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Abstract In this paper some recurrence relations satisfied by single and product moments of progressively Type-II right
censored order statistics from Hjorth distribution have been obtained. Then we use these results to compute the moments for
all sample sizes and all censoring schemes (R1, R2, ..., Rm),m ≤ n, which allow us to obtain BLUEs of location and scale
parameters based on progressively Type-II right censored samples. The best linear unbiased predictors of censored failure
times are then discussed briefly. Finally, a numerical example with real data is presented to illustrate the inferential method
developed here.
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1. Introduction

The scheme of progressive Type-II censoring is of importance in reliability and life-testing experiments. It allows
the experimenter to remove units from a life test at various stages during the experiment which may lead to a
saving of costs and of time (see Cohen [12] and Sen [29]). In such a random experiment, a group of n independent
and identical experimental units is put on a life test at time zero with continuous, identically distributed failure
times X1, X2, ..., Xn. After the jth failure, a prespecified number Rj ≥ 0 of the n− j −

∑j−1
i=0 Ri remaining (or

surviving) units are randomly withdrawn from the experiment, 1 ≤ j ≤ m,m ≤ n, R0 = 0. Removed units thus
become right censored at the time of failure of other units. This progressive censoring leads to m ordered observed
failure times denoted by X

(R1,R2,...,Rm)
1:m:n , X

(R1,R2,...,Rm)
2:m:n , ..., X

(R1,R2,...,Rm)
m:m:n , and these are called progressively

Type-II right censored order statistics of size m from a sample of size n with progressive censoring scheme
(R1, R2, ..., Rm). Thus, in this type of sampling, m failures are observed,

∑m
j=1 Rj units are progressively censored

and n = m+
∑m

j=1 Rj denotes the number of units in the life test. The withdrawal of units may be seen as a model
describing drop-outs of units due to failures which have causes other than the specific one under study. In this sense,
progressive censoring schemes are applied in clinical trials as well. Here, the drop-outs of patients may be caused
by migration, lack of interest or by personal or ethical decisions, and they are regarded as random withdrawals. For
a detailed discussion of progressive censoring and the relevant developments in this area, one may refer to Sen [29]
and Balakrishnan and Aggarwala [4].
The situation with no censoring corresponds to the special case with m = n and R1 = R2 = ... = Rm = 0, whereas
the situation with ordinary Type-II right censoring at a given order statistic corresponds to the special case with
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m < n, R1 = R2 = ... = Rm−1 = 0 and Rm = n−m.
If the failure times of the n items originally on test are from a continuous population with c.d.f. F(x) and p.d.f.
f(x), then the joint p.d.f. of X(R1,R2,...,Rm)

1:m:n , X
(R1,R2,...,Rm)
2:m:n , ..., X

(R1,R2,...,Rm)
m:m:n is given by (cf. Balakrishnan and

Sandhu [11] and Saran and Pushkarna [27])

fX1:m:n,...,Xm:m:n(x1, x2, ..., xm) = A(n,m− 1)

m∏
i=1

f(xi)[1− F (xi)]
Ri , 0 ≤ x1 < x2 < ... < xm < ∞, (1)

where A(n,m− 1) = n(n−R1 − 1)(n−R1 −R2 − 2)...(n−R1 −R2 − ...−Rm−1 −m+ 1).
Here, note that all the factors in A(n,m− 1) are positive integers. Also it may be observed that the different factors
in A(n,m− 1) represent the number of units still on test immediately preceding the first, second, ..., mth observed
failures, respectively. Similarly, for convenience in notation, let us define

A(p, q) = p(p−R1 − 1)(p−R1 −R2 − 2)...(p−R1 −R2 − ...−Rq − q),

for q = 0, 1, ..., p− 1, with all the factors being positive integers.
Progressive censoring and associated inferential procedures have been extensively studied in the literature for
a number of distributions by several authors. Cohen ([12], [13], [14], [15] and [16]), Mann ([21], [22]), Cohen
and Whitten [17], Viveros and Balakrishnan [30], Balakrishnan and Sandhu [11], Aggarwala and Balakrishnan
[1] and Balakrishnan and Aggarwala [4] have derived recurrence relations for single and product moments of
progressively Type-II right censored order statistics from exponential, Pareto and power function distributions and
their truncated forms.
Saran and Pande [26], Saran and Pushkarna ([27], [28]), Saran et al. [25] and Pushkarna et al. [24] have derived
recurrence relations for single and product moments of the corresponding progressively Type-II right censored
order statistics from half logistic, Burr, left truncated logistic, Frechet and a general class of doubly truncated
continuous distributions.
Mahmoud et al. [20] derived some new recurrence relations for single and product moments of progressively
Type-II right censored order statistics from the linear exponential distribution and also obtained maximum
likelihood estimators (MLEs) of the location and scale parameters. Balakrishnan et al. [5] and Balakrishnan
and Saleh ([7], [8], [9], [10]) have established several recurrence relations for single and product moments of
progressively Type-II right censored order statistics from logistic, half-logistic, log-logistic, generalized half
logistic and generalized logistic distributions and utilized them to derive the best linear unbiased estimators of the
location and scale parameters.
In this paper, we derive some recurrence relations satisfied by the single and product moments of progressively
Type-II right censored order statistics from Hjorth distribution. These relations enable the recursive computation of
moments for all sample sizes and all possible progressive censoring schemes. They generalize the corresponding
results for exponential distribution due to Aggarwala and Balakrishnan [1]. Then we use these results to
compute the means, variances and covariances of progressively Type-II right censored order statistics for
some specific values of the parameters, which will be utilized to derive the best linear unbiased estimators
(BLUEs) of location and scale parameters of the location-scale Hjorth distribution as well as their variances and
covariances. Tables of these quantities are presented for different sample sizes up to n = 8 and some selected
progressive censoring schemes, corresponding to particular values of the parameters. Further, for the special case
R1 = R2 = ... = Rm = 0, the derived results would reduce to the general recurrence relations for the usual order
statistics from the Hjorth distribution. Also, we briefly discuss the best linear unbiased predictors (BLUPs) of the
censored failure times by making use of the results developed on the BLUEs. Finally, one numerical example on
real data is presented to illustrate all the methods of inference developed here.

2. Hjorth distribution

Hjorth distribution is a reliability distribution with increasing, decreasing, constant and bathtub shaped failure rates
as its special cases. This distribution is also known as IDB distribution (cf. Hjorth [19]). Its p.d.f. f(x), c.d.f. F(x)
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Figure 2.1

and characterizing differential equation, respectively, are given by:

f(x) =
[(1 + βx)δx+ θ]e−

δx2

2

(1 + βx)1+
θ
β

, x ≥ 0, β, δ, θ > 0, (2)

F (x) = 1− e−δx2/2

(1 + βx)
θ
β

, (3)

(1 + βx)f(x) = [(1 + βx)δx+ θ](1− F (x)). (4)

The failure rate of this distribution is readily seen to be

z(t) = δt+
θ

1 + βt
. (5)

Special cases of the Hjorth distribution are:

θ = 0 : the Rayleigh distribution (a Weibull distribution),
δ = β = 0 : the exponential distribution (a Weibull distribution),

δ = 0 : decreasing failure rate,
δ ≥ θβ : increasing failure rate,

0 < δ ≤ θβ : bathtub curve.

