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Abstract After rejecting the null hypothesis in the analysis of variance, the next step is to make the pairwise comparisons to
find out differences in means. The purpose of this paper is threefold. The foremost aim is to suggest expression for calculating
decision limit that enables us to collect the test and pairwise comparisons in one step. This expression is proposed as the
ratio of between square for each treatment and within sum of squares for all treatments. The second aim is to obtain the
sampling distribution of the proposed ratio under the null hypothesis. This sampling distribution is derived exactly as the
beta distribution of the second type. The third aim is to use beta distribution of second type and adjusted p-values to create
adjusted points and decision limit. Therefore, reject the null hypothesis of equal means if any adjusted point falls outside the
decision limit. Simulation study is conducted to compute type I error. The results show that the proposed method controls
the type I error near the nominal values using Benjamini-Hochbergadjusted p-values and it is very comparative to classical
one-way analysis of variance plus pairwise comparisons. Two applications are given to show the benefits of the proposed
method.
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1. Introduction

Fisher [8] discussed the term variance and introduced analysis of variance that becomes well known after being
included in Fisher’s book [9]. Analysis of variance (ANOVA) is a gathering of statistical models that used to
analyze the differences among group means and overall mean where the sample variance is partitioned into parts
attributable to different sources of variation. ANOVA models are multilateral statistical tools for exploring the
relation between a dependent variable and one or more explanatory variables. These models do not demand any
assumptions regarding the nature of the statistical relation between the dependent and explanatory variables, nor
do they demand that explanatory variables to be quantitative; see, for example, [5, 11, 21, 22, 24, 12].

In recent years, there are interest and new applications of one-way ANOVA in many fields. Guven et al [15]
proposed a new test for equality of the treatment averages in one-way ANOVA when the assumptions of normality
and variance homogeneity are not satisfied where they assumed the error term had a long tailed symmetric
distribution with a normal distribution as limiting case. Kim [20] studied one-way ANOVA based on conceptual
figures where he showed that the conceptual figures served as a convenient guide to clarify the average difference
problems by using treatment and error population variance differences. Yigit and Mendes [29] studied the effect
size measures (”Eta-Squared”, ”Partial Eta Squared”, ”Omega Squared” and ”Epsilon Squared”) in one and two-
way ANOVA models under many different conditions. They concluded that ”reporting Epsilon or Omega-Squared
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is more suitable to evaluate the practical significance of observed differences along with P-values”. Gorech and
Smaga [14] proposed B-spline test to one-way ANOVA problem in case of functional data. They used simulation
study to compare all of the tests investigated. They concluded that the tests were not performed equally and no one
test performs best.

Elssied et al. [13] had given an excellent practical application for one-way ANOVA where they have used one-
way ANOVA to locate the highest important features taking part to email spam classification by reducing data
dimensionality of the space features before classification process. Qamar and Alassaf [23] have used one-way
ANOVA as a feature selection scheme to make big reduction in the number of lineaments when categorizing
opinions conveyed through Arabic tweets. They concluded that ” ... one-way ANOVA with Support Vector Machine
represented an excellent combination across different Arabic benchmark datasets...”. Also, Vishwakarma et al. [27]
had used one-way ANOVA in studying drought events especially monthly, seasonal and annual trend of rainfall
and temperature where ANOVA validated the substantial resemblance between standardized precipitation index
and reconnaissance drought Index using ”Sen’s slope”. By considering the important of one-way ANOVA and
as an extension of the previous studies, a simultaneous test for means is introduced to gather the F test in one-
way ANOVA and multiple comparisons among group means in one step that can be shown graphically to ease
interpretation of one-way ANOVA.

