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Abstract In this work, we consider an optimal control problem of a biological sequencing batch reactor (SBR) for the
treatment of pollutants in wastewater. This model includes two biological reactions, one being aerobic while the other is
anoxic. The objective is to find an optimal oxygen-injecting strategy to reach, in minimal time and in a minimal time/energy
compromise, a target where the pollutants concentrations must fulfill normative constraints. Using a geometrical approach,
we solve a more general optimal control problem and thanks to Pontryagin’s Maximum Principle, we explicitly give the
complete optimal strategy.
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1. Introduction

The biological treatment of organic and/or chemical pollutants contained in wastewaters is the transformation of
the biodegradable material (also called biomass) in sludge. The principle of biological treatment is to put together
microorganisms and pollutants in reactors in which it is possible to control environmental conditions. Due to the
simplicity of its implementation, the biological pathway for the treatment of wastewaters is widely used. In this
process, bacteria agglomerate into flocs in the reactive part of the system while in a second part, in the absence of
agitation, they settle under the effect of gravity. The sludge is thus separated from the treated water and recycled or
withdrawn, while the clean water is rejected in the environment.

Several technologies using these principles for the biological treatment of wastewaters have been developed. One
such technology relies on the biological Sequencing Batch Reactors (SBR). By separating in time rather than in
space the above-mentioned treatment and separation phases, the SBRs, compared to their continuous counterparts,
allow a better control of the process and therefore a better quality of the treated effluent.

The price to pay is that the considered system is operating in batch rather than in continuous mode. Therefore, it
requires the use of an upstream storage basin for wastewaters which arrive continuously to the treatment plant.

As a consequence, a major issue linked to this process is to minimize the time during which the process is
unavailable, i.e. the total reaction time required to treat a batch of wastewater, under the assumption that the settling
time is constant. The biological treatment of waters requires different aeration conditions in order to remove both
organic carbon and nitrogen compounds. Several optimal control algorithms for the optimization of SBRs have
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been proposed, [7, 9]. Classical tools of optimal control theory (PMP, direct methods, shooting methods, ...) allowed
also to provide control strategies for SBRs. These tools are also utilized for optimal control in many real chemical,
biological and physical processes as in [1] and [6]. In [8], a strategy to determine the switching instants between
aerobic and anoxic phases is available.

Since the manipulated variable is the aeration mode of operation (presence or absence of oxygen), such a process
can be described by continuous-time dynamical systems and a control (here the oxygen concentration) that affects
the system dynamics. In [7], only purely aerobic (saturation of oxygen concentration) or purely anoxic (no oxygen
injection) conditions were modeled. However, oxygen regulation systems are now available.

Therefore, we propose in this paper to consider an optimal control problem in minimal time where the oxygen
concentration may be kept low enough to allow both aerobic and anoxic reactions to occur simultaneously. This
simultaneity of the reactions is classic in activated sludge processes and well modeled in ASM models of the IWA,
see [5]. It is worth to investigate if such oxygen modulation approach could be better than the alternation of purely
aerobic/anoxic phases as proposed in [8]. Indeed, in such a process which can be viewed as a switching system
because of the switching aeration mode of operation (presence or absence of oxygen), the major difficulty relies
on the existence of an optimal control. Most of the solutions for this type of systems consist in reformulating
the problem and augmenting it into a larger family of systems. Besides, the optimal solution, when it exists, is
a concatenation of a limited number of a ”bang-singular-bang” controls, in several situations. When the singular
control is not allowed, it is approximated by successive switches which cannot be applied for many systems because
of some physical limitation or model robustness limitation at high switching frequency. That’s why, we rather
propose to consider a system allowing both aerobic and anoxic reactions to occur simultaneously.

This problem requires considering a three-dimensional model for which the control problem is very difficult to
solve directly. That is why we rather propose to study first a slightly different problem in which the substrates are
not explicitly coupled as in [7]. In particular, we are interested here in a model in which the oxygen concentration
is the control variable and where, as in the three-dimensional case, both biological reactions - which can occur
simultaneously - are necessary to treat two different types of substrates. The problem in two dimensions is
expressed mathematically by an optimal control problem where the dynamics is a two-dimensional differential
system with decoupled state variables. This system models the variations of concentrations of two pollutants. Our
objective is to find an optimal control strategy to reach a target set, by minimizing a cost function that is expressed
as an integral of a positive function.This problem has been addressed in [3, 4] with quite specific assumptions on
the growth functions (convexity, values on the edges of the target, etc ...). However, these assumptions rendered the
model quite unrealistic. For this reason, we propose to relax the conditions on the dynamic system and to consider
more general biological reactions.
The technique we use in this work consists in formulating the optimal control problem as a geometric optimization
problem in the plane. Solving this geometric problem allows us to weaken the assumptions on the growth functions
and on the cost function and to completely solve the considered problems.

