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An Integer Optimal Control Model of Production-Inventory System
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Abstract The optimal control model of the production-inventory system has investigated in several past studies,
but without taking into account the integer condition. This study suggested a new approach to find the integer
solution of production-inventory control model under periodic review policy. A new approach is based on the
modified some equations of Pontryagin maximum principle that used to find the solution of the non-integer model.
Our numerical results showed the efficiency of the new approach by saving the paths of inventory level and
production rate up to reach its goals over time. The total penalty costs of the model were the same, despite a
difference in the values of initial inventory level. Also, we testified a new approach by formulating the quadratic
programming problem of the production-inventory system. The solution was the same for the two problems;
quadratic programming and new approach.
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1. introduction

An inventory plays a major role in production planning through its effect on the costs and demand
satisfied. Therefore, several researchers have investigated the production-inventory system with many
practical situations, such as lead time, shortage, defective, deterioration and so on. Many mathematical
techniques have applied to suggest a policy of production and inventory.
Several studies have investigated the production-inventory problem by constructing integer programming
model. [13] considered the distribution problem of production-inventory system with many suppliers and
multiple periods. The aim is to determine the production rate, inventory level and supplied quantities
at each supply chain by branch-and-bound approach. Also with multiple periods, [12] discussed a model
with many constraints, such as shortage, batch size and price discount. The amount of purchase at
each period and minimized the total cost of materials was the target. The relationship between times
of production and ordering in the inventory system with single item where the deteriorating rate is a
constant and happened at a retailer was studied [30]. [28] investigated the steel production with slab
allocation problem to maximize the total profit. They have taken into account many production factors,
such as allocation quality, order-fulfill and the performance of slab and order. The minimize the total cost
of setup, holding and transportation in the production system with multi-stage was addressed [11]. They
assume a constant demand, as well as the greatest and smallest rates of production at each stage. Also with
minimizing the total cost of production, inventory and transportation, [17] developed a vehicle routing
model with multiple products, split deliveries, and a limitation for each route. Multi-Echelon model of the
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production-distribution problem discussed [22, 8]. [22] developed a model for perishable products, which
have fixed lifetime, with multi-vehicle, production lines and multi-distributors. The aim is to minimize
the total cost that includes storage, production and transportation. Meanwhile, [8] developed approach to
find integer points from their neighborhood points, which is non-integer. For more references, the works
of [24, 31, 16, 9] can be reviewed.
Other models of inventory control were used to investigate the optimality of production rate and inventory
level. Researchers have discussed many assumptions to the inventory system to find the optimal policy
of production. [1] discussed two policies of inventory review; continuous and periodic, with demand,
deterioration, and holding cost varies with time. A production - inventory system formulated as a Markov
decision problem with exponential distribution of production time [2, 23]. [2] considered a balance between
the costs of inventory and lost sales for a single product and two customer kinds. They discussed decisions
of produce an item or not, and production use to satisfy demand or increase inventory at each decision
stage.[23] assumed exponential distribution at the lifetime of items, and the customer demand is satisfying
from inventory, otherwise the customer must be waiting. [18, 29] have investigated model to minimize
the penalty costs of inventory and production with stochastic demand and capacity limit by using the
Pontryagins maximum principles and Hamilton-Jacobi-Bellman, respectively. [6, 10] have discussed a
periodic-review policy with deterministic and stochastic demand, respectively. [10] minimized the total
cost of inspection, backorder and inventory. Poisson process used to describe the stochastic demand of
a single item [7]. They discussed an optimal stopping problem with a single machine, and formulated
a problem as a free boundary. [27] considered inventory level that depends on the demand with multi-
product, the time function of demand and production, continuous review policy, and market segmentation
approach. A continuous review policy with deteriorating items and single product was investigated [14, 19].
[14] developed a model with tradable emission permits, and nonlinear costs functions of inventory and
production that depend on the inventory level and production rate, respectively. Meanwhile, [19] discussed
a stochastic model with emission tax, pollution abatement, and different functions of demand. They
showed the effect of the model parameters, such as rates of demand, deterioration, tax, and costs of
inventory and production, on the results by sensitivity analysis. [3] developed a mathematical model
of inventory system that integrates a second and first order dynamical system together, which include
production rate, inventory level, and the associated costs of the system. For more references, the works
of [15, 26, 21, 20, 4] can be reviewed.
Above-mentioned studies have found the optimal solution of an optimal control model without taking into
account the integer values of production and inventory. Our model contributes knowledge of literature
suggested a new approach to find the solution of optimal control model with integer values of production
rates and inventory levels.