More details on this distribution can be found in Hjorth [19]. The graphs of the p.d.f. and c.d.f. of Hjorth
distribution as given in (2) and (3) for β = 2, δ = 3 and for different values of θ = 4.0, 2.5, 1.0 and 0.50 are
shown in Figures 2.1(a) and 2.1(b), respectively.
The c.d.f. of the location-scale parameter Hjorth distribution is given by

F (x) = 1− e−δ( x−µ
σ )

2
/2(

1 + β
(
x−µ
σ

)) θ
β

, x ≥ µ, µ ≥ 0, β, δ, θ, σ > 0. (6)

3. Recurrence relations for single moments

In this section, we shall establish several recurrence relations for single moments of progressively Type-II right
censored order statistics from Hjorth distribution satisfying the characterizing differential equation (4). Using (1),
we have

µ(R1,R2,...,Rm)(k)

r:m:n = E[X(R1,R2,...,Rm)
r:m:n ]k

= A(n,m− 1)

∫ ∫
· · ·

∫
0≤x1<x2<...<xm<∞

∫
xk
r

m∏
t=1

f(xt)[1− F (xt)]
Rtdxt. (7)
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Theorem 1
For k ≥ 0,

µ
(0)
1:1:1

(k+3)
=

k + 3

δβ

[
µ
(0)
1:1:1

(k)
+ (β − θ

k + 1
)µ

(0)
1:1:1

(k+1)
− δ

k + 2
µ
(0)
1:1:1

(k+2)
]
. (8)

Proof
From (7), for n = m = r = 1, we obtain

µ
(0)
1:1:1

(k)
+ βµ

(0)
1:1:1

(k+1)
= A(1, 0)

∫
x1

x1
k(1 + βx1)f(x1)dx1,

using (4), we have

µ
(0)
1:1:1

(k)
+ βµ

(0)
1:1:1

(k+1)
=

∫
x1

x1
k(δx1 + βδx2

1 + θ)(1− F (x1))dx1

= δ

∫
x1

x1
k+1(1− F (x1))dx1

+ δβ

∫
x1

x1
k+2(1− F (x1))dx1

+ θ

∫
x1

x1
k(1− F (x1))dx1.

Integrating by parts all integrals on the R.H.S. of the above equation by taking (1− F (x1)) for differentiation and
the rest of the integrand for integration, and then after some simplification, it leads to the required result (8).

Theorem 2
For n ≥ 2 and k ≥ 0,

µ
(n−1)
1:1:n

(k+3)
=

k + 3

δβ

[
1

n
µ
(n−1)
1:1:n

(k)
+

(
β

n
− θ

k + 1

)
µ
(n−1)
1:1:n

(k+1)
− δ

k + 2
µ
(n−1)
1:1:n

(k+2)
]
. (9)

Proof
Proceeding in a similar manner as in Theorem 1, we can easily establish the relation (9).

Theorem 3
For 2 ≤ m ≤ n− 1, k ≥ 0 and R1 ≥ 0,

µ
(R1,R2,...,Rm)
1:m:n

(k)
+ βµ

(R1,R2,...,Rm)
1:m:n

(k+1)
= θ

[
(n−R1 − 1)

k + 1
µ
(R1+R2+1,R3,...,Rm)
1:m−1:n

(k+1)

+
(R1 + 1)

k + 1
µ
(R1,R2,...,Rm)
1:m:n

(k+1)
]

+ δ

[
(n−R1 − 1)

k + 2
µ
(R1+R2+1,R3,...,Rm)
1:m−1:n

(k+2)

+
(R1 + 1)

k + 2
µ
(R1,R2,...,Rm)
1:m:n

(k+2)
]

+ δβ

[
(n−R1 − 1)

k + 3
µ
(R1+R2+1,R3,...,Rm)
1:m−1:n

(k+3)

+
(R1 + 1)

k + 3
µ
(R1,R2,...,Rm)
1:m:n

(k+3)
]
. (10)
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Proof
The relation in (10) may be proved by following exactly the same steps as those used in proving Theorem 4, which
is presented next.

Theorem 4
For 2 ≤ r ≤ n− 1, m < n, k ≥ 0 and Rr ≥ 0,

µ(R1,R2,...,Rm)
r:m:n

(k)
+ βµ(R1,R2,...,Rm)

r:m:n

(k+1)
= θ

[
(n− Sr − r)

k + 1
µ
(R1,R2,...,Rr−1,Rr+Rr+1+1,Rr+2,...,Rm)
r:m−1:n

(k+1)

− (n− Sr−1 − r + 1)

k + 1
µ
(R1,R2,...,Rr−2,Rr−1+Rr+1,Rr+1,...,Rm)
r−1:m−1:n

(k+1)

+
(Rr + 1)

k + 1
µ(R1,R2,...,Rr,...,Rm)
r:m:n

(k+1)
]

+ δ

[
(n− Sr − r)

k + 2
µ
(R1,R2,...,Rr−1,Rr+Rr+1+1,Rr+2,...,Rm)
r:m−1:n

(k+2)

− (n− Sr−1 − r + 1)

k + 2
µ
(R1,R2,...,Rr−2,Rr−1+Rr+1,Rr+1,...,Rm)
r−1:m−1:n

(k+2)

+
(Rr + 1)

k + 2
µ(R1,R2,...,Rr,...,Rm)
r:m:n

(k+2)
]

+ δβ

[
(n− Sr − r)

k + 3
µ
(R1,R2,...,Rr+Rr+1+1,Rr+2,...,Rm)
r:m−1:n

(k+3)

− (n− Sr−1 − r + 1)

k + 3
µ
(R1,R2,...,Rr−1,Rr−2,Rr−1+Rr+1,Rr+1,...,Rm)
r−1:m−1:n

(k+3)

+
(Rr + 1)

k + 3
µ(R1,R2,...,Rr,...,Rm)
r:m:n

(k+3)
]
, (11)

where Si = R1 +R2 + ...+Ri, 1 ≤ i ≤ m.

