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Abstract A flexible ranked set sampling scheme including some various existing sampling methods is proposed. This
scheme may be used to minimize the error of ranking and the cost of sampling. Based on the data obtained from this
scheme, the maximum likelihood estimation as well as the Fisher information are studied for the scale family of distributions.
The existence and uniqueness of the maximum likelihood estimator of the scale parameter of the exponential and normal
distributions are investigated. Moreover, the optimal scheme is derived via simulation and numerical computations.
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1. Introduction

Ranked set sampling (RSS) was introduced by [14] as a method for unbiased selective sampling. In this scheme,
k independent sets each contains k units are randomly selected from the population of interest. Next, the units of
each set are visually sorted in ascending order and only the jth (j = 1, 2, ..., k) judgment order statistic of the jth set
is measured. When judgment ranking is accurate, we say the ranking is perfect and the selected units are actually
a sample of k independent order statistics. This scheme may be repeated at some cycles to attain a reasonable data
set. [23] proved that the mean of RSS is an unbiased estimator of the population mean and its variance is always
smaller than that of simple random sampling (SRS). This method can reduce cost of sampling and increase the
accuracy of the results.

The same results were obtained by [12] by considering errors in judgment ranking. Some results of parametric
RSS were presented by [22], [15], and [8]. The RSS scheme has been developed into various procedures. In this
paper, we consider three existing types of ranking sampling schemes which are briefly explained as follows:
• Extreme ranked set sampling (ERSS): This procedure was introduced by [19] in estimating problem of the
population mean which is similar to RSS but only minimum or maximum of each set is measured and it is assumed
that they can be detected visually. Therefore, the judgment ranking error in ERSS is less than that of RSS. The
procedure of obtaining such a sample depends on whether k is even or odd. When k is even, from the first k/2
sets the lowest ranked units and from the last k/2 sets the largest ranked units are measured. When k is odd, the
minimum of the first [k/2] sets and also the maximum of the last [k/2] sets are selected, where [a] is the integer
part of a, moreover, the median of the ((k + 1)/2)th set is measured.
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• Moving extreme ranked set sampling (MERSS): [2] introduced this scheme which is in fact an unbalanced
ERSS. In this procedure, first of all, k independent random sets are considered with sizes 1, 2, ..., k, sequentially.
Then, the maximum of each set is determined by judgment, i.e., by visual inspection or by some other relatively
inexpensive methods, without actual measurement of the variable of interest. Finally, the judgment maximum of
each set is measured accurately. This procedure is called “MERSS type I”. If instead of maximum in the mentioned
procedure, the minimum of each set is measured, an “MERSS type II” scheme is obtained. Note that both of
MERSS type I and MERSS type II may be performed to obtain an ordinary MERSS data set. This procedure seems
suitable for the case of large set size, because it reduces the error of ranking and keeps optimality inherited in the
ordinary RSS procedure. Therefore, in comparison with RSS, the MERSS is a useful modification in this case.
[1] obtained maximum likelihood estimator (MLE), modified MLE and likelihood ratio test for scale parameter of
exponential distribution using MERSS. The MLE and Modified MLE of scale parameter and their properties are
studied by [9, 10].
• Median ranked set sampling (MRSS): This procedure was suggested by [16] for estimating the population
mean. In MRSS scheme, k sets of the same size k are taken from the population of interest and the units in each
set are ranked, visually. If k is odd, the median of each set is measured. When k is even, from the first k/2 sets,
the (k/2)th smallest ranked unit and from the last k/2 sets the ((k + 2)/2)th smallest ranked unit are selected by
judgment and measured accurately. [17] presented a test of hypothesis for the mean of the symmetric distributions
based on MRSS.

Recently, [4] introduced truncation-based ranked set samples. They compared performance of mean and median
of this scheme with those of SRS, RSS, ERSS and MRSS. Simultaneous comparison of the location and scale
estimators based on SRS and RSS in two-parameter exponential distribution is performed by [20]. So far, there are
several ranked set sampling schemes, but in some practice situations some plans may not be applicable at any cycle
of the test. With this in mind, in this paper, a flexible RSS (FRSS) with M cycles is considered which contains m1

cycles of an usual RSS, the ERSS with m2 cycles, the MERSS type I with m3 cycles, the MERSS type II with
m4 cycles and the MRSS with m5 cycles, such that M =

∑5
i=1 mi. The proposed scheme is indeed a combination

of several RSS schemes. For simplicity, throughout the paper, we assume that the set size k is even for all cases.
The proposed sampling scheme may be used to minimize the error of ranking and cost of sampling. Since in the
ERSS, MERSS type I and MERSS type II, only the extreme order statistics (maximum or minimum) in each set
are measured, the error of ranking is less than other schemes. So, if simultaneous use of these schemes leads to
rather high efficiency, it may be suggested to combine some existing schemes in practice. Some special cases of
FRSS lead to various types of existing sampling schemes; for example, if m2 = m3 = m4 = m5 = 0, the ordinary
RSS with M = m1 cycles is derived. Nevertheless, combining some kinds of these schemes may lead to an optimal
sampling scheme which is easier or cheaper to perform. It may also reduce the error of rankings. The proposed
scheme has been previously introduced by [13] for estimating the population mean. They showed that combining
some various existing schemes may lead to a more efficient estimator.