2. Assumptions of the Model

We took into account the following:

1. A firm produces a product N(t) to satisfy the demand D(t) and store part of it in warehouse y(t).
2. An optimal control problem includes two variables; control variable (production) that’s controlled

on the value of the state variable (inventory).
3. The administration determines a specific level of inventory, goal level ŷ, therefore, the production

goal rate n̂(t). The safety stock that faced the demand fluctuation.
4. The demand has an effect on the production rate.
5. A penalty cost is incurred when the inventory level deviates from its goal level (symbolized by h ),

and for production (symbolized by k).
6. Values of penalty cost determine the priority of achieving the goals; inventory or production.
7. No shortage and items are subjected to deterioration during storage δ(t).
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764 AN INTEGER OPTIMAL CONTROL MODEL OF PRODUCTION-INVENTORY SYSTEM

8. The target is to determine the production rate that satisfies the demand without lost sales and put
inventory at a specific level, which determines by the administration.

3. optimal control model

The production-inventory control problem is as follows [25]:

Min 2j =

T−1∑
t=0

h[y(t)− ŷ]2 + k[N(t)− n̂(t)]2 (1)

subject to,
△ y(t) = N(t)−D(t); t = 0, 1, ...., t1 (2)

△ y(t) = N(t)−D(t)− δ(t) ∗ y(t); t = t1 + 1, ...., T − 1 (3)
N(t) ≥ 0; t = 0, 1, ...., T − 1 (4)

Eq.(1) represents minimize of the total of mean square deviation of inventory levels and production rate
from its goals, respectively. Meanwhile, Eq.(2) represents the inventory level that increase by production,
and decreased by the demand. Items increased after a specific time by production, and decreased by the
demand and deterioration (Eq.3).
To determine the production rate, we must first determine the production goal rate. From Eqs. (2 & 3),
the production goal rate is given by:

n̂(t) = D(t); t = 0, 1, ...., t1 (5)

n̂(t) = D(t) + δ(t) ∗ ŷ; t = t1 + 1, ..., T − 1 (6)
In this paper, we suggest a new approach to find the solution of integer optimal control model, therefore
we do not derive the optimality conditions of the non-integer model, which it clarified in many previous
studies.
The production rate after many mathematical steps on Eqs.(1 to 6) is as follows [5]:

N(t) = n̂(t) +
1

k
λ(t+ 1); t = 0, ..., T − 1 (7)

Also, the optimality conditions of the non-integer model are as follows:

∆y(t) = −δ(t)[y(t)− ŷ] +
1

k
λ(t+ 1); t = 0, ..., T − 1 (8)

∆λ(t) = h[y(t)− ŷ] + λ(t+ 1)δ(t); t = 0, ..., T − 1 (9)
where,

T: The length of planning period.
y(0): The initial inventory level.
λ(t) : The adjoint variable.
∆y(t) = y(t+ 1)− y(t).

The above system (Eqs. 8& 9) can be solved numerically with conditions y(0) = y0 and λ(T ) = 0 to
find the inventory level and adjoint variable. Then, substitute the adjoint variable value into Eq.(7) to
determine the production rate.
[25] solved the system (Eqs. 8& 9) by using the goal seek function in Microsoft Excel. They supposed
initial value of λ(0), and then used goal seek function with a condition λ(T ) = 0 to find the adjusted
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value of λ(0), which means the optimal solution. Meanwhile, [5]) solved the system by finding the relation
between λ(0) and λ(T ) ,then used to condition λ(T ) = 0 to determine λ(0) is as follow:

λ(T ) = E(T − 1)[y0 − ŷ] + C(T − 1)λ(0) (10)
E(T-1) represents the total value of the many paths that showed in Fig.(1)

Figure 1. The network of E

where:
a and e: Connect with a and b.
b and c: Connect with c and e.

eT−1 −→ aT−2 means eT−1 ∗ aT−2

at = {1− δ(t)}+ h

k[1− δ(t)]
(11)

bt =
1

k[1− δ(t)]
(12)

ct =
1

1− δ(t)
(13)

et =
h

1− δ(t)
(14)

