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1. Introduction

Let X denote the lifetime of a device or a system with probability density function (pdf) f and cumulative
distribution function (cdf) F , respectively. Then, the differential entropy known as Shannon entropy, is defined
by Shannon [18] as follows:

H(X) = −
∫ +∞

0

f(x) log f(x)dx, (1)

where, by convention, 0 log 0 = 0. Di Crescenzo and Longobardi [6] introduced the concept of weighted differential
entropy which is given by

Hw(X) = −
∫ +∞

0

xf(x) log f(x)dx, (2)

Recently, new measures of information are proposed in literatures: replacing the pdf by the survival function
F̄ = 1− F in Shannon entropy, the cumulative residual entropy (CRE) is defined by Rao et al. [16] as

E(X) =

∫ +∞

0

F̄ (x)Λ(x)dx,

where Λ(x) = − log F̄ (x). Properties of the CRE can be found in [13], [15], and [22]. A new information measure
similar to CRE has been proposed by Di Crescenzo and Longobardi [7] as follows:

CE(X) =

∫ +∞

0

F (x)Λ̃(x)dx, (3)
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where Λ̃(x) = − logF (x). Analogous to (2), Misagh et al. [12] proposed weighted cumulative residual entropy
(WCRE) as

Ew(X) =

∫ +∞

0

xF̄ (x)Λ(x)dx. (4)

Similarly, Misagh et al. [12] proposed weighted cumulative entropy (WCE) as

CEw(X) =

∫ +∞

0

xF (x)Λ̃(x)dx. (5)

Now, suppose that X and Y are two non-negative random variables with reliability functions F̄ (x), Ḡ(x),
respectively. If F̄ (x) is the actual survival function corresponding to the observations and Ḡ(x) is the survival
function assigned by the experimenter, then Kumar and Taneja [11] defined the cumulative residual inaccuracy
(CRI) based on F̄ (x) and Ḡ(x) as follows:

I(F̄ , Ḡ) = −
∫ +∞

0

F̄ (x) log Ḡ(x)dx. (6)

In analogy with (6), a measure of cumulative past inaccuracy (CPI) associated with F and G is given by

Ĩ(F,G) = −
∫ +∞

0

F (x) logG(x)dx. (7)

Order statistics play an important role in problems such as industrial stress testing, meteorological analysis,
hydrology, economics and other related fields. Different order statistics can be used in different applications; for
example, the maximum is of interest in the study of floods and other meteorological phenomena while the minimum
is often used in reliability and survival analysis, etc. For more details about order statistics and their applications,
one may refer to [1]. Let X1, X2, ..., Xn be a random sample of size n from an absolutely continuous cumulative
distribution function F (x). If X(1) ≤ X(2) ≤ ... ≤ X(n) represent the order statistics of the sample X1, X2, ..., Xn.
Then the empirical measure of F (x) is defined as

F̂n(x) =

 0, x < X(1),
k
n , X(k) ≤ x ≤ X(k+1), k = 1, 2, ..., n− 1
1, x > X(k+1).

Recently Thapliyal and Taneja [21] have introduced the measure of residual inaccuracy of order statistics and
proved a characterization result for it. Tahmasebi and Daneshi [19] and Tahmasebi et al. [20] have obtained some
results of inaccuracy measures in record values. Eskandarzadeh et al. [5] have discussed the cumulative measure
of inaccuracy in k-lower record values and studied characterization results of dynamic cumulative inaccuracy.
Daneshi et al. [4] have proposed a weighted cumulative past (residual) inaccuracy of record values and studied
its characterization results. The paper is organized as follows: In Section 2, we consider a measure of weighted
cumulative residual inaccuracy (WCRI) between F̄X(1:n)

and F̄ and study its properties. In Section 3, we also
propose the weighted cumulative past inaccuracy (WPCI) between FX(n:n)

and F and obtain an estimator of
cumulative inaccuracy using empirical approach .

2. WCRI For Minimum of Order Statistics

In this section, we propose the WCRI between F̄X(1:n)
and F̄ as follows:

Iw(F̄X(1:n)
, F̄ ) = −

∫ +∞

0

xF̄X(1:n)
(x)Λ(x)dx =

1

n
Ew(X(1:n)), (8)
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where

Ew(X(1:n)) = n

∫ +∞

0

x[F̄ (x)]nΛ(x)dx.

Hereafter we present some properties of Iw(F̄X(1:n)
, F̄ ).