The paper is organized as follows. Section 2 is devoted to the statement of a class of optimal control problem.
In Section 3, we solve these problems through a complete analysis of the convexified problem. In Section 4, we
consider a model where two chemical or biological harmful substances (substrates) are consumed by two micro-
organisms (biomasses). Both microbial biomasses are limited and inhibited by their respective substrate, one being
promoted by oxygen (aerobic reaction) while the second is inhibited by oxygen (anoxic reaction). We describe the
control strategy and analyse the dependance with respect to the compromise time/energy in the cost function.

2. Two-dimensional optimal control problems

The reduced two-dimensional dynamics we consider are control systems of the form ṡ1 = −f1(u)ρ1(s1),

ṡ2 = −f2(u)ρ2(s2),
(1)
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where the state s = (s1, s2) belongs to (0,+∞)2 and the control variable u belongs to an interval [0, umax] with
umax > 0. The admissible controls are the L∞ functions u defined on an interval [0, t(u)] with values in [0, umax],
we write for short u(·) ∈ L∞([0, t(u)], [0, umax]). The functions ρi and fi, i = 1, 2, are assumed to satisfy the
following hypothesis.

Hypothesis H

• ρ1 and ρ2 are smooth on an open interval containing [0,+∞), are positive on (0,+∞), and are zero at 0,
ρ1(0) = ρ2(0) = 0;

• f1, f2 are nonnegative continuous functions on an open interval containing [0, umax].

Clearly, this hypothesis guarantees existence and unicity of the solutions of (1) for fixed initial conditions and
control function, as well as the invariance of the positive quadrant (0,+∞)2. Note also that the variables si are
always non increasing.

We consider a square target C0 defined by:

C0 = [0, a1]× [0, a2],

where a1 and a2 are positive numbers, and a continuous nonnegative function J defined on [0, umax]. Given an
initial condition s0 ∈ (0,+∞)2, we introduce the following optimal control problem in free time,

(P0)


minC(u) =

∫ t(u)

0

(1 + J(u(τ)))dτ,

u(·) ∈ L∞([0, t(u)], [0, umax]),

s(·) solution of (1) s.t. s(0) = s0 and s(t(u)) ∈ C0.

When J ≡ 0, this is a minimum time problem. However even when J ̸≡ 0, it is possible to consider (P0) as a
minimum time problem up to a modification of the control system. And actually we can simplify drastically the
problem thanks to change of variables and of time that we describe now.

Consider the change of variables s 7→ S defined by:

S1(t) =

∫ s01

s1(t)

ds

ρ1(s)
and S2(t) =

∫ s02

s2(t)

ds

ρ2(s)
.

In coordinates S the target writes as (see Figure 1)

CS = {(S1, S2) ∈ R2 s.t. S1 ≥ S1 and S2 ≥ S2}, where S1 =

∫ s01

a1

ds

ρ1(s)
, S2 =

∫ s02

a2

ds

ρ2(s)
.

Now, for a given u(·), set:

τ(t) =

∫ t

0

(1 + J(u(s))) ds, t ∈ [0, t(u)]. (2)

Using τ as time-parameter, the function S(τ) is solution of the control system

Ṡ = F (u), where F (u) =

(
f1(u)

1 + J(u)
,

f2(u)

1 + J(u)

)
. (3)

Noticing that τ(t(u)) = C(u), the optimal control problem (P0) can be written as:

(P)


min τ(u),

u(·) ∈ L∞([0, τ(u)], [0, umax]),

S(·) solution of (3) s.t. S(0) = 0 and S(τ(u)) ∈ CS .
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Figure 1. Transition from C0 to CS

Note that the problems (P0) and (P) are equivalent in the sense that the minimum value of their objective
functions are equal, and that the optimal solutions u(·) (if they exists) are the same for both problems up to time-
reparameterization. It is then sufficient to solve the simplified problem (P), which will be the object of the next
section. Before doing so, let us make two remarks.

• If s0i ≤ ai (i = 1 or 2), then Si ≤ 0. In this case the problem is trivial (one-dimensional problem). Moreover,
in the applications the target is considered to be small w.r.t. the initial values of the state. Thus in the sequel
we always assume Si > 0 for i = 1, 2, that is, S ∈ (0,+∞)2.

• The problem (P) is not convex in general. As a consequence, the existence of optimal solutions is not
guaranteed by the usual theorems.