The network of C(T − 1) is similar to the network of E(T − 1), only replace the ending nodes; a0 by b0
and e0 by c0.
By applying the condition λ(T ) = 0, we can find λ(0) from Eq.(10).
Substitute t = 0 into Eq. (9), we get:

λ(1) =
h

1− δ(0)
{y(0)− ŷ}+ 1

1− δ(0)
λ(0) (15)

By substituting Eqs.(13 & 14) into Eq.(15), yields:

λ(1) = e0{y(0)− ŷ}+ c0λ(0) (16)

From Eq.(8), we get:
y(1) = {1− δ(0)}y(0) + 1

k
λ(1) + δ(0)ŷ (17)
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By substituting Eq.(15) into Eq.(17), then substitute Eqs. (11 & 12) into result, yields:

y(1) = a0y(0) + b0λ(0) + {1− a0}ŷ (18)

We can find λ(1) from Eq.(16), then find y(1) from Eq.(18). The same manner can be used to find other
values of inventory level and adjust variable.
Remember the solution of the above-mentioned equations represents the non-integer solution of the
problem, therefore, we showed it with brief details.

4. An Integer Optimal Control Model

λ(t) represents the per unit change in the objective function for a small change in the optimal value of
the state variable at time t [25]. Therefore, λ(T ) = 0 means the optimal solution of the problem. Our
suggested approach based on this idea, λ(T ) = 0 means the non-integer optimal solution, so the integer
optimal solution happen when λ(T ) negative and other values λ(0, 1, 2, ..) are positive, and vice verse.
A new approach to find the solution of optimal control model with integer values of inventory level and
production rate is as follows:

1. Modify Eq.(9) as follow:

λ(t+ 1) = Max[(
h{y(t)− ŷ}+ λ(t)

1− λ(t)
), 0]; y(0) < ŷ

λ(t+ 1) = Min[(
h{y(t)− ŷ}+ λ(t)

1− λ(t)
), 0]; y(0) > ŷ

The terminal condition λ(T ) = 0 will achieve automatically by Eq.(??). Also, Eq.(??) will save the
path of the inventory level, which means decrease or increase, to reach its goal.

2. Modify Eq.(6) as follow:

n̂(t) = D(t) + integ.{δ(t)ŷ}; t = t1 + 1, ...., T − 1. (19)

3. From Eqs. (3 & 19), the production rate is as follows:

N(t) = n̂(t) + y(t+ 1)− y(t); t = 0, 1, ...., T − 1. (20)

4. From Eq.(18), we can find λ(1), then chose two integer values; the lowest integer that higher than
λ(1), and the highest integer that lower than y(1).

5. We can find two values of λ(2) by substituting two integer values of y(1) into Eq. (19).
6. We choose the nearest value from two values of λ(2), extracted in (5), to λ(2) extracted from the

non-integer solution.
7. y(1) corresponding to the λ(2) that selected in (6) represents the integer value of the inventory level.
8. Repeat steps 4 to 7 to find other integer values of inventory levels. Sometimes, we test three integer

values of y(t) based on its value of the non-integer solution and its adjusted non-integer values
during integer solution steps.

9. We can find the integer production rate from Eq.(20).

5. Numerical Solution

Consider an inventory system, with the following parameter values, ŷ = 50item; T = 6month; k =
30$; h = 20$; D(t) = 150 + 5t; {δ(t) = 0; t = 0, 1, 2}; {δ(t) = 0.05t; t = 3, 4, 5, 6}
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• At first, we must find the value of initial adjust variable (see appendix A): λ(0) = 1819.985
• We can find the non-integer solution of Eqs.(5 to 9) by using Eqs.(16 & 17), which is shown in

Figures 2 to 6 with two cases; y(0) = 0 and y(0) = 100.
• We suppose y(0) = 0, this means the initial inventory level is lower than the inventory goal level (50

items).
• The solution of integer problem as follows:

y(1) = 27 or 28

From Eq.(19):
λ(2) =

h

1− δ(1)
{y(1)− ŷ}+ 1

1− δ(1)
λ(1)

λ(2) = 359.98 or 379.98

359.98 corresponding to y(1) = 27 is the nearest value to λ(2) extracted from non-integer solution,
thus:

y(1) = 27; λ(2) = 359.98

From Eq.(20):
N(0) = n̂+ y(1)− y(0)