A simultaneous test for means called gANOVA is proposed based on the ratio of between square for each
treatment and within sum of squares for all treatments. This ratio is created from F-test in one-way analysis of
variance. This ratio is considered as two independent gamma random variables. The exact sampling distribution of
this ratio under the null hypothesis is derived exactly as the beta distribution of the second type. An upper decision
limit is obtained using adjusted p-value and beta distribution of second type to graph this ratio and reject the null
hypothesis if any point falls outside the decision limit. The adjusted p-values are obtained using several methods.
One of these methods is the Benjamini and Hochberg [2] method that depends on the concept of false discover rate
and gives the best result among other methods. However, gANOVA is not intended to replace ANOVA but to gives
more explanation and analysis for differences among group means. Moreover, gANOVA may be considered as an
unblind way for F-test in one-way analysis of variance to determine which specific group mean(s) is different from
overall mean simultaneously and graphically. Simulation study is conducted to compute type I error for gANOVA
using different methods (”bonferroni”, ”hommel”, ”BH”, ”ANOVA”) and compare with classical F-test method
(ANOVA). The results show that gANOVA based on adjusted p-values using Benjamini and Hochbergs method
(BH) controls the type I error very well among different methods and it is very comparative to classical F-test
(ANOVA) method where it is shown Type I error nears from nominal values.

Two applications are given to show the benefits of the proposed method. In the first application the method is
explained and applied to photosynthetic rates of the oak seedlings data. In the second application the method is
applied to simulated data to show another benefit of the proposed method.

The fixed effect model is reviewed in Section 2. gANOVA and its sampling distribution are derived in Section 3.
Two applications are studied in Section 4. Section 5 is devoted to conclusion. R-program is given in Appendix.

2. Single-factor ANOVA model

Assume that there are G different groups with individuals in each group Ygi, i = 1, 2, ..., ng, g = 1, ..., G and
nT = n1 + ...+ nG is the total number of observations. Let Ygi − Ȳ is the total deviation (Ȳ =

∑G
g

∑ng

i Ygi/nT

overall mean), Ȳg − Ȳ is the deviation of grouped mean (Ȳg =
∑ng

i=1 Ygi/ng) around overall mean, and Ygi − Ȳg

is the deviation of individuals around the grouped mean. The means model can be written as

Ygi = µg + ϵgi (1)

Ygi is the value of the response variable in ith trial for the gth treatment, µg are parameters, ϵgi are independent
identically distributed normal with N(0, σ2); see, [21, 22]. The appropriate hypotheses are

H0 : µ1 = µ2 = ... = µG

H1 : µg ̸= µjfor at least one pair
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506 UNBLIND WAY TO THE F-TEST IN ONE-WAY ANOVA

The name analysis of variance is obtained from a partition of total variability into its component parts. The total
corrected sum of squares

SST =

G∑
g=1

ng∑
i=1

(Ygi − Ȳ )
2

is used as a measure of overall variability in the data. Note that the total corrected sum of squares SST may be
written as

SST =

G∑
g=1

ng(Ȳg − Ȳ )
2
+

G∑
g=1

ng∑
i=1

(Ygi − Ȳg)
2
= SSTR+ SSE (2)

Where SSTR is called the treatment sum of squares and SSE is called the error sum of squares. Specifically, the
treatment mean squares can be written as

MSTR = SSTR/(G− 1) =

G∑
g=1

ng(Ȳg − Ȳ )
2
/(G− 1) (3)

is an estimate of σ2 if the treatment means are equal. Also, the mean squares error is

MSE = SSE/(nT −G) =

G∑
g=1

ng∑
i=1

(Ygi − Ȳg)
2
/(nT −G) (4)

is a pooled estimate of the common variance σ2 within G treatments.
The expected value of MSE is

E(MSE) = σ2

and the expected value for MSTR is

E(MSTR) = σ2 +

∑G
g=1 ng(µg − µ.)