Proof
Using (7) and (4), we have

µ(R1,R2,...,Rm)
r:m:n

(k)
+ βµ(R1,R2,...,Rm)

r:m:n

(k+1)

= A(n,m− 1)

∫ ∫
· · ·

∫
0≤x1<x2<...<xr−1<xr+1<...<xm<∞

I(xr−1, xr+1)

m∏
u=1,u̸=r

[1− F (xu)]
Ruf(xu)dxu, (12)

where

I(xr−1, xr+1) =

∫ xr+1

xr−1

xk
r (1 + βxr)[1− F (xr)]

Rrf(xr)dxr. (13)
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Using the characterizing differential equation (4), we have

I(xr−1, xr+1) =

∫ xr+1

xr−1

xk
r (δxr + δβx2

r + θ)[1− F (xr)]
Rr+1dxr

= δ

∫ xr+1

xr−1

xk+1
r [1− F (xr)]

Rr+1dxr + δβ

∫ xr+1

xr−1

xk+2
r [1− F (xr)]

Rr+1dxr

+ θ

∫ xr+1

xr−1

xk
r [1− F (xr)]

Rr+1dxr

= δI1(xr−1, xr+1) + δβI2(xr−1, xr+1) + θI0(xr−1, xr+1), (14)

where

Ia(xr−1, xr+1) =

∫ xr+1

xr−1

xk+a
r [1− F (xr)]

Rr+1dxr; a = 0, 1, 2.

Integration by parts yields,

Ia(xr−1, xr+1) =
xk+a+1
r

k + a+ 1
[1− F (xr)]

Rr+1 |xr+1
xr−1

−
∫

(Rr + 1)[1− F (xr)]
Rr (−f(xr))

xk+a+1
r

k + a+ 1
dxr

=
1

(k + a+ 1)

[
xk+a+1
r+1 [1− F (xr+1)]

Rr+1 − xk+a+1
r−1 [1− F (xr−1)]

Rr+1

+ (Rr + 1)

∫
[1− F (xr)]

Rrxk+a+1f(xr)dxr

]
. (15)

Upon substituting for I0(xr−1, xr+1), I1(xr−1, xr+1) and I2(xr−1, xr+1) from equation (15) in (14) and then
substituting the resultant expression for I(xr−1, xr+1) in (12) and simplifying, it leads to Theorem 4.

Next, we state another result on single moments which can easily be established on similar lines.

Theorem 5
For 2 ≤ m ≤ n, k ≥ 0 and Rm ≥ 0,

µ(R1,R2,...,Rm)
m:m:n

(k)
+ βµ(R1,R2,...,Rm)

m:m:n

(k+1)
= θ

[
− (n− Sm−1 −m+ 1)

k + 1
µ
(R1,R2,...,Rm−2,Rm−1+Rm+1)
m−1:m−1:n

(k+1)

+
(Rm + 1)

k + 1
µ(R1,R2,...,Rm)
m:m:n

(k+1)
]

+ δ

[
− (n− Sm−1 −m+ 1)

k + 2
µ
(R1,R2,...,Rm−2,Rm−1+Rm+1)
m−1:m−1:n

(k+2)

+
(Rm + 1)

k + 2
µ(R1,R2,...,Rm)
m:m:n

(k+2)
]

+ δβ

[
− (n− Sm−1 −m+ 1)

k + 3
µ
(R1,R2,...,Rm−2,Rm−1+Rm+1)
m−1:m−1:n

(k+3)

+
(Rm + 1)

k + 3
µ(R1,R2,...,Rm)
m:m:n

(k+3)
]
. (16)

Remark 1. It may be mentioned that if R1 = R2 = ... = Rk−1 = 0, i.e. there is no censoring before the time of
the kth failure, then the first k progressively Type-II right censored order statistics are simply the first k usual
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order statistics. Thus, for the special case R1 = R2 = ... = Rm = 0, so that m = n in which case the progressively
censored order statistics become the usual order statistics X1:n, X2:n, ..., Xn:n, the recurrence relations established
in Section 3 would reduce to the corresponding recurrence relations for the single moments of usual order statistics
from the Hjorth distribution satisfying the characterizing differential equation (4).

Remark 2. Setting δ = β = 0 and θ = 1, we observe that (4) reduces to f(x) = 1− F (x), which is the
characterizing differential equation for the exp(1) distribution with p.d.f. f(x) = e−x, x > 0, the recurrence
relations in Section 3 will reduce to and verify the corresponding recurrence relations established by Aggarwala
and Balakrishnan [1] for the progressively Type-II right censored order statistics from exponential distribution.
It may be mentioned that one can derive similar recurrence relations for progressively Type-II right censored order
statistics by taking different values of parameters as special cases of Hjorth distribution as given in Section 2.

4. Recurrence relations for product moments

Using (1) we can write the product moments of progressively Type-II right censored order statistics as follows:

µ(R1,R2,...,Rm)(k1,k2)

r,s:m:n = E

[{
X(R1,R2,...,Rm)

r:m:n

}k1
{
X(R1,R2,...,Rm)

s:m:n

}k2
]

= A(n,m− 1)

∫ ∫
· · ·

∫
0≤x1<x2<...<xm<∞

∫
xk1
r xk2

s

m∏
t=1

f(xt)[1− F (xt)]
Rtdxt, (17)

where 1 ≤ r < s ≤ m ≤ n and k1, k2 ≥ 0.
In this Section, we shall derive various recurrence relations for the product moments of progressively Type-II
right censored order statistics from Hjorth distribution with p.d.f. f(x) and c.d.f. F(x) satisfying the characterizing
differential equation (4).

Theorem 6
For 2 ≤ s ≤ m ≤ n−R1, k, t ≥ 0 and R1 ≥ 0,

µ
(R1,R2,...,Rm)
1,s:m:n

(k,t)
+ βµ

(R1,R2,...,Rm)
1,s:m:n

(k+1,t)
=

θ

k + 1

[
(n−R1 − 1)µ

(R1+R2+1,R3,R4,...,Rm)
1,s−1:m−1:n

(k+1,t)

+ (R1 + 1)µ
(R1,R2,...,Rm)
1,s:m:n

(k+1,t)
]

+
δ

k + 2

[
(n−R1 − 1)µ

(R1+R2+1,R3,R4,...,Rm)
1,s−1:m−1:n

(k+2,t)

+ (R1 + 1)µ
(R1,R2,...,Rm)
1,s:m:n

(k+2,t)
]

+
δβ

k + 3

[
(n−R1 − 1)µ

(R1+R2+1,R3,R4,...,Rm)
1,s−1:m−1:n

(k+3,t)

+ (R1 + 1)µ
(R1,R2,...,Rm)
1,s:m:n

(k+3,t)
]
. (18)

Proof
The relation in (18) may be proved by following exactly the same steps as those used in proving Theorem 7.