The second remark suggests to solve first the problem for the convexified system,

Ṡ ∈ conv{F (u) : u ∈ [0, umax]},

where conv(A) denotes the convex hull of the set A.

3. Resolution by convexification

In this section we first solve a class of convex minimum time problems (subsections 3.1 to 3.3), and we use these
results in 3.4 to solve Problems (P) and (P0).

3.1. The convex problem (Pco)

Let V be a compact and convex subset of R2
+ having a non-empty intersection with the positive quadrant, i.e.

V ∩ (0,+∞)2 ̸= ∅. We introduce the control system defined by:

Ṡ = v, v ∈ V, (4)
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and the associated minimum time problem,

(Pco)


min t(v),

v(·) ∈ L∞([0, t(v)], V ),

S(·) solution of (4) s.t. S(0) = 0 and S(t(v)) ∈ CS .

Note that for the control system (4), the set of states that are reachable from 0 is the cone R+V . Since we have
assumed S ∈ (0,+∞)2 and V ∩ (0,+∞)2 ̸= ∅, this reachable set intersects the target CS . It then results from
standard results (for instance [10, Th. 6.2.1]) that there exists optimal solutions to the problem (Pco).

Let us now apply Pontryagin’s Maximum Principle (see [11] for instance). We introduce first the Hamiltonian
H := H(S, p, p0, v) where p = (p1, p2) ∈ R2 and p0 ∈ R, as

H = pT v − p0 = p1v1 + p2v2 − p0.

Consider now an optimal control v(·) and the associated trajectory S(·). There exist t(v) := tf > 0, p0 ≥ 0, and
p : [0, tf ] → R2 satisfying (p(·), p0) ̸= (0, 0) and

ṗ = −∂H

∂S
, that is, ṗ = 0. (5)

Moreover, the following maximization condition holds:

H(S(t), p, p0, v(t)) = max
w∈V

H(S(t), p, p0, w) = 0 for a.e. t ∈ [0, tf ]. (6)

The two conditions above imply

p1v1(t) + p2v2(t)− p0 = 0, ∀t ∈ [0, tf ]. (7)

Besides, the following transversality condition is satisfied:

⟨p, z − S(tf )⟩ ≥ 0, ∀z ∈ CS , (8)

which implies that p ∈ (R+)
2.

To summarize, with every optimal trajectory S(·) is associated a four-tuple(
S(·), p, p0, v(·)

)
which satisfies all preceding conditions. Such a four-tuple is called an extremal, and its first component S(·) an
extremal trajectory. An extremal is said to be normal if p0 ̸= 0, abnormal otherwise.

3.2. Analysis of the extremals of (Pco)

Lemma 1
There are no abnormal extremals for problem (Pco).

Proof
Assume that p0 = 0. Then p ̸= 0, and from (7), we have pT v(·) ≡ 0. It follows that the adjoint vector p ∈ (R+)

2 is
orthogonal to v, which implies that v(t) is either horizontal or vertical for all t ∈ [0, tf ]. In both cases, the extremal
trajectory starting at the point S(0) = 0 stays on one of the axis {S1 = 0} or {S2 = 0}, and so can not reach the
target.

Hence p0 > 0 and, by (7), p ̸= 0. We can multiply the Hamiltonian H by 1/∥p∥ and assume that p belongs to the
quarter of the unit circle S1+ = S1 ∩ (R+)

2.
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Figure 2. The sets V , ∂Vp and R+∂Vp

The condition (6) on p can be written as

v(t) ∈ ∂Vp = argmax
w∈V

pTw, for a.e. t ∈ [0, tf ]. (9)

Geometrically, ∂Vp is the subset of points in V that have the largest coordinate p in the base (p, p⊥). In other
words, ∂Vp is the part of the boundary of V where the outward normal vector is p, see Figure 2. Since V is convex,
∂Vp is either a singleton or a line segment. Note also that, when p is one of the vectors e1, e2 of the canonical basis,
then ∂Ve1 = {v ∈ V : v1 = vmax

1 } and ∂Ve2 = {v ∈ V : v2 = vmax
2 }, where vmax

1 = max{v1 : (v1, v2) ∈ V } and
vmax
2 = max{v2 : (v1, v2) ∈ V }.

Remark 1
We could also define ∂Vp in terms of supporting plane. Recall that the support function of V is the function
hV : R2 → R given by

hV (p) = sup{pT v : v ∈ V },

and that, for p ∈ S1, the set H(p) = {v ∈ Rn : vT p = hV (p)} is called a supporting hyperplane with exterior unit
normal vector p. The intersection H(p) ∩ V is always non empty. Thus the maximized Hamiltonian can be written
as H(S(t), p, p0, v(t)) = hV (p)− p0 and the set ∂Vp is equal to H(p) ∩ V .