2

G− 1

Note that, µg is the population group mean and µ. is the population overall mean. Hence, if treatment means do
differ, the expected value of the treatment mean square is greater than σ2; see, for example, [22, 21]. Therefore, if
the null hypothesis of no difference in treatment means is true, the ratio

F0 =
MSTR

MSE
=

∑G
g=1 ng(Ȳg − Ȳ )

2
/(G− 1)∑G

g=1

∑ng

i=1 (Ygi − Ȳg)
2
/(nT −G)

(5)

is distributed as F distribution with G− 1 and nT −G degrees of freedom. In practice it can conclude that there
are differences in the treatment means if

F0 > Fα;G−1,nT−G

where F0 is the computed value and the distribution of F0 is just the ratio of two independent gamma random
variables

F0 ∼
χ2(G− 1)/(G− 1)

χ2(nT −G)/(nT −G)
∼ gamma((G− 1)/2, (G− 1)/2)

gamma((nT −G)/2, (nT −G)/2)
∼ F (G− 1, nT −G) (6)

This is a special case of Beta distribution of the second type; see, [6, 10].
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3. Simultaneous test for means (gANOVA)

The computed F0 can be rewritten as

F0 =

G∑
g=1

[
ng(Ȳg − Ȳ )

2
/(G− 1)∑G

g=1

∑ng

i=1 (Ygi − Ȳg)
2
/(nT −G)

]
=

G∑
g=1

Kg (7)

Hence,
F0 = K1 +K2 + ...+KG

where

Kg =
ng(Ȳg − Ȳ )

2
/(G− 1)∑G

g=1

∑ng

i=1 (Ygi − Ȳg)
2
/(nT −G)

, g = 1, 2, ..., G

is the ratio of between square for each treatment and within sum of squares for all treatments.
Under the assumptions of

1. fixed effect model and
2. (Ȳg − Ȳ )

2 and
∑G

g=1

∑ng

i=1 (Ygi − Ȳg)
2 are gamma independently random variables.

If the null hypothesis of no differences in treatment means is true, hence,

G∑
g=1

ng∑
i=1

(Ygi − Ȳg)
2
/(nT −G) ∼ σ2χ2(nT −G)/(nT −G)

and
ng(Ȳg − Ȳ )

2

G− 1
=

ng(Ȳg − µ)
2 − ng(Ȳ − µ)

2

G− 1
∼ σ2 (nT − ng)

(G− 1)nT
χ2(1)

The sampling distribution of Kg can be expressed as

Kg ∼ (nT − ng)χ
2(1)/(G− 1)nT

χ2(nT −G)/(nT −G)
∼

gamma( 12 ,
nT (G−1)
2(nT−ng)

)

gamma(nT−G
2 , nT−G

2 )
(8)

Theorem
Under the assumptions 1 and 2, the exact sampling distribution of Kg is

fKg (k) =
[(nT (G− 1))/((nT − ng)(nT −G))]

−1/2

B( 12 ,
nT−G

2 )

(
1 +

nT (G− 1)k

(nT − ng)(nT −G)

)−(nT−G+1)/2

k−1/2, k > 0, g = 1, ..., G

This distribution is defined in terms of G,ng and nT and is a special case from beta distribution from the second
type.

proof
Coelho and Mexia [6] have given the distribution of the ratio of two independent random variables

Z = Y1/Y2

each has gamma distribution as

fY (y) =
λr

Γ(r)
y(r−1)e−λy, r, λ, y > 0

λ is scale parameter and r is the shape.
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They have given the distribution of Z as

fZ(z) =

(
λ1

λ2

)r1

B(r1, r2)

(
1 +

λ1

λ2
Z

)−r1−r2

Zr1−1, z > 0

B(.,.) is a beta function and this distribution is most commonly known as beta distribution of the second type (GB2).
By putting

λ1 =
nT (G− 1)

2(nT − ng)
, λ2 =

nT −G

2
, r1 =

1

2
, r2 =

nT −G

2

The sampling distribution of K is obtained.
Corollary
Under the assumptions 1 and 2 and equal sample sizes in each group n1 = n2 = ... = nG = n and nT = nG the

exact sampling distribution of Kg is simplified to

fK(k) =

(
1

n−1

)−1/2

B( 12 ,
G(n−1)

2 )

(
1 +

1

n− 1
k

)−(G(n−1)+1)/2

k−1/2, k > 0

In the case of equal sample sizes, the non-central moments for K distribution can be obtained from [6] as

E(Kj) = (n− 1)j
Γ(0.5 + j)Γ(G(n− 1)/2− j)

