1.333333 2.02672 0.198141 1.012141 0.38 1.292

2
Actual 1.95 2.27 2.5 0.1 3 0.71 3.164

MLE 1.93213 2.26713 2.38939 0.1041 2.9968 0.71 3.135

3
Actual 2 0.8 2.75 0 2 0 4.757

MLE 2.15889 0.837778 2.66798 0.002103 1.888474 0.001 4.611

4
Actual 2 3.5 1.25 0.015 2.5 0.602 2.599

MLE 1.98913 3.49911 1.25318 0.015111 2.511031 0.6 2.588

5
Actual 2.3 1.65 1.35 0 0.9 0 2.158

MLE 2.29789 1.65356 1.34917 0.001041 0.89256 0.033 2.145

6
Actual 2.5 0.15 0.5 0 1 0 2.5

MLE 2.51023 0.151713 0.497749 0.000675 0.999351 0 2.5

Figure 2. Plots of the Actual and Simulated GMKD pdf’s
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Table 3a: The Bias of the Parameters of the Simulated GMKDData Sets for each Sample Size n.

n
Actual Value Bias

a b c α β â b̂ ĉ α̂ β̂

15

1.3 1.3 2 0.2 1 -0.1948 0.2595 0.3009 0.3104 -0.1980

1.9 2.27 2.5 0.1 3 0.2299 0.2842 -0.1470 0.2589 0.2652

2 0.8 2.75 0 2 -0.2609 -0.1484 -0.0944 -0.1561 0.2371

2 3.5 1.25 0.015 2.5 -0.1223 0.1301 0.1463 -0.0931 -0.1260

2.3 1.65 1.35 0 0.9 0.1087 -0.0251 0.1200 -0.0831 -0.0349

2.5 0.15 0.5 0 1 -0.0305 -0.0011 0.0948 0.0848 0.0979

30

1.3 1.3 2 0.2 1 0.1480 -0.2120 -0.1652 0.2914 0.2573

1.9 2.27 2.5 0.1 3 0.2665 0.2583 -0.1793 0.2861 -0.1910

2 0.8 2.75 0 2 0.2105 0.1820 0.2049 -0.1290 0.2389

2 3.5 1.25 0.015 2.5 0.1664 -0.0780 0.1726 0.1503 -0.1206

2.3 1.65 1.35 0 0.9 -0.0634 0.1075 -0.0905 -0.0865 -0.0587

2.5 0.15 0.5 0 1 0.1327 0.0805 -0.0540 0.1176 -0.0206

50

1.3 1.3 2 0.2 1 -0.1963 0.2016 -0.1718 -0.2336 -0.2231

1.9 2.27 2.5 0.1 3 0.2288 -0.2059 -0.1856 0.2614 -0.1791

2 0.8 2.75 0 2 0.1706 0.2169 0.1568 0.2171 0.2257

2 3.5 1.25 0.015 2.5 -0.1336 -0.0931 -0.0896 0.1991 0.1689

2.3 1.65 1.35 0 0.9 -0.0409 -0.0241 0.0886 0.1401 -0.0767

2.5 0.15 0.5 0 1 0.0681 0.0604 0.0671 -0.0093 0.0596

Table 3b: The Bias of the Parameters of the Simulated GMKDData Sets for each Sample Size n.