Let us now analyse in details the possible form of the extremal trajectories. From (8), the target point S(t(v)) of
an extremal trajectory is always on the edge of the target. Two cases may occur: either S(t(v)) is on the corner of
the target or it is interior to the edge. We will begin by the second case and introduce first a definition.

Definition 1
We say that the point S is under (respectively above) the cone R+∂Vp if either S ∈ R+∂Vp or S lies between the
cone R+∂Vp and the horizontal axis (OS1) (respectively the vertical axis (OS2)).

Lemma 2
Let S(·) be a minimizing trajectory of (Pco) with control v(·) such that S(t(v)) ̸= S.

(i) If S(t(v)) ∈ {S1 = S1} × {S2 > S2}, then t(v) = S1

vmax
1

and v(t) ∈ ∂Ve1 for a.e. t ∈ [0, t(v)]. In that case, S
is under the cone R+∂Ve1 .
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(ii) If S(t(v)) ∈ {S1 > S1} × {S2 = S2}, then t(v) = S2

vmax
2

and v(t) ∈ ∂Ve2 for a.e. t ∈ [0, t(v)]. In that case, S
is above the cone R+∂Ve2 .

Proof
We only give the proof for the case (i), the same argument can be used to prove (ii). Let us consider an extremal
trajectory S(·) that reaches the target at a point on the open half-line {S1 = S1} × {S2 > S2} and p an adjoint
vector associated to S(·). Then, from the transversality condition and since ∥p∥ = 1, we derive that p = e1 = (1, 0).
This implies that v(t) ∈ ∂Ve1 a.e. and that v1(t) = vmax

1 . As a consequence, the trajectory S(·) satisfies:

Ṡ(t) = (vmax
1 , v2(t)) ∈ ∂Ve1 . (10)

Integrating equation (10) on [0, t(v)] and noticing that S1(t(v)) = S1, we obtain S1(t(v)) = vmax
1 t(v) = S1, and

then t(v) = S1

vmax
1

. Moreover, S(t(v)) ∈ R+∂Ve1 which implies that S is under the cone R+∂Ve1 .

Let vS the control defined by
vS = argmax

{
∥v∥ : v ∈ V ∩ (OS)

}
.

Lemma 3
Let S(·) be a minimizing trajectory of (Pco) with control v(·) such that S(t(v)) = S. Then, there exists p ∈ S1+

such that S ∈ R+∂Vp. Moreover, t(v) = ∥S∥
∥vS∥ and we have the following alternative:

• either ∂V is a segment in a neighbourhood of vS : in this case there is a unique vector p ∈ S1+ such that vS
belongs to the interior of the segment ∂Vp, and v(t) ∈ ∂Vp for a.e. t ∈ [0, t(v)];

• or v(·) ≡ vS .

Proof
The trajectory S(·) is an extremal trajectory, thus there exists p ∈ S1+ such that v(t) ∈ ∂Vp for a.e. t ∈ [0, t(v)].
This implies that S ∈ R+∂Vp and vS ∈ ∂Vp. As a consequence p belongs to the normal cone NV (vS) to V at vS
defined by:

NV (vS) = {p ∈ S1+ :
⟨
p, v − vS

⟩
≤ 0, ∀v ∈ V }. (11)

Two cases must be distinguished.

• If ∂V is smooth in vS , then NV (vS) is a singleton, i.e. NV (vS) = {p0}. So, we have

p01S1 + p02S2 =

∫ t(v)

0

p0
T
v(s)ds = t(v)p0,

and t(v) =
p0
1S1+p0

2S2

p0 since p0 ̸= 0. The uniqueness of p0 allows to conclude that t(v) does not depend on
the control v and that all optimal trajectories reach the point S at the same time. In particular, S1 = v1St(v)

and S2 = v2St(v), where vS = (v1S , v2S). This implies t(v) = ∥S∥
∥vS∥ .