Γ(0.5)Γ(G(n− 1)/2)

The first two moments can be obtained as

E(K) = (n− 1)
Γ(1.5)Γ(G(n− 1)/2− 1)

Γ(0.5)Γ(G(n− 1)/2)

and

V (K) = (n− 1)2

[
Γ(2.5)Γ(G(n− 1)/2− 2)

Γ(0.5)Γ(G(n− 1)/2)
−
[
Γ(1.5)Γ(G(n− 1)/2− 1)

Γ(0.5)Γ(G(n− 1)/2)

]2]

[Figure 1 about here]

Figure 1 shows the histogram and density for K1, ,K4 using simulated data from normal distribution and
ng = n = 20 for each group. The distribution gives a very good fit for the simulated data.

3.1. Decision limit for gANOVA

Multiple testing refers to any instance that involves the simultaneous testing of more than one hypothesis. Failure
to control ”Type I error” when examining multiple outcomes may yield false inference. Several methods are based
on the ”Bonferroni” and ”Sidak” inequalities ([25, 26] that maximize power while ensuring an acceptable ”Type I
error” rate. These methods adjust α values or p-values using simple functions of the number of tested hypotheses;
see, [3, 4, 28]. Holm [17], Hochberg [16], and Hommel [18] developed Bonferroni derivatives incorporating
stepwise components.

To find the decision limit for Kg, g = 1, 2, .., G, there are multiple tests (G ”tests”) and it is needed to distinguish
between two meanings of α when performing multiple tests:

1. The probability of making a Type I error when dealing only with a specific test. This probability is denoted
α[PT ] (alpha per test”). It is also called the test-wise alpha.

2. The probability of making at least one Type I error for the whole family of tests. This probability is denoted
α[PF ] (alpha per family of tests). It is also called the family-wise or the experiment-wise alpha.
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Figure 1. Histogram of Kg (G = 4 and ng = 20) using simulated data from normal distribution with beta distribution of
second type superimposed

Dunn-Sidak-Bonferroni methods and their relatives are the standard approach for controlling the experiment-
wise alpha by specifying what α values should be used for each individual test (i.e., the test is declared to be
significant if p ≤ α). Hence, the probability of at least one Type I error for the whole family is

α(PF ) = 1− (1− α(PT ))G

If one wishes the test-wise alpha for the independence tests, it can be obtained as

α(PT ) = 1− (1− α(PF ))1/G

This is often called the Dunn-Sidak method, for more details; see, for example, [7] and [1]. Noting that
(1− α)1/G ≈ 1− (1/G)α, the Bonferroni approximation gives

α(PT ) ≈ α(PF )

G

For example, to perform four tests, G = 4, and the risk of making at least one Type I error to an overall value of
α(PF ) = 0.05, a test reaches significance if its associated probability is smaller than or equal to

α(PT ) = 1− (1− 0.05)1/4 = 0.01274

using the Bonferonni approximation

α(PT ) ≈ α(PF )/G = 0.05/4 = 0.0125

Under a Bonferroni correction, only hypotheses with associated values less than or equal to α(PT ) are rejected, all
others are accepted. When the null hypothesis is rejected, the multiple comparison correction should take this into
account. There are many methods such as Holms method [17], Simes-Hochberg method ([26], [16] and Hommels
method ([18] and [19]. Another good method due to Benjamini and Hochberg [2] that depends on the concept
of false discover rate (FDR) that is designed to control the anticipated proportion of rejected null hypotheses that
were incorrect rejections (”false discoveries”). Note that he BenjaminiCHochberg procedure (BH) controls the
false discovery rate at level α. In any case the R-software has several methods under the function
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p.adjust(p,method = ””, n = length(p))

These methods are c(”holm”, ”hochberg”, ”hommel”, ”bonferroni”, ”BH”, ”BY”); BH: BenjaminiCHochberg and
BY: Benjamini and Yekutieli.