The rest of paper is organized as follows. In Section 2, some preliminaries are presented and the likelihood
function of the FRSS scheme is introduced. Section 3 focuses on obtaining the MLE of scale parameter based
on FRSS scheme. Also, existence and uniqueness of the MLE for the scale parameter of exponential and normal
distributions are studied. The Fisher information (FI) contained in a FRSS is investigated in Section 4. In Section
5, the optimal FRSS scheme is determined. Toward this end, considering some different costs in addition to mean
squared error (MSE) of MLEs, the relative efficiency (RE) of the FRSS scheme with respect to the SRS method is
defined. In Section 6, some conclusions are stated.

2. Preliminaries

In this section, we briefly present some notations and axillary results. First of all, let us denote the cumulative
distribution function (cdf) and probability density function (pdf) of the population by F (x;θ) and f(x;θ),
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respectively, where θ is a vector of parameters. In the following, the data sets and likelihood functions concerning
to different sampling schemes with m cycles have been presented.
• Let us denote the data set of RSS by

X(m)
RSS =

{
X1(1:k)1, X2(2:k)1, ..., Xk(k:k)1, ..., X1(1:k)m, X2(2:k)m, ..., Xk(k:k)m

}
,

where Xj(j:k)i is the jth order statistic in a random sample of size k at the jth set of the ith cycle for i = 1, . . . ,m
and j = 1, . . . , k. The corresponding likelihood function is given by

L
(m)
RSS(θ) =

m∏
i=1

k∏
j=1

j

(
k

j

)
f(xj(j:k)i;θ)

[
F (xj(j:k)i;θ)

]j−1 [
F̄ (xj(j:k)i;θ)

]k−j

=

{
k!

k∏
j=1

(
k

j

)}m m∏
i=1

k∏
j=1

f(xj(j:k)i;θ)
[
F (xj(j:k)i;θ)

]j−1 [
F̄ (xj(j:k)i;θ)

]k−j
,

where F̄ (·) = 1− F (·) and xj(j:k)i is the observed value of Xj(j:k)i. For more details, see for example, [22] and
[6]. Throughout this paper, the product

∏0
i=1 is defined to be 1.

• When the set size k is even, assuming the data set of an ERSS is

X(m)
ERSS =

{
X1(1:k)1, X2(1:k)1, ..., X k

2 (1:k)1
, X k+2

2 (k:k)1, ..., Xk(k:k)1, . . . ,

X1(1:k)m, X2(1:k)m, ..., X k
2 (1:k)m

, X k+2
2 (k:k)m, ..., Xk(k:k)m

}
,

the appropriate likelihood function is given by (see, 3)

L
(m)
ERSS(θ) =

m∏
i=1


k
2∏

j=1

kf(xj(1:k)i;θ)
[
F̄ (xj(1:k)i;θ)

]k−1
k∏

j= k
2+1

kf(xj(k:k)i;θ)
[
F (xj(k:k)i;θ)

]k−1

 .

• Denoting the data sets of the MERSS type I and the MERSS type II by

X(m)
MERSS−I =

{
X1(1:1)1, ..., Xk(k:k)1, ..., X1(1:1)m, ..., Xk(k:k)m

}
,

and

X(m)
MERSS−II =

{
X1(1:1)1, ..., Xk(1:k)1, X1(1:1)m, ..., Xk(1:k)m

}
,

then, the corresponding likelihood functions are

L
(m)
MERSS−I(θ) =

m∏
i=1

k∏
j=1

jf(xj(j:j)i;θ)
[
F (xj(j:j)i;θ)

]j−1

and

L
(m)
MERSS−II(θ) =

m∏
i=1

k∏
j=1

jf(xj(1:j)i;θ)
[
F̄ (xj(1:j)i;θ)

]j−1
,

respectively. See, [1] and [9].
• Moreover, if the data set of MRSS is denoted by

X(m)
MRSS =

{{
Xj(k/2:k)i

}k/2

j=1
∪
{
Xj(k/2+1:k)i

}k

j=k/2+1
, i = 1, 2, ...,m

}
,
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where A ∪B stands for the union of A and B, the likelihood function is given by (see, 21)

L
(m)
MRSS(θ) =

m∏
i=1


 k

2∏
j=1

f( k
2 )
(xj( k

2 :k)i
;θ)

 k∏
j= k

2+1

f( k
2+1)(xj( k

2+1:k)i;θ)

 ,

where f(j)(·) is the pdf of the jth order statistic in a random sample of size k from the pdf f(·).
As previously mentioned, a FRSS data set is obtained, when all the above mentioned sampling schemes are

performed together with different cycles. Therefore, the associated data set is as follows

X(M)
FRSS =

{
X(m1)

RSS ∪ X(m2)
ERSS ∪ X(m3)

MERSS−I ∪ X(m4)
MERSS−II ∪ X(m5)

MRSS

}
.

The sample size of a FRSS is equal to Mk, where M =
∑5

i=1 mi. In practice, we can select a permutation of
(m1,m2,m3,m4,m5), that reduces the ranking error or cost of sampling. Here, (m1, . . . ,m5) is called the FRSS
scheme and its optimality is studied in comparison with SRS method in view of maximum RE by considering costs
of sampling. Since the various data sets are independently obtained, the likelihood function of the FRSS scheme is
given by

L
(M)
FRSS(θ) = L

(m1)
RSS (θ)L

(m2)
ERSS(θ)L

(m3)
MERSS−I(θ)L

(m4)
MERSS−II(θ)L

(m5)
MRSS(θ). (1)

The MLE and FI under FRSS scheme are studied in the next sections.