N(0) = 150 + 27− 0 = 177

Using Eq.(18) to find y(2):

y(2) = a1y(1) + b1λ(1) + (1− a1)ŷ = 38.99

y(2) = 39.55 from non-integer solution, thus:

y(2) = 38 or 39 or 40

From Eq.(19):
λ(3) =

h

1− δ(2)
{y(2)− ŷ}+ 1

1− δ(2)
λ(2)

λ(3) = 119.98 or 139.98 or 159.98

159.98 corresponding to y(2) = 40 is the nearest value to λ(3) extracted from non-integer solution,
thus:

y(2) = 40;λ(3) = 159.98

From Eq. (21):
N(1) = n̂(1) + y(2)− y(1)

N(1) = 155 + 40− 27 = 168

• By applying the same manner, we can find the solution:

λ(2) = 359.98; y(2) = 40; N(2) = 165,

λ(3) = 159.98; y(3) = 45; N(3) = 176;

λ(4) = 59.98; y(4) = 48; N(4) = 173;

λ(5) = 19.98; y(5) = 49; N(5) = 180;

λ(6) = 0; y(6) = 49.
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Figure 2. The inventory level (initial inventory less than goal)

Figure 3. The production rate (initial inventory less than goal)

We can see the condition of the integer optimal solution λ(T ) = 0, means the negative value according
to Eq.(19), and other values λ(0, 1, 2, ..) are positive, was achieved. Figures (2, 3 & 4) show the comparison
between two solutions; integer and non-integer:

The simulation results are given in Figure (2) show that the large convergence between inventory
levels for the two problems; integer and non-integer. Also, Figure (3) shows the same conclusion for the
production rates.

Basically, the total penalty cost of the integer problem is higher than the non-integer problem, which
is shown in Figure (4). The penalty costs for the two cases; y(0) = 0 and y(0) = 100 are the same, which
means the efficiency of the approach in the find the solution of integer production- inventory problem.
Figures (5& 6) show the solution when the initial inventory level is higher than the inventory goal level.
Appendix B shows the integer solution and two additional examples.

From Figure (5), the inventory level is decreased up to reach inventory goal level against time when
the initial inventory level is higher than inventory goal level. The opposite case is shown in Figure (2).
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Theoretically, the production rate is a control variable that satisfies the demand, inventory goal level
and compensates the deterioration. Therefore, there is a difference between production rates for the
first months that are shown in Figures(3& 6) , then a convergence appears at the end of the planning
period. For more efficiency measure, we formulated the quadratic programming problem of the production-
inventory system with quadratic objective function and linear constraints. The objective function is the
same without change. Linear constraints are as follows:

• Inventory levels less than or equal to inventory goal level.
• Eq.(20) for production rates.
• The total penalty cost is greater than or equal to the total penalty cost extracted from non-integer

solution.
• Integer condition for all variables (inventory and production).

Solution of the quadratic programming problem is the same solution of our new approach.

Figure 4. Penalty cost (initial inventory less than goal)

Figure 5. The inventory level (initial inventory greater than goal)
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Figure 6. The production rate (initial inventory greater than goal)

6. Conclusion and Recommendations

In this paper, we developed an optimal control model of the production- inventory system under periodic
review policy. The model supposed the items subject to deterioration through storage after a specific
time period. Past studies that have discussed optimal control model of inventory system do not take into
account the integer values of production and inventory. Practically, many fields of production must take
integer values through the process of production or inventory.
Our model suggested a new approach to find the solution of optimal control model with integer values
of production and inventory. A new approach based on the modified some equations of Pontryagin
maximum principle that used to find the explicit solution of the system.
A new approach applied in two cases when the initial inventory level is higher that the inventory goal
level, and the opposite case. The results showed achieving the inventory goal level and a production goal
rate over time with the same total penalty cost despite a difference in the initial inventory level. We
testified a new approach by formulating the quadratic programming problem of the production-inventory
system. The solution was the same for the two problems; quadratic programming and new approach.
Therefore, the approach was found to be efficient to find the solution of optimal control model with
integer values of production and inventory. This study could be extended to include multi-items or
multi-production lines.