Two possibility occurs: either ∂Vp is a segment containing in its interior the point vS , and then v(t) ∈ ∂Vp

for a.e. t ∈ [0, t(v)]; or ∂Vp is the singleton {vS} and in this last case v(·) ≡ vS .
• If ∂V is not smooth in vS , then there exist θ0 and θ1 in [0, π/2] such that the normal cone to V at vS is written

as:
NV (vS) =

{
eiθ : θ ∈ [θ0, θ1]

}
. (12)

If p ∈ {eiθ : θ ∈ (θ0, θ1)}, then ∂Vp = {vS} and so v(·) ≡ vS . The trajectory associated to such a constant
control reaches the target in time t(v) = ∥S∥

∥vS∥ .
In the case where p = eiθ0 , two situations may occur: either ∂Veiθ0 is equal to {vS} and in this case v(·) ≡ vS ;
or ∂Veiθ0 is a segment. In the latter case, vS is an extremity of the segment and necessarily v(·) = vS (it is
the only control with values in ∂Veiθ0 that allows to reach S). As a consequence t(v) = ∥S∥

∥vS∥ .
The case where p = eiθ1 is treated in the same way.
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3.3. Optimal synthesis of (Pco)

We are now in a position to construct the optimal synthesis of the convex problem (Pco). We distinguish three
different subsets of the positive quadrant (0,+∞)2.

Definition 2
We define the partition Z0 ∪ Z1 ∪ Z2 of (0,+∞)2 by setting:

• Z0 is the union of all cones R+∂Vp for p different from e1 and e2, that is,

Z0 =
∪{

R+∂Vp : p ∈ S1+, p ̸= e1, e2
}
;

• Z1 is the set of points of (0,+∞)2 lying under the cone R+∂Ve1 ;
• Z2 is the set of points of (0,+∞)2 lying above the cone R+∂Ve2 .

Figure 3. Partition of (R+)2 into three regions Z2 (in yellow), Z0 (in green) et Z1 (in blue).

Theorem 1
Let S(·) be a minimizing trajectory of (Pco), and v(·) be the corresponding control defined on [0, t(v)].

• If S ∈ Z0, then t(v) = ∥S∥
∥vS∥ and v(t) ∈ ∂Vp for a.e. t ∈ [0, t(v)], where ∂Vp is the largest segment included

in ∂V and containing vS in his interior; the trajectory S(·) reaches the target CS at S, i.e. S(t(v)) = S.
• If S ∈ Z1, then t(v) = S1

vmax
1

and v(t) ∈ ∂Ve1 for a.e. t ∈ [0, t(v)]; the trajectory S(·) reaches the target CS on

the intersection of the half-line {S1 = S1} × {S2 ≥ S2} with the cone R+∂Ve1 .
• If S ∈ Z2, then t(v) = S2

vmax
2

and v(t) ∈ ∂Ve2 for a.e. t ∈ [0, t(v)]; the trajectory S(·) reaches the target CS on

the intersection of the half-line {S1 ≥ S1} × {S2 = S2} with the cone R+∂Ve2 .

Remark 2
If ∂V contains no segment then the optimal control is constant, and its value only depends on the position of the
point S with respect to the set V . It can be determined geometrically, see Figure 4.

Proof
If S ∈ Z0, then S is neither under R+∂Ve1 nor above R+∂Ve2 , which implies that S(·) satisfy the hypothesis of
Lemma 2. As a consequence, Lemma 3 applies and we get the conclusion.

Let us consider the case S ∈ Z1 (the case S ∈ Z2 can be treated in the same manner). If S ̸∈ R+∂Ve1 , then
only the conclusion of Lemma 2–(i) applies and the result follows. Assume now that S ∈ R+∂Ve1 . Two situations
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Figure 4. Possible cases for a constant control.

may occur: either S(t(v)) = S, and then from Lemma 3 we deduce that v(t) ∈ ∂Ve1 a.e. and that t(v) = ∥S∥
∥vS∥ ; or

S(t(v)) ∈ {S1 = S1} × {S2 > S2}, and it results from Lemma 2-(i) that v(t) ∈ ∂Ve1 a.e. and that t(v) = S1

vmax
1

.

Since ∥S∥
∥vS∥ = S1

vmax
1

, both cases give the same conclusion., and the proof is completed.

3.4. Back to problem (P)

We come back now to problem (P). We choose V to be the convex hull of the set {F (u) : u ∈ [0, umax]} and
we denote by (Pco) the associated minimum time problem. Thus we are considering two minimum time problems
with the same initial condition S(0) = 0 and the same target CS but the control system in (P) is

Ṡ = v, v ∈ {F (u) : u ∈ [0, umax]},

whereas the control system in (Pco) is

Ṡ = v, v ∈ V = conv{F (u) : u ∈ [0, umax]}.

Proposition 1
Let tmin(Pco) and tmin(P) be the minimal times corresponding to problems (Pco) and (P), respectively. Then,

tmin(Pco) = tmin(P).