3. MLE of scale family based on FRSS

We recall that for given pdf f(x;σ), σ is a scale parameter, when f(x;σ) = 1
σf1(

x
σ ) where σ > 0 and f1(·) is a

pdf and does not depend on σ. Then, f(x;σ) is called a scale family. For more details, see for example, Rohatgi
and Ehsans Saleh (2015, p.196). There are many papers on the scale family as well as location or location-scale
families of distributions based on various procedures of RSS scheme. The research work by [22] was one of the
primary papers on estimation of location and scale parameters of distributions using RSS. [21] compared the MLE
of location and scale parameters based on RSS, MRSS and ERSS. The MLE of scale parameter and its properties
was studied by [9] on the basis of the MERSS scheme. Here, we investigate existence and uniqueness of MLE in
a scale family based on FRSS procedure as proposed in previous section. In this case, using (1), the log-likelihood
function of σ is given by

l(σ) = log c−Mk log σ +

m1∑
i=1

k∑
j=1

{
φ1(

xj(j:k)i

σ
) + (j − 1)φ2(

xj(j:k)i

σ
) + (k − j)φ3(

xj(j:k)i

σ
)

}

+

m2∑
i=1

{ k
2∑

j=1

(
φ1(

xj(1:k)i

σ
) + (k − 1)φ3(

xj(1:k)i

σ
)

)
+

k∑
j= k

2+1

(
φ1(

xj(k:k)i

σ
) + (k − 1)φ2(

xj(k:k)i

σ
)

)}

+

m3∑
i=1

k∑
j=1

{
φ1(

xj(j:j)i

σ
) + (j − 1)φ2(

xj(j:j)i

σ
)

}
+

m4∑
i=1

k∑
j=1

{
φ1(

xj(1:j)i

σ
) + (j − 1)φ3(

xj(1:j)i

σ
)

}

+

m5∑
i=1

{ k
2∑

j=1

(
φ1(

xj( k
2 :k)i

σ
) + (

k

2
− 1)φ2(

xj( k
2 :k)i

σ
) +

k

2
φ3(

xj( k
2 :k)i

σ
)

)

+

k∑
j= k

2+1

(
φ1(

xj( k
2+1:k)i

σ
) +

k

2
φ2(

xj( k
2+1:k)i

σ
) + (

k

2
− 1)φ3(

xj( k
2+1:k)i

σ
)

)}
,
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where φ1(·) = log f(·), φ2(·) = logF (·), φ3(·) = log F̄ (·) and

c =

{
k!

k∏
j=1

(
k

j

)}m1

km2k(k!)m3+m4

{
1

B(k2 ,
k
2 + 1)

}m5k

.

Denoting the first derivative of φi(x) by φ′
i(x) for 1 ≤ i ≤ 3, we get

∂l(σ)

∂σ
= −

m1∑
i=1

k∑
j=1

{
xj(j:k)i

σ2
φ′
1(
xj(j:k)i

σ
) + (j − 1)

xj(j:k)i

σ2
φ′
2(
xj(j:k)i

σ
)− (k − j)

xj(j:k)i

σ2
φ′
3(
xj(j:k)i

σ
)

}

−
m2∑
i=1

{ k
2∑

j=1

(
xj(1:k)i

σ2
φ′
1(
xj(1:k)i

σ
)− (k − 1)

xj(1:k)i

σ2
φ′
3(
xj(1:k)i

σ
)

)
+

k∑
j= k

2+1

(
xj(k:k)i

σ2
φ′
1(
xj(k:k)i

σ
)

+(k − 1)
xj(k:k)i

σ2
φ′
2(
xj(k:k)i

σ
)

)}
−

m3∑
i=1

k∑
j=1

{
xj(j:j)i

σ2
φ′
1(
xj(j:j)i

σ
) + (j − 1)

xj(j:j)i

σ2
φ′
2(
xj(j:j)i

σ
)

}

−
m4∑
i=1

k∑
j=1

{
xj(1:j)i

σ2
φ′
1(
xj(1:j)i

σ
)− (j − 1)

xj(1:j)i

σ2
φ′
3(
xj(1:j)i

σ
)

}
−

m5∑
i=1

{ k
2∑

j=1

(
xj( k

2 :k)i

σ2
φ′
1(
xj( k

2 :k)i

σ
)

+(
k

2
− 1)

xj( k
2 :k)i

σ2
φ′
2(
xj( k

2 :k)i

σ
)− k

2

xj( k
2 :k)i

σ2
φ′
3(
xj( k

2 :k)i

σ
)

)
+

k∑
j= k

2+1

(
xj( k

2+1:k)i

σ2
φ′
1(
xj( k

2+1:k)i

σ
)

+
k

2

xj( k
2+1:k)i

σ2
φ′
2(
xj( k

2+1:k)i

σ
)− (

k

2
− 1)

xj( k
2+1:k)i

σ2
φ′
3(
xj( k

2+1:k)i

σ
)

)}
− M

σ
k. (2)

Now, if there exists the MLE of σ, it satisfies in the equation ∂l(σ)
∂σ = 0. In general, the solution of this equation

does not have an explicit form. Nevertheless, we will show the existence and uniqueness of MLEs of scale
parameters for the exponential and normal distributions.