n
Actual Value MSE

a b c α β â b̂ ĉ â β̂

100

1.3 1.3 2 0.2 1 -0.1591 -0.1926 0.2185 0.2924 0.2937

1.9 2.27 2.5 0.1 3 -0.1836 -0.1966 0.2219 0.2488 -0.1921

2 0.8 2.75 0 2 0.1560 0.2203 0.2160 -0.1744 0.2287

2 3.5 1.25 0.015 2.5 0.1747 -0.0712 -0.1015 -0.1005 0.1209

2.3 1.65 1.35 0 0.9 -0.0021 0.1052 -0.0552 0.0944 -0.0498

2.5 0.15 0.5 0 1 0.0607 0.0696 -0.0038 -0.0011 0.0265

200

1.3 1.3 2 0.2 1 -0.1197 0.1319 -0.2100 -0.2343 -0.2318

1.9 2.27 2.5 0.1 3 0.1657 0.1599 0.1153 0.1573 0.1419

2 0.8 2.75 0 2 -0.1904 0.2026 -0.1896 -0.1259 0.2010

2 3.5 1.25 0.015 2.5 -0.1436 -0.1249 -0.0565 -0.0798 -0.0641

2.3 1.65 1.35 0 0.9 0.0087 0.0354 0.0409 0.0984 -0.0127

2.5 0.15 0.5 0 1 0.0559 0.0472 0.0194 0.0220 -0.0294

500

1.3 1.3 2 0.2 1 -0.1500 -0.1952 0.1998 0.1018 0.2689

1.9 2.27 2.5 0.1 3 -0.1544 -0.1525 -0.1094 0.1985 -0.1877

2 0.8 2.75 0 2 0.1748 -0.1082 -0.0719 -0.1424 -0.1077

2 3.5 1.25 0.015 2.5 0.1622 0.1086 0.1142 -0.0723 -0.0960

2.3 1.65 1.35 0 0.9 0.1093 -0.0363 0.0684 0.0586 -0.0154

2.5 0.15 0.5 0 1 -0.0486 0.0414 0.0361 0.0642 -0.0175
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Table 4a: The MSE of the Parameters of the Simulated GMKDData Sets for each Sample Size n.

n
Actual Value MSE

a b c α β â b̂ ĉ â β̂

15

1.3 1.3 2 0.2 1 0.5927 1.7371 2.9691 0.3803 1.8725

1.9 2.27 2.5 0.1 3 2.0704 1.6583 3.0146 0.2945 0.9887

2 0.8 2.75 0 2 0.9750 0.6742 3.2541 0.3980 1.0615

2 3.5 1.25 0.015 2.5 2.4903 1.1561 0.9519 0.3141 1.1174

2.3 1.65 1.35 0 0.9 1.0894 1.7070 1.0354 0.1967 1.0994

2.5 0.15 0.5 0 1 1.3065 0.7012 1.0601 0.3277 1.0420

30

1.3 1.3 2 0.2 1 0.5789 1.3874 2.8764 0.2388 1.6527

1.9 2.27 2.5 0.1 3 1.4840 1.5209 2.7058 0.2361 0.7022

2 0.8 2.75 0 2 0.7488 0.5465 2.8353 0.2015 0.7482

2 3.5 1.25 0.015 2.5 2.4378 0.9590 0.7315 0.2884 0.9814

2.3 1.65 1.35 0 0.9 0.9746 1.6750 0.9971 0.1424 1.0558

2.5 0.15 0.5 0 1 1.1496 0.5271 1.0367 0.1885 0.9625

50

1.3 1.3 2 0.2 1 0.5409 0.9923 2.5963 0.1884 0.8690

1.9 2.27 2.5 0.1 3 1.4806 1.4228 2.6926 0.2551 0.6916

2 0.8 2.75 0 2 0.6871 0.3610 2.6592 0.1720 0.6247

2 3.5 1.25 0.015 2.5 2.3722 0.8314 0.6624 0.2335 0.9708

2.3 1.65 1.35 0 0.9 0.6705 1.2943 0.9945 0.1326 0.9960

2.5 0.15 0.5 0 1 1.1326 0.4787 0.7650 0.1711 0.9073

Table 4b: The MSE of the Parameters of the Simulated GMKDData Sets for each Sample Size n.

n
Actual Value MSE

a b c α β â b̂ ĉ â β̂

100

1.3 1.3 2 0.2 1 0.2661 0.1654 2.4133 0.1658 0.5843

1.9 2.27 2.5 0.1 3 1.1363 1.0940 2.3125 0.2453 0.3996

2 0.8 2.75 0 2 0.4507 0.1933 2.6239 0.1514 0.1601

2 3.5 1.25 0.015 2.5 2.1658 0.2596 0.1633 0.1886 0.7211

2.3 1.65 1.35 0 0.9 0.4748 0.3919 0.4946 0.1194 0.2988

2.5 0.15 0.5 0 1 0.4727 0.2051 0.4871 0.1368 0.4452

200

1.3 1.3 2 0.2 1 0.2307 0.0728 2.0742 0.1318 0.3668

1.9 2.27 2.5 0.1 3 1.1023 1.0374 2.1287 0.2103 0.1809

2 0.8 2.75 0 2 0.2873 0.1468 2.1122 0.1197 0.0866

2 3.5 1.25 0.015 2.5 2.1013 0.1805 0.1208 0.1442 0.5059

2.3 1.65 1.35 0 0.9 0.3564 0.3594 0.1107 0.0397 0.2369

2.5 0.15 0.5 0 1 0.2310 0.0373 0.3756 0.0637 0.0890

500

1.3 1.3 2 0.2 1 0.1296 0.0680 2.0558 0.1303 0.2105

1.9 2.27 2.5 0.1 3 1.0568 1.0234 2.0443 0.1810 0.1500

2 0.8 2.75 0 2 0.1345 0.0454 2.0936 0.0729 0.0492

2 3.5 1.25 0.015 2.5 2.0158 0.1547 0.0577 0.0182 0.2845

2.3 1.65 1.35 0 0.9 0.1519 0.2200 0.0601 0.0373 0.0368

2.5 0.15 0.5 0 1 0.2031 0.0157 0.0559 0.0430 0.0773
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Figure 3. Behaviour of the MSE Plots of the Estimated Parameters for the GMKD Simulated Data Sets

Figure 3 shows the behaviour of the plots of the MSE of each of the model estimated parameters for the
different GMKD simulated data set, which are decreasing as the sample size increases.