3.2. Proposed gANOVA

By using the above methods, the gANOVA can be proposed as

H0 : µ1 = µ2 = . . . = µG

is rejected if

any (p.adjust) < α(PF )

Graphically this can be shown using two methods that give the same conclusion. Firstly, by putting

g on x axis versus 1− p.adjust on y axis withDL = 1− α(PF )

and H0 is rejected if

Any (1− p.adjust) > DL

Secondly by using the quantile function for the second type beta distribution where the decision limit can be
proposed as the upper limit for the quantile of second type beta distribution at (1− α(PF )). The decision limit can
be obtained using the quantile function of second beta distribution and R-software function (using function qGB2
from package GB2) as

DL = qGB2

(
1− α(PF ), 1,

(nT −G)(nT − ng)

nT (G− 1)
,
1

2
,
(nT −G)

2

)
and Kadjusted can be also obtained from the second type beta distribution as

Kadjusted = qGB2

(
1− p.adjust, 1,

(nT −G)(nT − ng)

nT (G− 1)
,
1

2
,
nT −G

2

)
and H0 is rejected if

Any(Kadjusted) > DL

3.3. Simulation study

Simulation study is conducted to compare type I errors among different methods (”bonferroni”, ”hommel”, ”BH”,
”ANOVA”) using data from normal distribution as follows.

1. Simulate data from normal distribution with means equal 0 for all groups and unit variance,
2. The number of groups (G) is 3,5,10 and 20,
3. Sample size in each group ng = 10,20,50 and 100,
4. The nominal level of significance is 0.01 and 0.05,
5. Four methods are used. These methods are Bonferroni, Hommel, Benjamini-Hochberg and ANOVA,
6. The estimated level of significance is computed as the percentage of the number of rejected H0 when H0 is

true,
7. The number of replications is 10000,
8. The average of estimated level of significance is computed and reported in Table 1.

Stat., Optim. Inf. Comput. Vol. 11, March 2023



ELSAYED ELAMIR 511

Table 1. Empirical Type I error (family-wise) for Kg using Bonferroni (Bonfe), Hommel (Homm), BenjaminiCHochberg
(BH) and ANOVA methods based on simulated data from normal distribution and the number of replications is 10000

α = 0.05 α = 0.01
G=3

ng Bonfe Homm BH ANOVA Bonfe Homm BH ANOVA
all 10 0.0435 0.0448 0.0466 0.0515 0.0073 0.0075 0.0082 0.0086
all 20 0.0415 0.0429 0.0449 0.0452 0.0075 0.0078 0.0082 0.0082
all 50 0.0440 0.0467 0.0471 0.0500 0.0096 0.0099 0.0099 0.0101
all 100 0.0447 0.0462 0.0479 0.0504 0.0097 0.0099 0;0102 0.0103

G=5
all 10 0.0465 0.0480 0.0490 0.0490 0.0091 0.0091 0.0091 0.0091
all 20 0.0465 0.0469 0.0483 0.0489 0.0099 0.0099 0.0099 0.0105
all 50 0.0494 0.0502 0.0512 0.0518 0.0094 0.0095 0.0097 0.0900
all 100 0.0480 0.0482 0.0496 0.0516 0.0096 0.0097 0.0099 0.0107

G=10
all 10 0.0463 0.0465 0.0482 0.0491 0.0099 0.0099 0.0100 0.0092
all 20 0442 0.0445 0.0468 0.0481 0.0103 0.0103 0.0104 0.0096
all 50 0.0461 0.0465 0.0488 0.0494 0.0114 0.0114 0.0115 0.0115
all 100 0.0477 0.0480 0.0487 0.0488 0.0103 0.0103 0.0103 0.0096

G=20
all 10 0.0467 0.0468 0.0485 0.0490 0.0117 0.0117 0.0117 0.0116
all 20 0.0489 0.0491 0.0500 0.0524 0.0112 0.0112 0.0112 0.0090
all 50 0.0496 0.0497 0.0502 0.0550 0.0103 0.003 0.0103 0.0092
all 100 0.0501 0.0502 0.0511 0.0515 0.0101 0.0101 0.0102 0.0097

The comparison among Bonferroni, Hommel, BH and ANOVA methods in terms of type one error (family-wise
alpha) is given in Table 1. As it can be seen when the number of groups is small the BH method is the nearest
method to nominal values (0.05 and 0.01) and ANOVA. When the number of groups becomes larger, all methods
are very good in comparison with ANOVA and nominal values (0.05 and 0.01). From these results, the BH method
is recommended to adjust p-values that used in building gANOVA.