Theorem 7
For 2 ≤ r < s ≤ m < n, k, t ≥ 0 and Rr ≥ 0,

Stat., Optim. Inf. Comput. Vol. 8, June 2020



488 PROGRESSIVELY TYPE-II RIGHT CENSORED ORDER STATISTICS

µ(R1,R2,...,Rm)
r,s:m:n

(k,t)
+ βµ(R1,R2,...,Rm)

r,s:m:n

(k+1,t)

=
θ

(k + 1)

[
(n− Sr − r)µ

(R1,R2,...,Rr−1,Rr+Rr+1+1,Rr+2,...,Rm)
r,s−1:m−1:n

(k+1,t)

− (n− Sr−1 − r + 1)µ
(R1,R2,...,Rr−2,Rr−1+Rr+1,Rr+1,...,Rm)
r−1,s−1:m−1:n

(k+1,t)

+ (Rr + 1)µ(R1,R2,...,Rr,...,Rm)
r,s:m:n

(k+1,t)
]

+
δ

(k + 2)

[
(n− Sr − r)µ

(R1,R2,...,Rr−1,Rr+Rr+1+1,Rr+2,...,Rm)
r,s−1:m−1:n

(k+2,t)

− (n− Sr−1 − r + 1)µ
(R1,R2,...,Rr−2,Rr−1+Rr+1,Rr+1,...,Rm)
r−1,s−1:m−1:n

(k+2,t)

+ (Rr + 1)µ(R1,R2,...,Rr,...,Rm)
r,s:m:n

(k+2,t)
]

+
δβ

(k + 3)

[
(n− Sr − r)µ

(R1,R2,...,Rr−1,Rr+Rr+1+1,Rr+2,...,Rm)
r,s−1:m−1:n

(k+3,t)

− (n− Sr−1 − r + 1)µ
(R1,R2,...,Rr−2,Rr−1+Rr+1,Rr+1,...,Rm)
r−1,s−1:m−1:n

(k+3,t)

+ (Rr + 1)µ(R1,R2,...,Rr,...,Rm)
r,s:m:n

(k+3,t)
]
. (19)

Proof
From (17), let us consider for 2 ≤ r < s ≤ m < n, k, t ≥ 0 and Rr ≥ 0,

µ(R1,R2,...,Rm)
r,s:m:n

(k,t)
+ βµ(R1,R2,...,Rm)

r,s:m:n

(k+1,t)

= A(n,m− 1)

∫ ∫
· · ·

∫
0≤x1<x2<...<xr−1<xr+1<...xm<∞

xk
sI(xr−1, xr+1)

m∏
u=1,u ̸=r

f(xu)[1− F (xu)]
Rudxu, (20)

where I(xr−1, xr+1) is the same as given in equation (13), or equivalently, in equations (14) and (15). Now
upon using (15) in (14) and then putting the value of I(xr−1, xr+1), so obtained, into the equation (20) and then
simplifying, it leads to (19).
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Theorem 8
For 1 ≤ r < s < m < n, k, t ≥ 0 and Rs ≥ 0,

µ(R1,R2,...,Rm)
r,s:m:n

(k,t)
+ βµ(R1,R2,...,Rm)

r,s:m:n

(k,t+1)
=

θ

(t+ 1)

[
(n− Ss − s)µ

(R1,R2,...,Rs−1,Rs+Rs+1+1,Rs+2,...,Rm)
r,s:m−1:n

(k,t+1)

− (n− Ss−1 − s+ 1)µ
(R1,R2,...,Rs−2,Rs−1+Rs+1,Rs+1,...,Rm)
r,s−1:m−1:n

(k,t+1)

+ (Rs + 1)µ(R1,R2,...,Rm)
r,s:m:n

(k,t+1)
]

+
δ

(t+ 2)

[
(n− Ss − s)µ

(R1,R2,...,Rs−1,Rs+Rs+1+1,Rs+2,...,Rm)
r,s:m−1:n

(k,t+2)

− (n− Ss−1 − s+ 1)µ
(R1,R2,...,Rs−2,Rs−1+Rs+1,Rs+1,...,Rm)
r,s−1:m−1:n

(k,t+2)

+ (Rs + 1)µ(R1,R2,...,Rm)
r,s:m:n

(k,t+2)
]

+
δβ

(t+ 3)

[
(n− Ss − s)µ

(R1,R2,...,Rs+Rs+1+1,Rs+2,...,Rm)
r,s:m−1:n

(k,t+3)

− (n− Ss−1 − s+ 1)µ
(R1,R2,...,Rs−2,Rs−1+Rs+1,Rs+1,...,Rm)
r,s−1:m−1:n

(k,t+3)

+ (Rs + 1)µ(R1,R2,...,Rm)
r,s:m:n

(k,t+3)
]
. (21)

Proof
The relation in (21) may be proved by following the similar steps as those used in proving (19).

Next, we state another result on product moments which can easily be established on similar lines.

Theorem 9
For 1 ≤ r < m < n, k, t ≥ 0 and Rm ≥ 0,

µ(R1,R2,...,Rm)
r,m:m:n

(k,t)
+ βµ(R1,R2,...,Rm)

r,m:m:n

(k,t+1)

=
θ

(t+ 1)

[
−(n− Sm−1 −m+ 1)µ

(R1,R2,...,Rm−2,Rm−1+Rm+1)
r,m−1:m−1:n

(k,t+1)

+ (Rm + 1)µ(R1,R2,...,Rm)
m:m:n

(k,t+1)
]

+
δ

(t+ 2)

[
−(n− Sm−1 −m+ 1)µ

(R1,R2,...,Rm−2,Rm−1+Rm+1)
m−1:m−1:n

(k,t+2)

+ (Rm + 1)µ(R1,R2,...,Rm)
m:m:n

(k,t+2)
]

+
δβ

(t+ 3)

[
−(n− Sm−1 −m+ 1)µ

(R1,R2,...,Rm−2,Rm−1+Rm+1)
m−1:m−1:n

(k,t+3)

+ (Rm + 1)µ(R1,R2,...,Rm)
m:m:n

(k,t+3)
]
. (22)

Remark 3. For the special case R1 = R2 = ... = Rm = 0, the recurrence relations established in Section 4 reduce
to the corresponding recurrence relations for the product moments of usual order statistics from the Hjorth
distribution satisfying the characterizing differential equation (4).

Remark 4. Setting δ = β = 0 and θ = 1, we observe that (4) reduces to f(x) = 1− F (x), which is the
characterizing differential equation for exp(1) distribution with p.d.f. f(x) = e−x, x > 0, the recurrence relations
in Section 4 will reduce to and verify the corresponding recurrence relations established by Aggarwala and

Stat., Optim. Inf. Comput. Vol. 8, June 2020



490 PROGRESSIVELY TYPE-II RIGHT CENSORED ORDER STATISTICS

Balakrishnan [1] for the product moments of progressively Type-II right censored order statistics from exponential
distribution.
It may be mentioned that one can derive similar recurrence relations for product moments of progressively Type-II
right censored order statistics by taking different values of parameters as special cases of Hjorth distribution as
given in Section 2.