9. Application of Fitting GMKDModel to Real-Life Data

We consider four real-life data sets in order to show the usefulness of the proposed estimation procedure
to estimate and fit the GMKD model to these real-life data sets. The data sets are;
Data Set 1: Represents the first-semester mathematics course examination grades for the students of the
Ahmed Bin Mohammed Military College for the academic semesters Spring 2011 till Fall 2018.
Data Set 2: Represents the second-semester mathematics course examination grades for the students of
the Ahmed Bin Mohammed Military College for the academic semesters Spring 2011 till Fall 2018.
Data Set 3: Represents the first-semester introductory statistics course examination grades for the
students of the Ahmed Bin Mohammed Military College for the academic semesters Spring 2011 till
Spring 2018.
Data Set 4: Represents the second-semester introductory statistics course examination grades for the
students of the Ahmed Bin Mohammed Military College for the academic semesters Spring 2011 till
Spring 2018.
Table 5 shows some statistics for the actual grades data sets, Table 6a shows the actual and predicted
first and second-semester Mathematics course examinations grades frequencies with model parameters
estimates and the chi-squares goodness of fit for the proposed GMKD and the Kumaraswamy power
function distribution (KPFD), which is close to the GMKD (see Section 4.1), and Table 6b shows
the actual and predicted first and second-semester Introductory Statistics course examinations grades
frequencies with model parameters estimates and the chi-squares goodness of fit for the proposed
GMKD and the KPFD. The p-values of the Chi-Squares of for each grade four data set using the GMKD
model inducting very good estimates statistically, as well as, better than all the KPFD models. These
results can be seen visually also from Figure 4, illustrating the histograms and the fitted pdfs for each
of the grade data sets.
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Table 5: Some Statistics for Actual Grades Data Sets

Statistics
Examination

Math 1 Math 2 Stat 1 Stat 2

N 592 592 509 509

Mean 9.032095 10.456081 10.368369 11.885069

Std. Error of Mean 0.204036 0.202118 0.208087 0.192046

Median 8.5 10.5 10.5 12.5

Mode 6.5* 9.5* 9.5* 13.5

Variance 24.645330 24.184193 22.039726 18.772696

Skewness 0.243412 -0.004408 0.040214 -0.211136

Kurtosis -0.877241 -0.932818 -0.890339 -0.832699

Std. Error of Kurtosis 0.200505 0.200505 0.216089 0.216089

Minimum 0.0 0.0 0.0 1

Maximum 20.0 20.0 20.0 20.0

* Multiple modes exist. The smallest value is shown

Figure 4.Histograms and the Fitted pdfs for the Grades Data Sets
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Table 6a: Actual and Predicted Mathematics Exams 1 and 2 Grades Frequencies with Model Parameters
Estimates and Goodness of Fit