3.1. Exponential distribution

Let the underlying distribution be exponential with mean λ. The exponential distribution is a famous member of
scale family which is used in different fields such as reliability studies and lifetime data analysis. In the following,
the existence and uniqueness of the MLE of the scale parameter is investigated based on the FRSS scheme. Using
(2), the likelihood equation can be written as

−Mkλ+

m1∑
i=1

k∑
j=1

{
(k − j + 1)xj(j:k)i − (j − 1)

xj(j:k)i

e
xj(j:k)i

λ − 1

}
+

m2∑
i=1

{ k
2∑

j=1

kxj(1:k)i

+

k∑
j= k

2+1

[
xj(k:k)i − (k − 1)

xj(k:k)i

e
xj(k:k)i

λ − 1

]}
+

m3∑
i=1

k∑
j=1

{
xj(j:j)i − (j − 1)

xj(j:j)i

e
xj(j:j)i

λ − 1

}

+

m4∑
i=1

k∑
j=1

jxj(1:j)i +

m2∑
i=1

{ k
2∑

j=1

[(
k

2
− 1

)
xj( k

2 :k)i
−
(
k

2
− 1

)
xj( k

2 :k)i

e
x
j( k

2
:k)i

λ − 1

]

+

k∑
j= k

2+1

k

2

[
xj( k

2+1:k)i −
xj( k

2+1:k)i

e
x
j( k

2
+1:k)i

λ − 1

]}
= 0. (3)
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Note that the left hand side of equation (3) is a continuous function. On the other hand, by taking h(λ) = ∂l(λ)
∂λ , we

have:

lim
λ→0+

h(λ) =

m1∑
i=1

k∑
j=1

(k − j + 1)xj(j:k)i +

m2∑
i=1

 k
2∑

j=1

kxj(1:k)i +

k∑
j= k

2+1

xj(k:k)i

+

m3∑
i=1

k∑
j=1

xj(j:j)i

+

m4∑
i=1

k∑
j=1

jxj(1:j)i +

m5∑
i=1

 k
2∑

j=1

(
k

2
+ 1

)
xj( k

2 :k)i
+

k∑
j= k

2+1

k

2
xj( k

2+1:k)i

 > 0,

and also limλ→∞ h(λ) < 0. Therefore, the likelihood equation in (3) has at least one solution. On the other hand,
note that,

h′(λ) = −Mk − 1

λ2

m1∑
i=1

k∑
j=1

(j − 1)
x2
j(j:k)ie

xj(j:k)i
λ

(e
xj(j:k)i

λ − 1)2
− 1

λ2

m2∑
i=1

k∑
j= k

2+1

(k − 1)
x2
j(k:k)ie

xj(k:k)i
λ

(e
xj(k:k)i

λ − 1)2

− 1

λ2

m3∑
i=1

k∑
j=1

(j − 1)
x2
j(j:j)ie

xj(j:j)i
λ

(e
xj(j:j)i

λ − 1)2
− 1

λ2

m5∑
i=1

k
2∑

j=1

(
k

2
− 1)

x2
j( k

2 :k)i
e

x
j( k

2
:k)i

λ

(e
x
j( k

2
:k)i

λ − 1)2

− 1

λ2

m5∑
i=1

k∑
j= k

2+1

k

2

x2
j( k

2+1:k)i
e

x
j( k

2
+1:k)i

λ

(e
x
j( k

2
+1:k)i

λ − 1)2
,

which is simply a negative expression for all λ. Hence, the solution of the equation (3) and consequently the MLE
of λ is unique, too.

In the next subsection, we investigate the existence and uniqueness of the MLE for scale parameter in normal
distribution using XFRSS .

3.2. Normal distribution

Suppose that a FRSS data set is collected from the normal distribution with mean zero and variance σ2. Using (2),
the MLE of σ is obtained by solving the following equation

m1∑
i=1

k∑
j=1

xj(j:k)i

σ

{
xj(j:k)i

σ
− (j − 1)

ϕ(
xj(j:k)i

σ )

Φ(
xj(j:k)i

σ )
+ (k − j)

ϕ(
xj(j:k)i

σ )

Φ(−xj(j:k)i

σ )

}
+

m2∑
i=1

k
2∑

j=1

xj(1:k)i

σ

×
{
xj(1:k)i

σ
+ (k − 1)

ϕ(
xj(1:k)i

σ )

Φ(−xj(1:k)i

σ )

}
+

m2∑
i=1

k∑
j= k

2+1

xj(k:k)i

σ

{
xj(k:k)i

σ
− (k − 1)

ϕ(
xj(k:k)i

σ )

Φ(
xj(k:k)i

σ )

}

+

m3∑
i=1

k∑
j=1

{
xj(j:j)i

σ
− (j − 1)

xj(j:j)i

σ

ϕ(
xj(j:j)i

σ )

Φ(
xj(j:j)i

σ )

}
+

m4∑
i=1

k∑
j=1

xj(1:j)i

σ

{
xj(1:j)i

σ
+ (j − 1)

ϕ(
xj(1:j)i

σ )

Φ(−xj(1:j)i

σ )

}

+

m5∑
i=1

k
2∑

j=1

xj( k
2 :k)i

σ

{
xj( k

2 :k)i

σ
− (

k

2
− 1)

ϕ(
x
j( k

2
:k)i

σ )

Φ(
x
j( k

2
:k)i

σ )
+

k

2

ϕ(
x
j( k

2
:k)i

σ )

Φ(−
x
j( k

2
:k)i

σ )

}

+

m5∑
i=1

k∑
j= k

2+1

xj( k
2+1:k)i

σ

{
xj( k

2+1:k)i

σ
− k

2

ϕ(
x
j( k

2
+1:k)i

σ )

Φ(
x
j( k

2
+1:k)i

σ )
+ (

k

2
− 1)

ϕ(
x
j( k

2
+1:k)i

σ )

Φ(−
x
j( k

2
+1:k)i

σ )