Proof
Since the set of admissible velocities for (Pco) contains the one of (P), we have

tmin(Pco) ≤ tmin(P),

so we have to prove the converse inequality. From Theorem 1, (Pco) admits at least one optimal solution
S∗(·) associated with a constant control v∗ ∈ V (v∗ = vS if S ∈ Z0, v∗ ∈ ∂Ve1 if S ∈ Z1, and v∗ ∈ ∂Ve2 if
S ∈ Z2). Thus the trajectory is S∗(t) = tv∗, t ∈ [0, t∗] with t∗ = tmin(Pco). By definition of V , we have v∗ =
λF (u1) + (1− λ)F (u2), where λ ∈ [0, 1] and u1, u2 ∈ [0, umax]. Note that u1 = u2 when ∂V is not a segment
near v∗. Let us define the function u : [0, t∗] → [0, umax] by: u(t) = u1 for t ∈ [0, λt∗],

u(t) = u2 for t ∈ [λt∗, t∗].
(13)

The solution S(·) of Ṡ(t) = F (u(t)), S(0) = 0, is an admissible trajectory for the problem P and satisfies
S(t∗) = S∗(t∗) ∈ CS . We deduce that tmin(P) ≤ t∗ = tmin(Pco), which concludes the proof.

This result allows to solve the original problem (P0). Indeed, let us define the homeomorphism φ by:

φ : (0,+∞)2 → (0,+∞)2

(s1, s2) 7→
(∫ s1

a1

ds
ρ1(s)

,
∫ s2
a2

ds
ρ2(s)

)
.
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Then the optimal value of the problem (P0(s
0)) obtained by starting from an initial condition s0 is equal to the

minimum time of the problem (Pco(φ(s
0))) obtained for the target CS with S = φ(s0).

As for the minimizing controls, note that u(·) is minimizing for (P(φ(s0))) (and then for (P0(s
0))) if and only

if v(t) = F (u(t)) is minimizing for (Pco(φ(s
0))). We then obtained the corresponding optimal control of (P0(s

0))
through the time-reparameterization (2). In particular, the construction (13) implies the following property.

Corollary 1
For all s0 ∈ R2

+, there exists an optimal piecewise constant control for problem (P0) with at most one discontinuity.

4. Application

With respect to the model proposed by Mazouni, [7], we assume here that nitrification and denitrification are
well controlled by oxygen and that the constraint on the organic matter needed for denitrification is ignored. This
simplification allows us to handle a differential system in two dimensions and to consider an optimal control
problem in minimal time and energy.

4.1. The model

We consider a model describing the following biological reaction scheme:

s1 + u 7→ x1 (14)

s2 + u 7→ x2 (15)

where s1 and s2 are the concentrations of the substrates to degrade, x1 and x2 are those of the bacteria consuming s1
and s2, respectively, for their growth. u is the oxygen concentration. The first reaction is enhanced by the presence
of oxygen whereas the second is inhibited by the oxygen.

Assuming that the system is operating in batch mode, the mathematical model is given by:

ẋ1 = ν1(s1, u)x1,

ṡ1 = −ν1(s1, u)x1,

ẋ2 = ν2(s2, u)x2,

ṡ2 = −ν2(s2, u)x2,

(16)

where ν1 and ν2 are the specific growth function of x1 and x2, respectively. We assume that:
H1 : ν1(s1, u) = µ1(s1)f1(u) and ν2(s2, u) = µ2(s2)f2(u), with f1 and f2 satisfying Hypothesis H and µ1 and
µ2 are positive, continuous with µ1(0) = µ2(0) = 0.
H2 : 0 ≤ u(t) ≤ 1.
H3 : For all u ∈ [0, 1] and s1 ≥ 0, ∂ν1

∂u (s1, u) > 0, ν1(s1, 0) = 0.
H4 : For all u ∈ [0, 1] and s2 ≥ 0, ∂ν2

∂u (s2, u) < 0.
Hypothesis H1 together with H3 and H4 imply that f ′

1(u) > 0 and f ′
2(u) < 0, for all u ∈ [0, 1]. For a sake

of simplicity, we assumed in H2 that the maximal oxygen concentration injected in the bio-reactor umax = 1.
Hypothesis H3 means that ν1 increases continuously when the oxygen quantity injected into the reactor also
increases and that there is no variation of s1 without oxygen. H4 means that ν2 decreases continuously when
the oxygen quantity increases.