Grades Range

Frequencies

Stat Exam 1 Stat Exam 2

Actual Predicted
GMKB

Predicted
KPFD

Actual Predicted
GMKB

Predicted
KPFD

0.0 — 1.0 14 17 22 8 6 8

1.1 — 2.0 26 27 31 12 14 16

2.1 — 3.0 34 33 36 20 20 22

3.1 — 4.0 35 36 38 25 26 26

4.1 — 5.0 39 39 40 27 30 30

5.1 — 6.0 40 40 41 35 33 33

6.1 — 7.0 41 41 41 36 36 36

7.1 — 8.0 41 41 41 38 38 38

8.1 — 9.0 40 40 40 39 39 39

9.1 — 10.0 39 38 39 40 40 40

10.1 — 11.0 37 37 37 40 40 40

11.1 — 12.0 33 35 35 39 39 40

12.1 — 13.0 31 32 32 38 38 39

13.1 — 14.0 29 29 29 33 36 38

14.1 — 15.0 26 26 26 35 34 36

15.1 — 16.0 25 23 22 31 31 33

16.1 — 17.0 20 20 18 29 28 29

17.1 — 18.0 17 16 14 27 25 24

18.1 — 19.0 13 13 9 22 21 18

19.1 — 20.0 12 10 1 18 18 7

Total 592 592 592 592 592 592

Estimated Model

Parameters

a 21.111111 20 a 20.318890 20

b 1.449899 1.33345 b 1.751212 1.610260

c 2.683171 1.911199 c 3.111119 1.680140

α 0.010120 α 0.036670

β 1.233333 β 1.677778

Goodness of Fit

χ2 1.43279416 28.032592 χ2 1.93479971 21.048621

df 14 15* df 14 16

p-value 0.9999897 0.0213659 p-value 0.99993212 0.17665

* The number of internals were adjusted in order to make the expected number of observations
in each interval equal to or greater than 5, which is in tern effected the number of the degree of the
freedom.
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Table 6b: Actual and Predicted Statistics Exams 1 and 2 Grades Frequencies with Model Parameters
Estimates and Goodness of Fit

Grades Range

Frequencies

Stat Exam 1 Stat Exam 2

Actual Predicted
GMKB

Predicted
KPFD

Actual Predicted
GMKB

Predicted
KPFD

0.0 — 1.0 2 5 4 0 1 1

1.1 — 2.0 10 12 11 2 5 3

2.1 — 3.0 16 17 17 6 8 6

3.1 — 4.0 22 22 22 10 12 10

4.1 — 5.0 27 26 26 16 16 14

5.1 — 6.0 28 29 29 22 20 19

6.1 — 7.0 32 31 32 25 24 23

7.1 — 8.0 34 33 35 27 27 28

8.1 — 9.0 36 35 36 31 31 33

9.1 — 10.0 37 35 37 35 34 37

10.1 — 11.0 37 35 38 37 36 40

11.1 — 12.0 35 34 37 38 38 43

12.1 — 13.0 34 33 36 39 39 44

13.1 — 14.0 31 31 34 40 40 44

14.1 — 15.0 30 29 31 39 39 43

15.1 — 16.0 27 27 28 38 38 39

16.1 — 17.0 22 24 23 36 35 34

17.1 — 18.0 21 20 18 31 30 27

18.1 — 19.0 16 17 11 23 23 17

19.1 — 20.0 12 14 4 14 13 4

Total 509 509 509 509 509 509

Estimated Model

Parameters

a 20.999999 20 a 20.05333 20

b 1.785556 1.799513 b 2.172103 2.499990

c 2.891111 1.997890 c 1.771321 2.137350

α 0.021012 α 0.000111

β 1.388889 β 1.02115

Goodness of Fit

χ2 3.2402072 13.148697 χ2 4.47101738 16.635000

df 14 14* df 13* 13*

p-value 0.99856701 0.5148497 p-value 0.98507207 0.216531

* The number of internals were adjusted in order to make the expected number of observations
in each interval equal to or greater than 5, which is in tern effected the number of the degree of the
freedom.
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10. Summary

A new generalized modification of the Kumaraswamy distribution is introduced, and its properties
consisting of boundaries, limits, mode, quantities, reliability and hazard functions, and Renyi entropy,
are studied, and some of its different various shapes are given to show its flexibility. This distribution
is closed under scaling and exponentiation. Some of the well-known distributions, such as the
generalized uniform, triangular, beta, power function, Minimax, and some other Kumaraswamy related
distributions, are special cases of this distribution. Its order statistics, mean deviations, moment
generating function, and Lorenz and Bonferroni curves, with its moments consisting of the mean,
variance, moments about the origin, harmonic, incomplete, probability weighted, L, and the trimmed
L moments are derived. We used the maximum likelihood estimation method for estimating its
parameters, and are applied to six different models, having different pdf’s shapes, simulated data sets
of this distribution, in order to check the performance of the estimation method through the estimated
parameters mean squares errors computed from the different simulated sample sizes, which are shown
to be decreasing as the sample size increases. Finally, four real-life data sets of students grades’ at Ahmed
Bin Mohammed Military College, Doha-Qatar, the first two sets, representing the first and second
semester mathematics course examination grades for the academic semesters Spring 2011 till Fall 2018,
while the third and fourth sets representing the first and second semester introductory statistics course
examination grades for the academic semesters Spring 2011 till Spring 2018, are used in order to show
the usefulness and the flexibility of this distribution in application to real-life data sets, as well as our
examinations grades data sets. We also used the Kumaraswamy power function distribution models,
which is close to our proposed distribution. The results are very good, statistically, via the chi-squares
goodness of fit tests, and visually, via the histograms and the fitted pdfs for each of our examinations
grade data sets, and even better than all the Kumaraswamy power function distribution models.
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