}
−Mk = 0, (4)

where ϕ(·) and Φ(·) stand for the pdf and cdf of the standard normal distribution. Note that the left hand side of
(4) is a continuous function with respect to σ, and converges to ∞ and (−Mk), a negative value, when σ tends to
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0 and ∞, respectively. Hence, the Eq. (4) has at least one solution. To investigate the uniqueness of the MLE, we
have

∂2l(σ)

∂σ2
= C +D1 +D2 +D3,

where

−σ2

2
C = −Mk +

m1∑
i=1

k∑
j=1

xj(j:k)i

σ

{
xj(j:k)i

σ
− (j − 1)

ϕ(
xj(j:k)i

σ )

Φ(
xj(j:k)i

σ )
+ (k − j)

ϕ(
xj(j:k)i

σ )

Φ(−xj(j:k)i

σ )

}

+

m2∑
i=1

k
2∑

j=1

xj(1:k)i

σ

{
xj(1:k)i

σ
+ (k − 1)

ϕ(
xj(1:k)i

σ )

Φ(−xj(1:k)i

σ )

}
+

m2∑
i=1

k∑
j= k

2+1

xj(k:k)i

σ

{
xj(k:k)i

σ

−(k − 1)
ϕ(

xj(k:k)i

σ )

Φ(
xj(k:k)i

σ )

}
+

m3∑
i=1

k∑
j=1

xj(j:j)i

σ

{
xj(j:j)i

σ
− (j − 1)

ϕ(
xj(j:j)i

σ )

Φ(
xj(j:j)i

σ )

}

+

m4∑
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k∑
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xj(1:j)i

σ

{
(j − 1)

ϕ(
xj(1:j)i

σ )

Φ(−xj(1:j)i

σ )
+

xj(1:j)i

σ

}

+

m5∑
i=1

k
2∑

j=1

xj( k
2 :k)i

σ

{
xj( k

2 :k)i

σ
− (

k

2
− 1)

ϕ(
x
j( k

2
:k)i

σ )

Φ(
x
j( k

2
:k)i

σ )
+

k

2

ϕ(
x
j( k

2
:k)i

σ )

Φ(−
x
j( k

2
:k)i

σ )

}

+

m5∑
i=1

k∑
j= k

2+1

xj( k
2+1:k)i

σ

{
xj( k

2+1:k)i

σ
− k

2

ϕ(
x
j( k

2
+1:k)i

σ )

Φ(
x
j( k

2
+1:k)i

σ )
+ (

k

2
− 1)

ϕ(
x
j( k

2
+1:k)i

σ )

Φ(−
x
j( k

2
+1:k)i

σ )

}
, (5)

−σ2D1 =

m1∑
i=1

k∑
j=1

x2
j(j:k)i
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+
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( k
2∑
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x2
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2+1

x2
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+Mk, (6)
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σ )

Φ(
xj(j:k)i

σ )

)
+

m2∑
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×
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σ )

Φ(
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(
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σ
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σ )

Φ(
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σ )
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(7)
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and

σ2D3 =

m1∑
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)
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σ )

+
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)
. (8)

The expression in the right hand side of (5) is exactly the same as the one in the left hand side of (4) and so, it is
equal to zero at any root of the Eq. (4). On the other hand, it is easily seen that D1 in (6) is always negative. Also,
since

(
x+ ϕ(x)

Φ(x)

)
> 0 and

(
x− ϕ(x)

Φ(−x)

)
< 0 for all x (see, for example, 9), the expressions D2 and D3 in (7) and

(8), respectively, are negative. Hence, the second derivative of the likelihood function is always negative. These
imply that the MLE of σ is unique.

4. Fisher information in FRSS

In this section, the FI contained in a FRSS data set is studied. It is easy to show that under regularity conditions
(see, 11, p.68), the amount of FI in a FRSS data set about a vector of parameters θ equals to

IFRSS(θ) = IRSS(θ) + IERSS(θ) + IMERSS−I(θ) + IMERSS−II(θ) + IMRSS(θ). (9)

Let F (·;θ) be the cdf of the underlying population. [7] showed that the FI matrix contained in a RSS data set is
given by

IRSS(θ) = ISRS(θ) +m1k(k − 1)E

{
1

F (X;θ)F̄ (X;θ)

∂

∂θ
F (X;θ)

∂

∂θT
F (X;θ)

}
, (10)

where ISRS(·) stands for the FI matrix in a SRS. [15] compared the FI about the dependence parameter using RSS
with SRS. [9] investigated the FI in MERSS procedure for a scale family of distributions.

Although, there is not a closed form for the FI in general, but we can obtain the FI for special case of exponential
distribution.

Remark 1
[5, p. 166] Let X1, · · · , Xk be a random sample from an exponential distribution with mean λ. Then, the FI
contained in the jth order statistic, denoted by Ij:k(λ), is given by

Ij:k(λ) =


1
λ2 , j = 1,
1
λ2 + 2k(k−1)

λ2 ζ(3, k), j = 2,
1
λ2 + k(k−j+1)

λ2(j−2) (γj,k + δj,k) , j ≥ 3,

where ζ(α, r) =
∑∞

i=0
1

(r+i)α , γj,k =
[∑j−2

i=1
1

k−i

]2
and δj,k =

∑j−2
i=1

1
(k−i)2 .
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The FI in various schemes can be obtained using Remark 1. Of course, the FI in RSS procedure may be computed
using (10). For this purpose, we have

IRSS(λ) =
m1k

λ2
+

m1k(k − 1)

λ5

∫ ∞

0

x2e−
2x
λ

1− e−
x
λ
dx

=
m1k

λ2
+

m1k(k − 1)