4. Applications

The proposed method is applied to photosynthetic rates of the oak seedlings data and simulated data from normal
distribution.

4.1. Photosynthetic rate of the oak seedlings

In 2015 researchers planted several hundred oak seedlings in four horizontal transects at different elevations on a
sandy ridge: one at the bottom, one at the top, and two more at equally spaced intervals in between. They anticipated
that transect location might affect the photosynthetic rates of the oak seedlings because water availability in the
soil declined with elevation, see for more details and data at https://www.stthomas.edu/biology.

The null hypothesis for the test is that there are no differences in mean photosynthetic rate among the four groups
of seedlings planted along each of the four transects. The Shapiro normality test gives p-value 0.0000001 that
indicates that the normality assumption is not suitable for photosynthetic data. Also, the Bartlett test of homogeneity
of variances gives p-value 0.006 that does not support homogeneity of variances. The photosynthetic rate has been
square root transformed to improve the fit of the data to a normal distribution. The Shapiro normality test gives
p-value 0.068 that indicates that the normality assumption is suitable for photosynthetic data at 0.01 and 0.05 level
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Table 2. ANOVA for square root of photosynthetic rates data

df SS MS F value Pr(> F )
Treatments 3 7.8 2.592 6.60 0.0004
Residuals 104 40.8 0.393

Table 3. Tukey multiple comparisons of means with 0.95 family-wise confidence level

Groups Diff Lwr Upr p.adjust
B-A -0.096 -0.529 0.337 0.938
C-A -0.361 -0.807 0.085 0.156
D-A -0.691 -1.133 -0.249 0.001
C-B -0.265 -0.715 0.185 0.419
D-B -0.595 -1.041 -0.149 0.004
D-C -0.330 -0.788 0.128 0.243

of significance. Also, the Bartlett test of homogeneity of variances gives p-value 0.30 that supports homogeneity
of variances. Figure 2 shows the boxplot for square root transformation of photosynthetic rates data.

Figure 2. boxplots for square root transformation of photosynthetic rates data

4.1.1. ANOVA analysis The analysis of variance for square root transformation of photosynthetic rates data is
given in Table 2.

Where the p-value in Table 2 is 0.0004, there are significance differences in group means at 0.05 but the ANOVA
test does not show which groups are different. Hence, it is needed to conduct pairwise test as follows.

Tukey honest significance differences test
The Tukey honest significance differences test with 0.95 confidence interval is used with ANOVA and the results

are given in Table 3.
Table 3 illustrates that
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1. There are significance differences between averages for groups D-A and D-B.
2. There are no significance differences among remaining groups.

4.1.2. gANOVA analysis The gANOVA could be applied to square root transformation of photosynthetic rates data
using alpha per family 1− p.adjust method or Kadjusted method as described earlier. Note that the two methods
must give the same conclusion.

First method: 1− p.adjust
In this method the groups are graphed against 1− p.adjust as

g on x axis versus 1− p.adjust on y axis with limits at 1− α(PF )

The steps are

1. Use nT = 29 + 28 + 25 + 26 = 108 and G = 4.
2. Compute Kg, g = 1, 2, 3, 4 for each group using the data.
3. Find probabilities at Kg from R-software (GB2 package) using p = 1−

pgb2(Kg, 1, c(25.36, 25.68, 26.64, 26.32), 0.5, 52).
4. Obtain p.adjust by using R-software function p-adjust(p,method=”bh”) .
5. Graph g against 1− p.adjust
6. Graph the decision line at DL = 1− α
7. Any (1− p.adjust) > 1− α reject H0

Figure 3 (a) shows the results of gANOVA using α = 0.05. Where the 1− P.adjust values of groups A and D
are outside the decision limit, the null hypothesis is rejected.