Hypothesis H1, H3 and H4 are fulfilled, for example, by growth rates µi of Monod-type µmax
si

Ks + si
or of

Haldane-type µmax
si

Ks + si +Ki/si2
, i = 1, 2 and by functions f1 of Monod-type fmax

u

Ks + u
and f2 of the
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form fmax
Ks

Ks + u
. Note that, by mass conservation in system (16), we have: ṡi(t) + ẋi(t) = 0, for i = 1, 2 and

t ≥ 0. We set then Mi = si(0) + xi(0), for i = 1, 2. Without loss of generality, we assume that Mi = 1, for i = 1, 2.
System (16) is then reduced to the bidimensional system: ṡ1 = −f1(u)ρ1(s1),

ṡ2 = −f2(u)ρ2(s2),
(17)

where ρ1(s1) = µ1(s1)(1− s1) and ρ2(s2) = µ2(s2)(1− s2). This implies in particular that ρi(0) = ρi(1) = 0,
i = 1, 2. System (17) has the same form as system (1) considered in Section 2.

Our objective is as follows: given normative constraints si > 0, from any initial condition xi(0) > 0, si(0) > si,
one seeks to synthesize the control u(t) such that si be smaller or equal to si > 0 in minimizing a function of both
time and energy.

The functions µ1 and µ2 are the degradation rates of the substrates which concentrations must be controlled.
The choice of growth functions essentially depends on the nature of the treated substrates. In the context of
wastewater treatment, the limitation of the nitrogen oxidation by oxygen (or nitrification) is generally modeled by a
Monod-type function µmax

O2

Ks+O2
multiplied by the growth function. Similarly, the substrate inhibition by oxygen

is described by the µmax
Ks

Ks+O2
. Thus, the limitation of the substrate degradation is modeled by the product of the

last function in oxygen and a Monod-type function in nitrogen.

Remark 3
If a substrate s is inhibiting the process at high concentrations, the inhibition can be modeled by the Haldane-type
growth function µmax

s
Ks+s+KI/s2

.

4.2. The optimal control problem

We consider cost functions of the form:

C(u) =

∫ t(u)

0

(
1 + αu2(s)

)
ds = t(u) + α

∫ t(u)

0

u2(s)ds,

where α is a given nonnegative parameter. We take J(u) = Jα(u) = αu2, in problem P0 of Section 2. This cost
function expresses a compromise between the time to reach the target and the oxygen energy consumed during this
duration.
For α ≥ 0, we define then the following optimal control problem:

(Pα)



min C(u) = t(u) + α

∫ t(u)

0

u2(τ)dτ,

u ∈ L∞([0, t(u)], [0, 1]),

s(·) solution of (17) s.t. s(0) = s0 and s(t(u)) ∈ T .

T is the target defined by: T = [0, a1]× [0, a2], where a1 and a2 represent the threshold allowed to substrate
concentrations in the rejected water. With the previous choices of f1, f2 and J , all the curves in the set{(

f1(u)

1 + Jα(u)
,

f2(u)

1 + Jα(u)

)
; u ∈ [0, 1]

}
,

are strictly convex curves. Moreover, from Remark 2, the optimal control corresponding to problem (Pα) is
constant. The region Zα

2 is empty, and Zα
0 and Zα

1 form a partition of R2
+. Then, the optimal control value depends
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on the region S belongs to.
The initial concentrations s01 = s1(0) et s02 = s2(0) are both above the threshold which defines the target T , see
Section 2. This means that s01 ≥ a1 and s02 ≥ a2. That’s why, we will restrict our study only to the subspace D
defined by:

D = {s0 ∈ R2
+, s

0
1 ≥ a1 and s02 ≥ a2}.

Therefore, we consider the restriction of the homeomorphism φ on D defined by:

φ : D → (0,+∞)2

(s1, s2) 7→
(∫ s1

a1

ds
ρ1(s)

,
∫ s2
a2

ds
ρ2(s)

)
.

We set Zα
i = φ−1(Zα

i ), for i ∈ {0, 1}. These regions define a partition of D. For all s0 ∈ Zα
1 , the minimizing

trajectory su(·) starting from s0 and corresponding to the control:

u = argmax
u∈[0,1]

f1(u)

1 + Jα(u)

reaches the target T at a point in {s1 = a1} × {s2 < a2}. If s0 ̸∈ Zα
1 , the minimizing trajectories starting from s0

reach the target at the corner (a1, a2).

4.3. Numerical results

In the following, the function f1 is of Monod-type, the function f2 expresses the effect of oxygen inhibition at high
concentrations in oxygen. They are defined on [0,1] by:

f1(u) =
u

0.2 + u
and f2(u) =

0.1

0.1 + u
.