λ5

∞∑
i=0

∫ ∞

0

x2e−(i+2) x
λ dx

=
m1k

λ2
+

m1k(k − 1)

λ2
ζ(3, 2)

=
m1k

λ2
[1 + (k − 1)ζ(3, 2)] . (11)

Now, using Remark 1, it can be shown that the FI in ERSS, MERSS type I, MERSS type II and MRSS schemes
are, respectively, as follows

IERSS(λ) =
m2k

2
[I1:k(λ) + Ik:k(λ)]

=
m2k

2

[
1

λ2
+

1

λ2
+

k

λ2(k − 2)
(γk,k + δk,k)

]
=

m2k

2λ2

[
2 +

k

k − 2
(γk,k + δk,k)

]
, (12)

IMERSS−I(λ) = m3

{
1

λ2
+ I2:2(λ) +

k∑
j=3

Ij:j(λ)

}

= m3

{
2

λ2
+

4

λ2
ζ(3, 2) +

k∑
j=3

[
1

λ2
+

j

λ2(j − 2)
(γj,j + δj,j)

]}

=
m3

λ2

{
r + 4ζ(3, 2) +

k∑
j=3

j

j − 2
[γj,j + δj,j ]

}
, (13)

IMERSS−II(λ) = m4

k∑
j=1

I1:j(λ) =
m4k

λ2
, (14)

and

IMRSS(λ) =
m5k

2

{
I k

2 :k
(λ) + I k

2+1:k(λ)
}
, (15)

where

I k
2 :k

(λ) =

{
1
λ2 + 2k(k−1)

λ2 ζ(3, k), k
2 = 2,

1
λ2 + k(k/2+1)

λ2(k/2−2)

[
γ k

2 ,k
+ δ k

2 ,k

]
, k

2 ≥ 3.

Consequently, the FI contained in X(M)
FRSS about λ is obtained by summing Eqs. (11)-(15) as

IFRSS(λ) = IRSS(λ) + IERSS(λ) + IMERSS−I(λ) + IMERSS−II(λ) + IMRSS(λ). (16)

The following result is concluded as trivial using the asymptotic properties of the MLE.
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Table 1. Values of FI of some selected permutations of m for exponential distribution.

k = 4 k = 6
The most FIs The least FIs The most FIs The least FIs
m FI m FI m FI m FI

(0,0,0,0,6) 56.85905 (1,3,0,1,1) 46.99254 (0,0,0,0,6) 119.97000 (0,4,0,2,0) 73.99000
(1,0,0,0,5) 56.23191 (0,3,1,1,1) 46.56251 (1,0,0,0,5) 118.09841 (0,3,0,3,0) 64.49250
(0,0,1,0,5) 55.80188 (0,4,0,1,1) 46.36540 (2,0,0,0,4) 116.22683 (0,1,0,4,1) 59.49250
(2,0,0,0,4) 55.60477 (1,3,1,1,0) 45.93537 (0,0,1,0,5) 116.22221 (1,1,0,4,0) 57.62091
(1,0,1,0,4) 55.17474 (0,2,0,4,0) 32.44444 (0,1,0,0,5) 115.47250 (0,2,0,4,0) 54.99500
(3,0,0,0,3) 54.97762 (0,0,0,5,1) 29.47651 (3,0,0,0,3) 114.35524 (0,0,0,5,1) 49.99500
(6,0,0,0,0) 53.09619 (1,0,0,5,0) 28.84937 (6,0,0,0,0) 108.74049 (1,0,0,5,0) 48.12341
(5,0,1,0,0) 52.66617 (0,0,1,5,0) 28.41934 (4,0,1,0,1) 108.73587 (0,0,1,5,0) 46.24721
(5,1,0,0,0) 52.46905 (0,1,0,5,0) 28.22222 (2,0,2,0,2) 108.73125 (0,1,0,5,0) 45.49750
(4,0,2,0,0) 52.23614 (0,0,0,6,0) 24.00000 (5,0,1,0,0) 106.86428 (0,0,0,6,0) 36.00000

Remark 2
Let λ̂FRSS be the MLE of λ based on the FRSS scheme with M cycles. Then the asymptotic distribution of λ̂FRSS

is given by

√
n
(
λ̂FRSS − λ

)
→ N

(
0,

1

IFRSS(λ)

)
, as n → ∞,

where n = Mk is the size of measured data.

Since the first and second derivatives of log-likelihood function in normal distribution have complex functional
forms, we can not derive a closed form for the FI in this case. So, numerical methods are needed to compute it.

The FIs are calculated for all permutations of m = (m1,m2,m3,m4,m5). It is obvious that the number of all
permutations of m = (m1,m2,m3,m4,m5) for M = 6 equals 210, so, we have just presented 10 permutations
with the most FIs and also 10 permutations with the least FIs in Table 1.