5. Numerical Results

The recurrence relations obtained in the preceding Sections 3 and 4 allow us to evaluate the means, variances
and covariances of progressively Type-II right censored order statistics from Hjorth distribution for all sample
sizes ’n’ and all censoring schemes (R1, R2, ..., Rm), m < n. These quantities can be used for various
inferential purposes; for example, they are useful in determining BLUEs of location/scale parameters and BLUPs
of censored failure times. In this section, we compute means, variances and covariances of the progressively
Type-II right censored order statistics from Hjorth distribution for some specific values of parameters, viz.
β = 2, δ = 3, θ = 4 for sample sizes up to 8 and for different choices of m and progressive censoring schemes
(R1, R2, ..., Rm), m < n. These values are presented in the following Tables 1 and 2.

Table 1. First four single moments of progressively Type-II right censored order statistics from Hjorth distribution

S. No. m n (R1, ..., Rm) µ
(R1,R2,...,Rm)
r:m:n

(k)
, r = 1, 2, ...,m and k = 1

1 2 4 1,1 0.066369 0.206697
2 2 5 1,2 0.052615 0.145046
3 2 5 2,1 0.052615 0.192479
4 2 5 0, 3 0.052615 0.121387
5 2 5 3, 0 0.052615 0.330690
6 2 6 2, 2 0.043547 0.135628
7 2 7 3, 2 0.037129 0.128931
8 3 4 0, 0, 1 0.066369 0.159242 0.301608
9 3 5 0, 0, 2 0.052615 0.121387 0.216024
10 3 5 0, 1, 1 0.052615 0.121387 0.263571
11 3 5 2, 0, 0 0.052615 0.192479 0.468901
12 3 6 1, 1, 1 0.043547 0.112015 0.254038
13 3 6 1, 2, 0 0.043547 0.112014 0.391169
14 3 6 1, 0, 2 0.043547 0.112014 0.206469
15 3 7 0, 2, 2 0.037129 0.082054 0.175809
16 3 7 1, 2, 1 0.037129 0.091330 0.232938
17 4 5 0, 0, 0, 1 0.052615 0.121387 0.216024 0.358664
18 4 5 1, 0, 0, 0 0.052615 0.145046 0.287344 0.559680
19 4 6 1, 0, 1, 0 0.043547 0.112015 0.206469 0.483520
20 4 7 1, 2, 0, 0 0.037129 0.091330 0.232938 0.508229
21 4 8 1, 1, 2, 0 0.032352 0.077131 0.146898 0.426065
22 4 8 1, 3, 0, 0 0.032352 0.077131 0.218325 0.494222
23 4 8 2, 0, 0, 2 0.032352 0.086387 0.156387 0.251806
24 5 6 0*4, 1 0.043547 0.097956 0.168248 0.263799 0.406097
25 5 8 1*3, 0*2 0.032352 0.077131 0.146898 0.289752 0.562379

S. No. m n (R1, ..., Rm) µ
(R1,R2,...,Rm)
r:m:n

(k)
, r = 1, 2, ...,m and k = 2

1 2 4 1,1 0.009192 0.067926
2 2 5 1,2 0.005760 0.033252
3 2 5 2,1 0.005760 0.060425
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4 2 5 0, 3 0.005760 0.022921
5 2 5 3, 0 0.005760 0.184343
6 2 6 2, 2 0.003933 0.029581
7 2 7 3, 2 0.002850 0.027187
8 3 4 0, 0, 1 0.009192 0.039451 0.124874
9 3 5 0, 0, 2 0.005760 0.022921 0.064248
10 3 5 0, 1, 1 0.005760 0.022921 0.097929
11 3 5 2, 0, 0 0.005760 0.060425 0.308261
12 3 6 1, 1, 1 0.003933 0.019711 0.092033
13 3 6 1, 2, 0 0.003933 0.019711 0.230183
14 3 6 1, 0, 2 0.003933 0.019711 0.059191
15 3 7 0, 2, 2 0.002850 0.010429 0.043946
16 3 7 1, 2, 1 0.002850 0.013036 0.079381
17 4 5 0, 0, 0, 1 0.005760 0.022921 0.064248 0.165292
18 4 5 1, 0, 0, 0 0.005760 0.033252 0.114770 0.405006
19 4 6 1, 0, 1, 0 0.003933 0.019711 0.059191 0.315679
20 4 7 1, 2, 0, 0 0.002850 0.013036 0.079381 0.346407
21 4 8 1,3,0,0 0.000031 0.000322 0.017726 0.277668
22 4 8 2,0,0,2 0.000030 0.000542 0.003307 0.015794
23 4 8 1,1,2,0 0.000031 0.000322 0.002642 0.196049
24 5 6 0*4,1 0.003933 0.014898 0.038967 0.089529 0.203174
25 5 8 1*3, 0*2 0.002158 0.009257 0.030166 0.112655 0.404858

S. No. m n (R1, ..., Rm) µ
(R1,R2,...,Rm)
r:m:n

(k)
, r = 1, 2, ...,m and k = 3

1 2 4 1,1 0.001959 0.030602
2 2 5 1,2 0.000973 0.010507
3 2 5 2,1 0.000973 0.026486
4 2 5 0, 3 0.000973 0.005906
5 2 5 3, 0 0.000973 0.141576
6 2 6 2, 2 0.000548 0.009025
7 2 7 3, 2 0.000337 0.008123
8 3 4 0, 0, 1 0.001959 0.013268 0.065272
9 3 5 0, 0, 2 0.000973 0.005906 0.024311
10 3 5 0, 1, 1 0.000973 0.005906 0.047067
11 3 5 2, 0, 0 0.000973 0.026486 0.256666
12 3 6 1, 1, 1 0.000548 0.004782 0.043513
13 3 6 1, 2, 0 0.000548 0.004782 0.1797883
14 3 6 1, 0, 2 0.000548 0.004782 0.021753
15 3 7 0, 2, 2 0.000337 0.001812 0.014435
16 3 7 1, 2, 1 0.000337 0.002562 0.036056
17 4 5 0, 0, 0, 1 0.000973 0.005906 0.024311 0.092579
18 4 5 1, 0, 0, 0 0.000973 0.010507 0.058445 0.355776
19 4 6 1, 0, 1, 0 0.000548 0.004782 0.021754 0.258806
20 4 7 1, 2, 0, 0 0.000337 0.002562 0.036056 0.293434
21 4 8 1, 1, 2, 0 0.002158 0.009257 0.030166 0.258757
22 4 8 1, 3, 0, 0 0.002158 0.009257 0.071410 0.331807
23 4 8 2, 0, 0, 2 0.002158 0.011764 0.034077 0.082350
24 5 6 0*4,1 0.000548 0.003097 0.011523 0.037099 0.120319
25 5 8 1*3, 0*2 0.000221 0.001527 0.008038 0.055338 0.353311