The target T is given by T = [0, 0.1]× [0, 0.1], the initial condition is (s01, s
0
2) = (0.65, 0.5). In the following, we

consider the cases α = 0 and α = 20, first when µ1 et µ2 are of Monod-type and then when µ1 is of Haldane-type
and µ2 is of Monod-type.

4.3.1. Case where µ1 and µ2 are of Monod-type In this part, we assume that the growth functions µ1 and µ2 are
defined on [0,1] and are of Monod-type:

µ1(x) = 0.5
x

1 + x
and µ2(x) = 0.8

x

1 + x
.

We present in Figure 5 and Figure 6 the regions Zα
0 and Zα

1 with the corresponding regions Zα
0 and Zα

1 , for α = 0
and α = 20, respectively.

In the case α = 0, the initial condition s0 is in Z0
0 , the minimizing trajectory reaches the target at the point

(a1, a2). But, when α = 20, s0 ∈ Z20
1 the minimizing trajectory reaches the target on the edge {s1 = 0.1}×]0, 0.1[.

If α = 20, the minimizing trajectory takes more time to reach the target than in the case of minimal time
trajectories (α = 0), as shown in Figure 7. In this case, since we take into account the energy, the control value is
lower than in the case α = 0. The growth of x2 is thus less inhibited than in the case α = 0. The rate at which s2
decreases is then faster than the rate at which s1 decreases.

Interestingly, we note the existence of a critical value α∗ such that tα is constant up to α∗ and increases for
α ≥ α∗. Indeed, for α ≤ α∗, s0 is in the region D\Zα

1 . Then, the minimal time to reach the target is given by
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Figure 7. The time tα required by the minimizing trajectory to reach the target as a function of α.

tmin = ∥S∥
vS

, where vS = argmax
v∈V ∩(OS)

∥v∥. This value does not depend on α. Now, if α > α∗ then s0 ∈ Zα
1 and the

time taken for the minimizing trajectory to reach the target is given by tmin = ∥S1∥
f1(u)

where u = argmax
u∈[0,1]

{
f1(u)

1+Jα(u)

}
.

4.3.2. Case where µ1 is of Haldane-type and µ2 is of Monod-type Figures 8 and 9 are obtained with a growth
function µ1 corresponding to the inhibition of the substrate (function Haldane-type) and a growth function µ2 of
Monod-type.
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In this case, the region Z0
1 (respectively Z0

1 ) is more important than the region Z0
0 (respectively Z0

0 ). Moreover,
for α = 0, s0 ∈ Z0

1 . Since Z0
1 ⊂ Zα

1 , for all α ≥ 0. Then, for all α > 0, the minimizing trajectory reaches the target
on the edge {s1 = 0.1}×]0, 0.1[ and the minimal time depends on α.
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In this case, the shapes of the trajectory discussed in the previous section are amplified in the sense the decrease of
s2 is still faster. Indeed, s1 inhibits the growth of x1 which diminish its decrease rate. Putting the inhibition on x2

would lead to the opposite tendency.
From the different cases we considered, we noticed that the regions Zα

1 increase when α increases. When working
with two species of different nature, a first one with an inhibitory growth function in substrate and a limited one
in oxygen, and the second species with limited growth functions in substrate and oxygen, the reduction of oxygen
consumption leads to an increase in the duration of the reaction, for a large set of initial conditions. In fact, for
s0 ∈ Zα

1 , the necessary time to reach the target depends on α and is no longer minimal.
More general comments are difficult to establish since the optimal trajectories depend not only on the objective

function (and thus on α) but also on model structure parameters. Finally, the most important result is that in any
case, the optimal control is constant.

5. Conclusion

In this paper, we propose a model that involves two biological reactions, one being aerobic and the other anoxic,
required for processing two types of substrates. The control is the dissolved oxygen considered as an input taking
continuous values. The objective is to minimize a compromise between the total reaction time and the energy
consumption. The dynamics are described by a differential system coupled in the control variable and decoupled
in the state variables. Our approach consists in studying first a more general optimal control problem with a cost
function being the integral of a positive function J , using a geometric technique. Due to the maximum principle,
we have characterized the extremal trajectories and we determined the minimal time to reach the target and the
corresponding control, according to the position of the target point on the edge of the target. This technique
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allows us to solve the problem in a very general framework (only the assumption of continuity of the growth
functions in oxygen is required). Using these results, we determined the optimal strategy to control the nitrification-
denitrification reactions by oxygen, under the assumption that the organic matter is not needed for denitrification.
The mathematical study is followed by numerical simulations which illustrate the obtained results. The results of
this first study will help us tackle the problem in three dimensions where the variables are coupled by an additional
substrate (carbon).
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