From Table 1, the following outcomes deduced:

• The FI increases, when n = MK increases for all permutations of m = (m1,m2,m3,m4,m5).
• The schemes (0, 0, 0, 0, 6) and (0, 0, 0, 6, 0) have maximum and minimum values of FI, respectively.
• One can derive the most FIs between all permutations of m = (m1,m2,m3,m4,m5) by Combining MRSS

and RSS schemes. Furthermore, combinations of MERSS type-II and ERSS schemes have the least FIs in
among all permutations.
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5. Optimal FRSS scheme

In this section, the optimal scheme m = (m1,m2,m3,m4,m5) is determined via defining a RE criterion. Toward
this end, we use two separate criteria, the efficiency of estimators and the costs of sampling. The idea of 18 has
been used in this section. It should be highlighted that on the basis of philosophy of RSS scheme, there are different
costs such as cost of sampling one unit (ci), cost of quantification of the interested variable for one unit (cq), cost
of one pairwise comparison in RSS and MRSS schemes (cr1), cost of one pairwise comparison in ERSS scheme
(cr2) and cost of one pairwise comparison in MERSS type I and MERSS type II schemes cr3 . It is worth pointing
out that from the philosophy of different mentioned schemes of RSS in this paper, one can easily find out that ci is
less than cq and cr3 ≤ cr2 ≤ cr1 . Therefore, the total cost of FRSS scheme can be computed as

CFRSS = k (m1 +m5) [kci + g1(k)cr1 + cq] +m2k(kci + g2(k)cr2 + cq)

+ (m3 +m4)

[
k(k + 1)

2
ci + k(g2(k)cr3 + cq)

]
,

where g1(k) ≈ (k+2)(k−1)
2 stands for the number of needed pairwise comparisons for judgment ranking in both of

RSS and MRSS schemes; also, g2(k) ≈ k − 1 represents the number of needed pairwise comparisons for judgment
ranking in the ERSS, MERSS type I and MERSS type II schemes. Moreover, the total cost of SRS is given by

CSRS = N (ci + cq) .

Now, suppose that TFRSS and TSRS are two estimators based on the FRSS and SRS schemes, respectively. Then,
the RE of TFRSS with respect to TSRS is defined as

RE(TFRSS , TSRS) =
CSRS

CFRSS

MSE(TSRS)

MSE(TFRSS)
, (17)

where MSE(T ) = E(T − θ)2 stands for the mean squared error of the estimator T of the parameter θ. For more
details, see also, [24]. In the sequel, we compare the REs of MLEs of the scale parameters of both exponential and
normal distributions based on the FRSS and SRS schemes with same size n = Mk.

5.1. Exponential distribution

Based on a simple random sample from the exponential distribution with mean λ, it can be easily shown that
the MLE of λ is the sample mean, that is, λ̂SRS = X̄ , and it is easy to see that λ̂SRS is an unbiased estimator
with variance λ2/n. On the other hand, using Remark 2, for large values of n, it is clear that approximately,
V ar(λ̂FRSS) = (nIFRSS(λ))

−1
. Therefore, one can obtain the RE(λ̂FRSS , λ̂SRS) using (17). Toward this end,

some different costs have been considered. The REs are computed for M = 6 and k = 4, 6. We have just presented
10 permutations with the most REs and also 10 permutations with the least REs in Table 2.

From Table 2 the following outcomes can be deduced:

• The estimator λ̂FRSS is more efficient than λ̂SRS for many permutations of m = (m1,m2,m3,m4,m5).
• The schemes (0, 0, 5, 0, 1), (0, 0, 6, 0, 0) and (0, 0, 4, 0, 2) are common in Table 2 among 10 permutations

which have the most REs. So, one of them may be considered as the optimal FRSS scheme for estimating
the mean of exponential distribution.

• Using the entries of Table 2, the RE of different schemes in the problem of estimating the mean of exponential
distribution may also be compared together. For example, when k = 4, the RE of MERSS type I, the case of
m = (0, 0, 6, 0, 0), with respect to MERSS type II, the case of m = (0, 0, 0, 6, 0), is 1.8466/0.8773 = 2.1049,
which implies that MERSS type I is more efficient than MERSS type II.

• The RE is sensitive to changes of the cost values and permutations order of m = (m1,m2,m3,m4,m5) is
changed by different values of costs.
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5.2. Normal distribution

Suppose that the underlying distribution is N(0, σ2). It can be easily shown that the MLE of σ2 based on the SRS
method, denoted by σ̂2

SRS , has the variance 2σ4

n . On the other hand, as mentioned in subsection 3.1, the MLE
of σ2 on the basis of the FRSS scheme, i.e. σ̂2

FRSS , dose not have an explicit form. So, numerical simulations
are required to study the behaviour of MSE. The simulation algorithm is performed with 2× 105 repetitions for
standard normal distribution. Moreover, to determine the values of RE(σ̂2

FRSS , σ̂
2
SRS), some different costs have

been considered. Values of RE(σ̂2
FRSS , σ̂

2
SRS) are presented in Table 3 for some selected permutations of m.

From Table 3, it is observed that:

• The estimator σ̂2
FRSS is more efficient than σ̂2

SRS for many permutations of m.
• The optimal scheme is a combination of ERSS, MERSS type I and MERSS type II schemes. More precisely,

when k = 4 the optimal schemes (0, 1, 5, 0, 0), (0, 1, 3, 2, 0) and (0, 4, 2, 0, 0), are common for different values
of costs in Table 3 and when k = 6 the optimal common schemes are (0, 1, 3, 2, 0) and (0, 0, 6, 0, 0).

• When k = 6, the RE of ERSS, m = (0, 6, 0, 0, 0), with respect to MERSS type I, m = (0, 0, 6, 0, 0), in the
problem of estimating σ2 in normal distribution is 4.5179/4.4431 = 1.0168. The REs of other schemes may
be derived, similarly.

• The RE is sensitive to changes of the cost values and permutations order of m = (m1,m2,m3,m4,m5) is
changed by different values of costs.