S. No. m n (R1, ..., Rm) µ
(R1,R2,...,Rm)
r:m:n

(k)
, r = 1, 2, ...,m and k = 4

1 2 4 1,1 0.000563 0.017339
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2 2 5 1,2 0.000223 0.004222
3 2 5 2,1 0.000223 0.014770
4 2 5 0, 3 0.000223 0.001925
5 2 5 3, 0 0.000223 0.134627
6 2 6 2, 2 0.000104 0.003541
7 2 7 3, 2 0.000054 0.003148
8 3 4 0, 0, 1 0.000563 0.005600 0.040819
9 3 5 0, 0, 2 0.000223 0.001925 0.011112
10 3 5 0, 1, 1 0.000223 0.001925 0.027615
11 3 5 2, 0, 0 0.000223 0.014770 0.254485
12 3 6 1, 1, 1 0.000104 0.001482 0.025268
13 3 6 1,2,0 0.000104 0.001482 0.171873
14 3 6 1,0,2 0.000104 0.001482 0.009717
15 3 7 0, 2, 2 0.000054 0.000401 0.005897
16 3 7 1, 2, 1 0.000054 0.000644 0.020421
17 4 5 0, 0, 0, 1 0.000223 0.001925 0.011112 0.060623
18 4 5 1, 0, 0, 0 0.000223 0.004222 0.035867 0.363793
19 4 6 1, 0, 1, 0 0.000104 0.001482 0.009717 0.252951
20 4 7 1, 2, 0, 0 0.000054 0.000644 0.020421 0.29349
21 4 8 1, 1, 2, 0 0.000031 0.000322 0.017726 0.277668
22 4 8 1, 3, 0, 0 0.000030 0.000542 0.003307 0.015794
23 4 8 2, 0, 0, 2 0.000031 0.000322 0.002642 0.196049
24 5 6 0*4,1 0.000104 0.000818 0.004139 0.018084 0.081892
25 5 8 1*3, 0*2 0.000031 0.000322 0.002642 0.032810 0.359287

Table 2. Variances and covariances of progressively Type-II right censored order statistics from Hjorth distribution

m s r σ
(1,1)
r,s:m:4 σ

(2,1)
r,s:m:5 σ

(1,2)
r,s:m:5 σ

(0,3)
r,s:m:5 σ

(3,0)
r,s:m:5 σ

(2,2)
r,s:m:6 σ

(3,2)
r,s:m:7

2 1 1 0.004787 0.002992 0.002992 0.002992 0.002992 0.002036 0.001471
2 1 0.004923 0.003106 0.003098 0.003085 0.003054 0.002120 0.001538

2 0.004923 0.003106 0.003098 0.003085 0.003054 0.002120 0.001538
m s r σ

(0,0,1)
r,s:m:4 σ

(0,0,2)
r,s:m:5 σ

(0,1,1)
r,s:m:5 σ

(2,0,0)
r,s:m:5 σ

(1,1,1)
r,s:m:6 σ

(1,2,0)
r,s:m:6 σ

(1,0,2)
r,s:m:6

3 1 1 0.004787 0.002992 0.002992 0.002992 0.002036 0.002036 0.002036
2 1 0.004921 0.003085 0.003085 0.003106 0.002108 0.002108 0.002108

2 0.014093 0.008186 0.008186 0.023377 0.007164 0.007164 0.007164
3 1 0.004926 0.003137 0.003127 0.003001 0.002150 0.002097 0.002154

2 0.014066 0.008310 0.008280 0.022222 0.007269 0.007077 0.00729
3 0.033907 0.017581 0.028460 0.088392 0.027497 0.077169 0.016562

s r σ
(0,2,2)
r,s:m:7 σ

(1,2,1)
r,s:m:7

1 1 0.001471 0.001471
2 1 0.001515 0.001521

2 0.003696 0.004694
3 1 0.001561 0.001564

2 0.003805 0.004811
3 0.013037 0.025120

m s r σ
(0,0,0,1)
r,s:m:5 σ

(1,0,0,0)
r,s:m:5 σ

(1,0,1,0)
r,s:m:6 σ

(1,2,0,0)
r,s:m:7 σ

(1,3,0,0)
r,s:m:8 σ

(1,1,2,0)
r,s:m:8 σ

(2,0,0,2)
r,s:m:8

4 1 1 0.002992 0.002992 0.002036 0.001471 0.001111 0.001111 0.001111
2 1 0.003085 0.003098 0.002108 0.001521 0.001146 0.001146 0.001151

2 0.008186 0.012214 0.007164 0.004694 0.003308 0.003308 0.004301
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3 1 0.003137 0.003122 0.002154 0.001564 0.001187 0.001180 0.001183
2 0.008310 0.012234 0.007291 0.004811 0.003416 0.003400 0.004406
3 0.017581 0.032203 0.016562 0.025120 0.023745 0.008587 0.009620

4 1 0.003107 0.002941 0.002068 0.001498 0.001144 0.001160 0.001198
2 0.008219 0.011465 0.006970 0.004594 0.003284 0.003333 0.004451
3 0.017347 0.030049 0.015772 0.023660 0.022425 0.008369 0.009699
4 0.036652 0.091765 0.081887 0.088111 0.087552 0.077225 0.018944

6. BLUEs of µ and σ

Suppose we obtain a progressively Type-II censored data from the location-scale parameter Hjorth distribution
with c.d.f. as given in (6).

In this section, we make use of means, variances and covariances of progressively Type-II right censored order
statistics as determined by using the recurrence relations given in Sections 3 and 4 for deriving the BLUEs of the
location and scale parameters µ and σ as well as the variances and covariance of these estimates.
Let Y1:m:n ≤ Y2:m:n ≤ ... ≤ Ym:m:n be a progressively Type-II right censored sample from the location-scale
parameter Hjorth distribution (6), and let Xi:m:n = (Yi:m:n−µ)

σ , i = 1, 2, ...,m, be the corresponding progressively
Type-II right censored order statistics from the location-scale parameter Hjorth distribution.
Let us denote E(Xi:m:n) by µi, V ar(Xi:m:n) by σi,i and Cov(Xi:m:n, Xj:m:n) by σi,j ; furthermore, let

Y = (Y1:m::n, Y2:m:n, ..., Ym:m:n)
T ,

µ = (µ1, µ2, ..., µm)T ,

1 = (1, 1, ..., 1︸ ︷︷ ︸)T
and ∑

= (σr,s:n) , 1 ≤ r, s ≤ m.