A. appendix A

From Eq.(10), we have:
λ(6) = E(5)y(0) + C(5)λ(0)− e(5)ŷ

From Eq.(11):

a0 = (1− 0) +
20

30(1− 0)
= 1.667; a1 = (1− 0)

20

30(1− 0)
= 1.667

a2 = (1− 0) +
20

30(1− 0)
= 1.667; a3 = (1− 0.05 ∗ 3) 20

30(1− 0.05 ∗ 3)
= 1.634
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Figure 7. The network of E(5)

a4 = (1− 0.05 ∗ 4) 20

30(1− 0.05 ∗ 4)
= 1.633

We can be found bt from Eq.(12):

b1 =
1

30(1− 0)
= 0.033; b2 =

1

30(1− 0)
= 0.033

b3 =
1

30(1− 0.05 ∗ 3)
= 0.039; b4 =

1

30(1− 0.04 ∗ 4)
= 0.042

Values of ct determine from Eq.(13):

c1 =
1

1− 0
= 1; c2 =

1

1− 0
= 1; c3 =

1

1− 0.05 ∗ 3
= 1.176

c4 =
1

1− 0.05 ∗ 4
= 1.25; c5 =

1

1− 0.05 ∗ 5
= 1.333

From Eq.(14):
e0 =

20

1− 0
= 20; e1 =

20

1− 0
= 20; e2 =

20

1− 0
= 20

e3 =
20

1− 0.05 ∗ 3
= 23.5; e1 =

20

1− 0.05 ∗ 4
= 25; e2 =

20

1− 0.05 ∗ 5
= 26.7

E(5) = (e5 ∗ a4 ∗ a3 ∗ a2 ∗ a1 ∗ a0) + (c5 ∗ e4 ∗ a3 ∗ a2 ∗ a1 ∗ a0) + (e5 ∗ a4 ∗ a3 ∗ b2 ∗ e1 ∗ a0) + (c5 ∗ e4 ∗ a3 ∗
b2 ∗ e1 ∗ a0) + (e5 ∗ a4 ∗ b3 ∗ e2 ∗ a1 ∗ a0) + (c5 ∗ e4 ∗ b3 ∗ e2 ∗ a1 ∗ a0) + (e5 ∗ a4 ∗ b3 ∗ c2 ∗ e1 ∗ a0) + (c5 ∗
e4 ∗ b3 ∗ c2 ∗ e1 ∗ a0) + (e5 ∗ b4 ∗ e3 ∗ a2 ∗ a1 ∗ a0) + (c5 ∗ c4 ∗ e3 ∗ a2 ∗ a1 ∗ a0) + (e5 ∗ b4 ∗ e3 ∗ b2 ∗ e1 ∗ a0) +
(c5 ∗ c4 ∗ e3 ∗ b2 ∗ e1 ∗ a0) + (e5 ∗ b4 ∗ c3 ∗ e2 ∗ a1 ∗ a0) + (c5 ∗ c4 ∗ c3 ∗ e2 ∗ a1 ∗ a0) + (e5 ∗ b4 ∗ c3 ∗ c2 ∗ e1 ∗
a0) + (c5 ∗ c4 ∗ c3 ∗ c2 ∗ e1 ∗ a0) + (e5 ∗ a4 ∗ a3 ∗ a2 ∗ b1 ∗ e0) + (c5 ∗ e4 ∗ a3 ∗ a2 ∗ b1 ∗ e0) + (e5 ∗ a4 ∗ a3 ∗
b2 ∗ c1 ∗ e0) + (c5 ∗ e4 ∗ a3 ∗ b2 ∗ c1 ∗ e0) + (e5 ∗ a4 ∗ b3 ∗ e2 ∗ b1 ∗ e0) + (c5 ∗ e4 ∗ b3 ∗ e2 ∗ b1 ∗ e0) + (e5 ∗ a4 ∗
b3 ∗ c2 ∗ c1 ∗ e0) + (c5 ∗ e4 ∗ b3 ∗ c2 ∗ c1 ∗ e0) + (e5 ∗ b4 ∗ e3 ∗ a2 ∗ b1 ∗ e0) + (c5 ∗ c4 ∗ e3 ∗ a2 ∗ b1 ∗ e0) + (e5 ∗
b4 ∗ e3 ∗ b2 ∗ c1 ∗ e0) + (c5 ∗ c4 ∗ e3 ∗ b2 ∗ c1 ∗ e0) + (e5 ∗ b4 ∗ c3 ∗ e2 ∗ b1 ∗ e0) + (c5 ∗ c4 ∗ c3 ∗ e2 ∗ b1 ∗ e0) +
(e5 ∗ b4 ∗ c3 ∗ c2 ∗ c1 ∗ e0) + (c5 ∗ c4 ∗ c3 ∗ c2 ∗ c1 ∗ e0)
E(5) = 1655.105 + 549.032 = 2204.137
C(5) = allpathsfrome5toa0 + allpathsfromc5toa0 ∗ (b0/a0) + allpathsfrome5toe0 + allpathsfromc5toe0 ∗
(c0/e0)
C(5) = 1655.1 ∗ (0.033333/1.666667) + 549.032 ∗ (1/20) = 60.554
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By applying the condition λ(T ) = 0, we can find λ(0) as follows:

0 = 2204.137 ∗ 0 + 609.554 ∗ λ(0)− 2204.137 ∗ 50

λ(0) = 1819.985

B. appendix B

The solution of integer problem as follows:

y(1) = 72 or 73

From Eq.(19):
λ(2) =

h

1− δ(1)
{y(1)− ŷ}+ 1

1− δ(1)
λ(1)

λ(2) = −379.98 or − 359.98

-359.98 corresponding to y(1) = 73 is the nearest value to λ(2) extracted from non-integer solution,
thus:

y(1) = 73; λ(2) = −359.98

From Eq.(20):
N(0) = n̂(0) + y(1)− y(0)

N(0) = 150 + 73− 100 = 123

Using Eq.(18) to find y(2):

y(2) = a1y(1) + b1λ(1) + (1− a1)ŷ = 61.0005

y(2) = 60.44 from non-integer solution, thus:

y(2) = 60 or 61 or 62

From Eq.(19):
λ(3) =

h

1− δ(2)
{y(2)− ŷ}+ 1

1− λ(2)
λ(2)

λ(3) = −159.98 or − 139.98 or 119.98

-159.98 corresponding to y(2) = 60 is the nearest value to λ(3) extracted from non-integer solution,
thus:

y(2) = 60;λ(3) = −159.98

From Eq.(20):
N(1) = n̂(1) + y(2)− y(1) = 155 + 60− 73 = 142

By applying the same manner, we can find the solution:

λ(2) = −159.98; y(2) = 60; N(2) = 155,

λ(3) = −59.98; y(3) = 55;N(3) = 170,

λ(4) = −26.64; y(4) = 52;N(4) = 179,

λ(5) = −11.72; y(5) = 51;N(5) = 188,

λ(6) = 0; y(6) = 51.
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Table 1. Integer and non-integer solution of the problem 1

Month Non-integer solution Integer solution
λ y N J λ y N J

0 -1457.96 70 228.1 23215.3 -1457.96 70 228 23260
1 -657.965 48.06 236.1 4730.7 -657.965 48 236 4740
2 -296.608 38.18 229.6 964.0 -297.965 38 230 880
3 -132.99 33.74 212.1 196.6 -137.965 34 212 220
4 -58.032 31.81 185.3 40.8 -57.9648 32 185 55
5 -21.762 31.08 150 11.8 -17.9648 31 150 10
6 0 31.08 11.8 0 31 10

Total 29171.1 29175

Example 1: Consider an inventory system, with the following parameter values, ŷ = 30item; y(0) =
70item;T = 6month; k = 30$;h = 20$;D(t) = 250− 4t2

Sol.
Table (1) shows the solution of integer and non-integer.

Example 2: Consider an inventory system, with the following parameter values, ŷ = 40item; y(0) =
5item;T = 8month; k = 25$;h = 10$;D(t) = 0.5t3 − 1.5t2 + 10t
Sol.
Table (2) shows the solution of integer and non-integer.

Table 2. Integer and non-integer solution of the problem 2

Month Non-integer solution Integer solution
λ y N J λ y N J

0 755.3069 5 16.21 9410.5 755.3069 5 16 9325
1 405.3069 21.21 17.70 2710.4 405.3069 21 18 2817.5
2 217.4297 29.91 22.66 780.7 215.3069 30 23 812.5
3 116.5243 34.57 32.49 224.8 115.3069 35 32 175
4 62.22869 37.06 49.31 64.8 65.30692 37 49 57.5
5 32.82453 38.37 75.66 18.7 35.30692 38 76 32.5
6 16.55018 39.03 114.28 5.6 15.30692 39 114 5
7 6.89591 39.31 168.00 2.4 5.306915 39 168 5
8 0 39.31 2.4 0 39 5

Total 13220.2 13235
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