Figure 3. gANOVA for square root photosynthetic rates data using (a) 1-p.adjust method and (b) Kadjusted method.

Second method: Kadjusted

In this method the groups are graphed against Kadjusted as

g on x axis versus Kadjusted on y axis with limits using qGB2

The steps are
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Table 4. Simulation data from normal distribution with means 105, 100, 98 and 103 and equal variances

A B C D
108.71 109.64 99.06 94.97
98.93 100.47 100.75 100.18
95.86 96.03 106.47 114.81
88.86 106.18 111.89 111.60
126.56 80.52 125.57 115.38
126.99 96.06 99.29 102.19
97.66 105.63 99.16 114.96
117.93 86.04 98.45 102.31
109.28 96.33 90.63 107.54
108.62 93.67 115.80 114.36
107.31 83.25 112.83 102.10
85.14 105.64 87.86 102.49
102.79 99.10 118.00 115.46
100.44 94.99 95.81 99.22
99.2 102.71 88.60 105.68

Table 5. ANOVA for simulated data

DF SS MS F-value Pr(> F )
Treatments 3 809.82 269.94 2.71 0.054
Residuals 56 5574.81 99.5

1. Use nT = 29 + 28 + 25 + 26 = 108 and G = 4.
2. Compute Kg, g = 1, 2, 3, 4 for each group using data.
3. Find probabilities at Kg from R-software (GB2 package) using p = 1−

pgb2(Kg, 1, c(25.36, 25.68, 26.64, 26.32), 0.5, 52).
4. Obtain p.adjust by using function p.adjust(p,method = ”bh”) in R.
5. Compute Kadjusted from quantile function as qgb2(1− p.adjust, 1, c(25.36, 25.68, 26.64, 26.32), 0.5, 52).
6. Find the decision limit using quantile function as DL = qgb2(1− α, 1, c(25.36, 25.68, 26.64, 26.32), 0.5, 52).
7. Any Kadjusted > DL reject H0.

Figure 3(b) shows the results of gANOVA using α = 0.05. Where the Kadjusted of groups A and D are outside the
decision limit, the null hypothesis is rejected.

It can infer that the gANOVA method gives the same conclusions as classical ANOVA plus pair comparisons in
one step and it has graphical advantage that shows where the differences among groups fall.

4.2. Application 2: simulated data

Four groups simulated data from normal distribution with means 105, 100, 98 and 103 and same variances is given
in Table 4. The Shapiro normality test for this data gives p-value 0.5 that indicates that the normality assumption
is satisfied. Also, the Bartlett test of homogeneity of variances gives p-value 0.5 that supports homogeneity of
variances.

The ANOVA result for these simulated data are given in Table 5. Where the p-value is slightly more than 0.05,
the null hypothesis of equal means could not be rejected at 0.05.

The Tukey honest significance differences test with 0.95 confidence interval is given in Table 6. With careful
investigation, the results show different between groups A and B where the p-value for the comparison B-A
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Table 6. Tukey multiple comparisons of means with 0.95 family-wise confidence level

Groups Diff Lwr Upr P adjust
B-A -7.9 -17.51 1.8 0.048
C-A -1.6 -11.25 8.0 0.970
D-A 1.9 -7.72 11.6 0.950
C-B 6.3 -3.39 15.9 0.320
D-B 9.8 0.15 19.4 0.150
D-C 3.5 -6.11 13.2 0.77

is 0.048 < 0.05. In other words, the null hypothesis of equal means may be rejected at 0.05. This is different
conclusion from ANOVA results in Table 5.

On the other hand, Figure 4 shows the results of gANOVA for the simulated data using Kadjusted method. Where
the Kadjusted for group B is outside the decision limit, the null hypothesis is rejected

Figure 4. gANOVA for normal simulated data using Kadjusted method

This application gives more insights into gANOV in comparison with classical ANOVA plus pair comparisons.
While the ANOVA is not significance at 0.05 and the Tukey honest significance differences test at 0.95 confidence
interval has shown significance results, the gANOVA is showing significance results at 0.05.