Then, the BLUEs of µ and σ are obtained by minimizing the generalized variance Q(δ) = (Y −Aδ)T
∑T

(Y −
Aδ) with respect to δ, where δ = (µ, σ)T , A is m× 2 matrix (1, µ), 1 is m× 1 vector with components all 1’s, µ
is the mean vector of X, and

∑
is the variance-covariance matrix of X. The minimization leads to the expressions

for the BLUES’s of µ and σ as (see Anrold et al. [2] and Balakrishnan and Cohen [6])

µ∗ =

{
µT

∑−1
µ1T ∑−1 −µT

∑−1 1µT
∑−1

(µT
∑−1

µ)(1T ∑−1 1)− (µT
∑−1 1)2

}
Y =

m∑
r=1

arYr:m:n (23)

and

σ∗ =

{
1T

∑−1 1µT
∑−1 −1T ∑−1

µ1T ∑−1

(µT
∑−1

µ)(1T ∑−1 1)− (µT
∑−1 1)2

}
Y =

m∑
r=1

brYr:m:n, (24)

and the variances and covariance of these BLUEs are given by

V ar(µ∗) = σ2

{
µT

∑−1
µ

(µT
∑−1

µ)(1T ∑−1 1)− (µT
∑−1 1)2

}
= σ2V1, (25)

V ar(σ∗) = σ2

{
1T ∑−1 1

(µT
∑−1

µ)(1T ∑−1 1)− (µT
∑−1 1)2

}
= σ2V2 (26)
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and

Cov(µ∗, σ∗) = σ2

{
−µT

∑−1 1
(µT

∑−1
µ)(1T ∑−1 1)− (µT

∑−1 1)2

}
= σ2V3. (27)

The coefficients of the BLUEs in (23) and (24) satisfy the conditions
∑m

r=1 ar = 1 and
∑m

r=1 br = 0 respectively.
The coefficients of the BLUEs for µ and σ, and variances and covariance of these estimates are presented in Tables
3, 4 and 5, respectively, for various sample sizes up to n = 8 and for different choices of m and progressive censoring
schemes.

Table 3. Coefficients of the BLUEs of location parameter

S.No. m n (R1, R2, ..., Rm) ai, i = 1, 2, ...,m
1 2 4 1, 1 1.472961 -0.472961
2 2 5 1, 2 1.569237 -0.569237
3 2 5 2, 1 1.376189 -0.376189
4 2 5 0, 3 1.765070 -0.765070
5 2 5 3, 0 1.189212 -0.189212
6 2 6 2, 2 1.472919 -0.472919
7 2 7 3, 2 1.404446 -0.404446
8 3 4 0, 0, 1 1.352880 -0.116892 -0.235988
9 3 5 0, 0, 2 1.381140 -0.102141 -0.278998

10 3 5 0, 1, 1 1.377761 -0.190427 -0.187334
11 3 5 2, 0, 0 1.178155 -0.077954 -0.100201
12 3 6 1, 2, 0 1.299918 -0.217482 -0.082436
13 3 6 1, 0, 2 1.316218 -0.084399 -0.231819
14 3 6 1, 1, 1 1.313292 -0.157708 -0.155584
15 3 7 0, 2, 2 1.413979 -0.216323 -0.197656
16 3 7 1, 2, 1 1.338522 -0.205897 -0.132625
17 4 5 0, 0, 0, 1 1.252672 -0.069726 -0.057280 -0.125666
18 4 5 1, 0, 0, 0 1.214988 -0.130246 -0.035790 -0.048953
19 4 6 1, 0, 1, 0 1.202378 -0.055281 -0.090079 -0.057017
20 4 7 1, 2, 0, 0 1.214988 -0.130246 -0.035790 -0.048953
21 4 8 1, 1, 2, 0 1.231181 -0.084092 -0.105042 -0.042047
22 4 8 1, 3, 0, 0 1.226968 -0.1531338 -0.03119558 -0.04263828
23 4 8 2, 0, 0, 2 1.198464 -0.04572552 -0.03812323 -0.1146151
24 5 6 0*4, 1 1.199748 -0.047806 -0.039169 -0.033903 -0.078870
25 5 6 1*3, 0*2 1.172194 -0.063154 -0.052897 -0.023079 -0.033063
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Table 4. Coefficients of the BLUEs of scale parameter

S.No. m n (R1, R2, ..., Rm) bi, i = 1, 2, ...,m
1 2 4 1, 1 -7.126182 7.126182
2 2 5 1, 2 -10.818890 10.818890
3 2 5 2, 1 -7.149825 7.149825
4 2 5 0, 3 -14.540870 14.540870
5 2 5 3, 0 -3.596154 3.596154
6 2 6 2,2 -10.859990 10.859990
7 2 7 3, 2 -10.892980 10.892980
8 3 4 0, 0, 1 -5.204608 1.575683 3.628925
9 3 5 0, 0, 2 -7.137124 1.756899 5.380225

10 3 5 0, 1, 1 -7.037568 3.408359 3.629209
11 3 5 2, 0, 0 -3.303420 1.357226 1.946194
12 3 6 1, 1, 1 -7.069212 3.436102 3.633110
13 3 6 1, 2, 0 -6.700802 4.762049 1.938753
14 3 6 1, 0, 2 -7.167823 1.776460 5.391363
15 8 0 0, 2, 2 -11.014400 5.626087 5.388309
16 3 7 1, 2, 1 -8.971029 5.342983 3.628045
17 4 5 0, 0, 0, 1 -4.590840 1.114410 0.985681 2.490749
18 4 5 1, 0, 0, 0 -5.498248 3.216274 0.905817 1.376158
19 4 6 1, 0, 1, 0 -4.429882 1.076152 1.982419 1.371311
20 4 7 1, 2, 0, 0 -5.498248 3.216274 0.905817 1.376158
21 4 8 1, 1, 2, 0 -6.881663 2.382165 3.145720 1.353778
22 4 8 1, 3, 0, 0 -6.686736 4.405297 0.9097395 1.371700
23 4 8 2, 0, 0, 2 -5.978192 1.259320 1.085963 3.632910
24 5 6 0*4, 1 -4.293554 0.882489 0.765931 0.720468 1.924666
25 5 6 1*3, 0*2 -4.978081 1.706113 1.500884 0.686065 1.085019

7. Best Linear Unbiased Predictors (BLUPs)

Based on observations on m progressively Type-II right censored order statistics Y
(R1,...,Rm)
1:m:n , ..., Y

(R1,...,Rm)
m:m:n , we

discuss the prediction of times to failure of the last Rm(≥ 1) units still surviving at the observation Y
(R1,...,Rm)
m:m:n .