6. Conclusions

In this paper, a FRSS scheme including ordinary RSS, ERSS, MERSS and MRSS was introduced and the associated
likelihood function derived. The MLE was considered in scale family of distributions based on the FRSS. The
existence and uniqueness of the MLEs of scale parameters were investigated in the exponential and normal
distributions. Moreover, the amount of FI about the parameter of interest was studied and some results were
presented in detail for the case of exponential distribution.

A comparison was done among different FRSS schemes. To obtain the optimal FRSS scheme a criterion was
defined based on both efficiency and cost considerations. It was deduced that combining some existing sampling
schemes increases the RE. Moreover, the optimal scheme depends on the underlying distribution and the parameter
of interest. The proposed scheme can be extended to some other cases:

• Other versions of FRSS including more sampling schemes may be valuable to study.
• As previously mentioned in the procedure of ERSS, from one half of sets the minima and from the others

the maxima are recorded. If in all sets the maxima are observed, using some algebraic and numerical
computations, we observe that the amount of FI about the mean of exponential distribution increases.

REFERENCES

[1] W. Abu-Dayyeh and E. Al Sawi. Modified inference about the mean of the exponential distribution using
moving extreme ranked set sampling. Statistical Papers, 50(2):249–259, 2009.

[2] M. Al-Odat and M. F. Al-Saleh. A variation of ranked set sampling. Journal of Applied Statistical Science,
10(2):137–146, 2001.

[3] A. I. Al-Omari and S. A. Al-Hadhrami. On maximum likelihood estimators of the parameters of a modified
Weibull distribution using extreme ranked set sampling. Journal of Modern Applied Statistical Methods,
10(2):607–617, 2011.

[4] A. I. Al-Omari and M. Z. Raqab. Estimation of the population mean and median using truncation-based
ranked set samples. Journal of Statistical Computation and Simulation, 83(8):1453–1471, 2013.

Stat., Optim. Inf. Comput. Vol. 9, March 2021



A. EFTEKHARIAN, M. RAZMKHAH AND J. AHMADI 203

[5] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja. A First Course in Order Statistics. SIAM, New York,
2008.

[6] S. Balci, A. D. Akkaya, and B. E. Ulgen. Modified maximum likelihood estimators using ranked set sampling.
Journal of Computational and Applied Mathematics, 238:171–179, 2013.

[7] L. Barabesi and A. El-Sharaawi. The efficiency of ranked set sampling for parameter estimation. Statistics &
Probability Letters, 53(2):189–199, 2001.

[8] M. Chacko and P. Y. Thomas. Estimation of a parameter of bivariate Pareto distribution by ranked set
sampling. Journal of Applied Statistics, 34(6):703–714, 2007.

[9] W. Chen, M. Xie, and M. Wu. Parametric estimation for the scale parameter for scale distributions using
moving extremes ranked set sampling. Statistics & Probability Letters, 83(9):2060–2066, 2013.

[10] W. Chen, M. Xie, and M. Wu. Modified maximum likelihood estimator of scale parameter using moving
extremes ranked set sampling. Communications in Statistics-Simulation and Computation, 45(6):2232–2240,
2016.

[11] Z. Chen, Z. Bai, and B. Sinha. Ranked Set Sampling: Theory and Applications. Springer Science & Business
Media, 2003.

[12] T. Dell and J. Clutter. Ranked set sampling theory with order statistics background. Biometrics, 28(2):545–
555, 1972.

[13] A. Eftekharian and M. Razmkhah. A unified ranked set sampling for estimating the population mean.
ISTATISTIK: Journal of the Turkish Statistical Association, 9(3):107–118, 2016.

[14] G. McIntyre. A method for unbiased selective sampling, using ranked sets. Crop and Pasture Science,
3(4):385–390, 1952.

[15] R. Modarres and G. Zheng. Maximum likelihood estimation of dependence parameter using ranked set
sampling. Statistics & Probability Letters, 68(3):315–323, 2004.

[16] H. Muttlak. Median ranked set sampling. Journal of Applied Statistical Sciences, 6(4):245–255, 1997.

[17] H. Muttlak, S. Ahmed, and M. Al-Momani. Shrinkage estimation in replicated median ranked set sampling.
Journal of Statistical Computation and Simulation, 80(11):1185–1196, 2010.

[18] R. W. Nahhas, D. A. Wolfe, and H. Chen. Ranked set sampling: cost and optimal set size. Biometrics,
58(4):964–971, 2002.

[19] H. M. Samawi, M. S. Ahmed, and W. Abu-Dayyeh. Estimating the population mean using extreme ranked
set sampling. Biometrical Journal, 38(5):577–586, 1996.

[20] S. Sarikavanij, S. Kasala, B. K. Sinha, and M. Tiensuwan. Estimation of location and scale parameters in
two-parameter exponential distribution based on ranked set sample. Communications in Statistics-Simulation
and Computation, 43(1):132–141, 2014.

[21] A.-B. Shaibu and H. A. Muttlak. A comparison of the maximum likelihood estimators under ranked set
sapling some of its modifications. Applied Mathematics and Computation, 129(2):441–453, 2002.

[22] L. Stokes. Parametric ranked set sampling. Annals of the Institute of Statistical Mathematics, 47(3):465–482,
1995.

[23] K. Takahasi and K. Wakimoto. On unbiased estimates of the population mean based on the sample stratified
by means of ordering. Annals of the Institute of Statistical Mathematics, 20(1):1–31, 1968.

[24] Y.-G. Wang, Z. Chen, and J. Liu. General ranked set sampling with cost considerations. Biometrics,
60(2):556–561, 2004.

Stat., Optim. Inf. Comput. Vol. 9, March 2021