5. Conclusion

A simultaneous test for means known as gANOVA had proposed as the ratio of between square for each treatment
and within sum of squares for all treatments that created from F-test in one-way analysis of variance. The sum
of this ratio is the F test in one-way analysis of variance. The simulation results on the adjusted p-values were
shown that the preferred method for gANOVA to control the type I error near to nominal value was the Benjamini-
Hochbergs method. The proposed method had provided novel insights into the comparison among group means
where it had collected the test and pairwise comparisons in one step and it had been comparative to classical
one-way analysis of variance with pairwise comparisons in terms of Type I error.

The exact sampling distribution for the proposed method had been derived as a beta distribution of the second
type. Moreover, it may be considered gANOVA as an unblind test for F-test in one-way analysis of variance that
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gives more clarification and analysis for differences among treatment averages and identify which a specific group
mean is different simultaneously and graphically.

The proposed method was applied to photosynthetic rates of the oak seedlings data and simulated data from
normal distribution. In simulation data application, an interesting result was obtained. While the ANOVA was
not significance at 0.05, the Tukey honest significance differences test with 0.95 confidence interval had shown
significance results and this coincides with the results of gANOVA. Lastly, the extension of this method to other
designs such as two-factor ANOVA needs more stud ies.
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Appendix

R program for gANOVA
library(matrixStats)
library(moments)
library(GB2)
gANOVA = function(x,ng,g,aa) ( : x:data matrix, ng: group size, g: group, aa: alpha
y0 = matrix(x,ng,g) : data
y1 = ifelse(y0==”NA”,0,1) :number of values
y2 = colSums(y1,na.rm=T) :ng for each each group
nt = sum(y2) : nt total size
m0 = mean(y0,na.rm=T) : overall mean
vx = var(x,na.rm=T) :var. all data
r0 = matrix(m0,ng,g)
Exact between
BDm = colMeans(y0,na.rm=T) :group means
BDm0 = matrix(BDm,ng,g,byrow=T) :rep BDm
BD0 = (BDm0− r0)2 :between square
BD1 = y1*BD0 : to get na location
BD2 = colSums(BD1,na.rm=T) : col sum between
BD3 = sum(BD2) : Exact Between
Exact within
WD0 = (y0−BDm0)2 : within square
WD1 = sum(WD0,na.rm=T) :exact within
H0 = (BD2/(g-1))/(WD1/(nt-g))
q0 = qgb2(1-aa/g,1,(nt-g)/g,0.5,(nt-g)/2)
p1 = pgb2(H0,1,(nt-g)/g,0.5,(nt-g)/2)
p0 = 1-p1;
bon = p.adjust(p0, method=”bonferroni”)
bh = p.adjust(p0, method=”BH”)
bh0 = 1-bh
q00 = qgb2(1-aa,1,(nt-g)/g,0.5,(nt-g)/2)
F0 = function(y,g,nt)
qgb2(y,1,(nt-g)/g,0.5,(nt-g)/2)
F00 = sapply(bh0,F0,g=g,nt=nt)
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graph
par(mfrow=c(1,2))
first method
plot(1:g,1-bh,type=”h”,xaxt=”n”,lwd=2,ylim=c(0,1), xlab = ”groups”,ylab=”1-p.Adjust”,main=”(a) gANOVA”)
axis(1,at=1:g,labels=LETTERS[1:g])
grid(10,25)
points(1:g,1-bh,pch=16)
text(g-1,1-aa,”PF”)
abline(h=1-aa,lwd=2,lty=2)
Second method
plot(1:g,F00,type=”h”,xaxt=”n”,lwd=2,ylim=c(0,max(q00,F00)), xlab=”groups”,ylab=”Kadjusted”,main=”(b)
gANOVA”)
axis(1,at=1:g,labels=LETTERS[1:g])
grid(10,25 )
points(1:g,F00,pch=16)
text(g-1,q00,”DL”)
abline(h=q00,lwd=2,lty=2)
)
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