Of course, one can discuss the prediction of other censored failure times in a similar manner as well. Doganaksoy
and Balakrishnan [18] established that the BLUEs remain unchanged if the BLUPs of future failures are treated as
observed values.
The BLUP of Y (R1,...,Rm−1,0,Rm−1)

m+1:m+1:n from any location-scale family of distributions is given by

Y
(R1,...,Rm−1,0,Rm−1)∗

m+1:m+1:n = µ∗ + µm+1:m+1:nσ
∗ + wTΣ−1 (Y − µ∗1 − σ∗µ)

and its variance is given by

σ2
{
σm+1,m+1:m+1:n − ωTΣ−1ω + λ2

11
TΣ−11 + λ2

2µ
TΣ−1µ+ 2λ1λ2µ

TΣ−11
}
,

where

Y =
(
Y

(R1,...,Rm−1,0,Rm−1)
1:m+1:n , ..., Y

(R1,...,Rm−1,0,Rm−1)
m:m+1:n

)T

,

E(Y ) = µ1 + σµ = (µ+ σµ1:m+1:n, ..., µ+ σµm:m+1:n)
T
,

V ar(Y ) = σ2Σ = σ2

 σ1,1:m+1:n ... σ1,m:m+1:n

... ... ...
σm,1:m+1:n ... σm,m:m+1:n

 ,
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Table 5. Variances and covariance of the BLUEs when µ = 0 and σ = 1

S.No. m n (R1, R2, ..., Rm) V ar(µ∗) V ar(σ∗) Cov(µ∗, σ∗)
1 2 4 1,1 0.009165 1.022933 -0.066925
2 2 5 1,2 0.005791 1.054638 -0.054344
3 2 5 2, 1 0.005781 1.058957 -0.054367
4 2 5 0, 3 0.005781 1.058957 -0.054367
5 2 5 3, 0 0.005541 0.929466 -0.048682
6 2 6 2, 2 0.003967 1.059481 -0.045231
7 2 7 3, 2 0.002883 1.063107 -0.038747
8 3 4 0, 0, 1 0.006917 0.505254 -0.032818
9 3 5 0, 0, 2 0.004347 0.525413 -0.026700

10 3 5 0, 1, 1 0.004333 0.515230 -0.026301
11 3 5 2, 0, 0 0.004250 0.461464 -0.024107
12 3 6 1, 1, 1 0.002961 0.517949 -0.021895
13 3 6 1, 2, 0 0.002916 0.485591 -0.020685
14 3 6 1, 0, 2 0.002971 0.528151 -0.022239
15 3 7 0, 2, 2 0.002150 0.531686 -0.019013
16 3 7 1, 2, 1 0.002146 0.521983 -0.018780
17 4 5 0, 0, 0, 1 0.003864 0.335724 -0.017129
18 4 5 1, 0, 0, 0 0.003822 0.306044 -0.015956
19 4 6 1, 0, 1, 0 0.002615 0.321713 -0.013656
20 4 7 1, 2, 0, 0 0.001886 0.316162 -0.011459
21 4 8 1, 1, 2, 0 0.001434 0.331363 -0.010355
22 4 8 1, 3, 0, 0 0.002916 0.485591 -0.020685
23 4 8 2, 0, 0, 2 0.002971 0.528151 -0.022239
24 5 6 0*4, 1 0.002475 0.250814 -0.010516
25 5 8 1*3, 0*2 0.001345 0.238305 -0.007473

E(Y
(R1,...,Rm−1,0,Rm−1)
m+1:m+1:n ) = µ+ σµm+1:m+1:n,

V ar
(
Y

(R1,...,Rm−1,0,Rm−1)
m+1:m+1:n

)
= σ2σm+1,m+1:m+1:n,

Cov
(
Y

(R1,...,Rm−1,0,Rm−1)
m+1:m+1:n , Y

)
= σ2ω = σ2 (σm+1,1:m+1:n, ..., σm+1,m:m+1:n)

T
,

λ1 = µTΣ−1µ−µTΣ−1µwTΣ−11−µm+1:m+1:nµ
TΣ−11+µTΣ−11wTΣ−1µ

∆
and
λ2 = −µTΣ−11+µTΣ−11wTΣ−11+µm+1:m+1:n1

TΣ−11+1TΣ−11wTΣ−1µ
∆

with ∆ =
(
µTΣ−1µ

) (
1TΣ−11

)
−
(
µTΣ−11

)2
. Also, µi:m+1:n and σi,j:m+1:n denote respectively the mean and

covariance of the progressively Type-II right censored order statistics from the standard (µ = 0, σ = 1) distribution,
and µ∗ and σ∗ are the BLUEs of µ and σ based on the progressively Type-II censoed sample Y. The BLUPs and
their variances can therefore be readily computed from the means, variances and covariances of the progressively
Type-II right censoed order statistics produced in Section 5. It is also illustrated in the next section with a numerical
example using a real data set.

8. Illustrative Example

Consider the following data which represent failure times of air conditioning equipment in a boeing 720
airplane(Proschan [23]), arranged in increasing order of magnitude: 12, 21, 26, 27, 29, 29, 48, 57, 59, 70, 74, 153,
326, 386, 502. Take a random sample of size 7 from this data as: 21, 26, 27, 29, 29, 48, 57 and assuming that
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this sample data follows Hjorth distribution in (6) and then producing a progressively censored data from above
sample data, we have

m Scheme yi:m:n

3 1,2,1 21, 26, 29

Before carrying out the inferential analysis for these data, let us verify model assumption. Specifically, the
progressively Type-II censored data yi:3:7 were plotted against the values µi:3:7 for i = 1, 2, 3 determined in Section
5 (as 0.037129, 0.09133, 0.232938) and this indicates a very high correlation (correlation coefficient is 0.922773)
which suggest that the Hjorth model is a good fit model for these data.
In this case, we have n = 7, and based on progressively Type-II right censored sample y1:3:7, y2:3:7, y3:3:7 presented
above, we find BLUEs of µ and σ to be

µ∗ = (1.338522× 21) + (−0.205897× 26) + (−0.132625× 29)

= 18.9095

and

σ∗ = (−8.971029× 21) + (5.342983× 26) + (3.68045× 29)

= 57.258999

respectively, and their standard errors to be SE(µ∗) = σ∗
√

µTΣ−1µ
δ = 2.652661 and SE(σ∗) = σ∗

√
1TΣ−11

δ =

41.36875765.
We obtain the BLUP of y4:4:7 to be y∗4:4:7 = 37.40697 and its standard error to be SE(y∗4:4:7) = 0.623606 (by taking
w = (σm+1,1:m+1:n, ..., σm+1,m:m+1:n)

T and progressive censoring scheme
(R1, ..., Rm−1, 0, Rm − 1)).

9. Conclusion

In this paper, we have established several recurrence relations for the single and product moments of progressively
Type-II right censored order statistics from Hjorth distribution. With the help of these relations and using R
software, we have computed all the means, variances and covariances of progressively Type-II right censored
order statistics for different sample sizes and all possible censoring schemes. These moments have then been used
to obtain the best linear unbiased estimators (BLUEs) of location and scale parameters of location-scale Hjorth
distribution (6), as well as the best linear unbiased predictors (BLUPs) of the times to failure of the surviving
units in the experiment. Finally, a numerical example has been presented to illustrate all the inferential methods
developed here using a real data set.
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