Proposition 1
Let X be an absolutely continuous non-negative random variable with I(F̄X(1:n)

, F̄ ) <∞, for n ≥ 1. Then, we
have

Iw(F̄X(1:n)
, F̄ ) =

∫ +∞

0

x[F̄ (x)]n
(∫ x

0

f(z)

F̄ (z)
dz

)
dx

=

∫ +∞

0

∫ +∞

z

λ(z)x[F̄ (x)]ndxdz, (9)

where λ(.) is the failure rate function.

Proposition 2
Let X be an absolutely continuous non-negative random variable with Iw(F̄X(1:n)

, F̄ ) <∞, for n ≥ 1. Then, we
have

Iw(F̄X(1:n)
, F̄ ) = E

(
Mw

(1:n)(Z)(F̄ (Z))
n−1

)
, (10)

where

Mw
(1:n)(z) =

1

(F̄ (z))n

∫ +∞

z

x(F̄ (x))ndx

is the weighted mean residual lifetime (wmrl) of X(1:n).

Proof
From (9), we have

Iw(F̄X(1:n)
, F̄ ) =

∫ +∞

0

∫ +∞

z

λ(z)x[F̄ (x)]ndxdz

=

∫ +∞

0

f(z)

F̄ (z)
dz

[∫ +∞

z

x[F̄ (x)]ndx

]
=

∫ +∞

0

f(z)

F̄ (z)
[F̄ (z)]nMw

(1:n)(z)dz =

∫ +∞

0

f(z)[F̄ (z)]n−1Mw
(1:n)(z)dz. (11)

So, the proof is complete.

Proposition 3
Let a, b > 0. For n = 1, 2, ... it holds that

Iw(F̄aX(1:n)+b, F̄aX+b) = aIw(F̄X(1:n)
, F̄ ).

The next propositions give some lower and upper bounds for Iw(F̄X(1:n)
, F̄ ).

Proposition 4
For a non-negative random variable X and n ≥ 1, it holds that

Iw(F̄X(1:n)
, F̄ ) ≥Mw

(1:n)(t)| log F̄ (t)|[F̄ (t)]
n, (12)

where Mw
(1:n)(t) is the wmrl of X(1:n).

Stat., Optim. Inf. Comput. Vol. 8, March 2020



S. DANESHI, A. NEZAKATI, S. TAHMASEBI 113

Proof
The proof follows from Baratpour [2].

Proposition 5
Let X be an absolutely continuous non-negative random variable with Iw(F̄X(1:n)

, F̄ ) <∞, for n ≥ 1. Then, we
have

Iw(F̄X(1:n)
, F̄ ) ≥

∫ +∞

0

x(F̄ (x))nF (x)dx. (13)

Proof
Recalling that − log F̄ (x) ≥ F (x), the proof then finally follows.

Proposition 6
Let X be an absolutely continuous non-negative random variable with Iw(F̄X(1:n)

, F̄ ) <∞, for n ≥ 1. Then, we
have

Iw(F̄X(1:n)
, F̄ ) ≤ Ew(X). (14)

Proof
Since F̄ (x) ≥ [F̄ (x)]n, x ≥ 0, when n ≥ 1, the proof then finally follows.

Proposition 7
If X is IFRA (DFRA), then

Iw(F̄X(1:n)
, F̄ ) ≤ (≥)E

(
X2(F̄ (X))n−1

)
. (15)

Proof
Since X is IFRA (DFRA), Λ(x)

x is increasing (decreasing) with respect to x > 0, which implies that

F̄ (x)Λ(x) ≤ (≥)xf(x), x > 0. (16)

By multiplying x[F̄ (x)]n−1 ≥ 0 in (16) and then integrating, the result follows.

Proposition 8
Let X be an absolutely continuous non-negative random variable with Iw(F̄X(1:n)

, F̄ ) <∞, for n ≥ 1. Then, we
have

Iw(F̄X(1:n)
, F̄ ) = E [hw(X)] , (17)

where

hw(x) =

∫ x

0

z
[
− log F̄ (z)

]
[F̄ (z)]n−1dz, x ≥ 0.

Proof
From (8) and using Fubini’s theorem, we obtain

Iw(F̄X(1:n)
, F̄ ) =

∫ ∞

0

z[− log F̄ (z)][F̄ (z)]n−1F̄ (z)dz

=

∫ ∞

0

[∫ ∞

z

f(x)dx

]
z[F̄ (z)]n−1[− log F̄ (z)]dz

=

∫ ∞

0

f(x)

[∫ x

0

z[F̄ (z)]n−1[− log F̄ (z)]dz

]
dx = E [hw(X)] .
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Proposition 9
LetX and Y be two non-negative random variables with reliability functions F̄ (x), Ḡ(x), respectively. IfX ≤icx Y
, then

Iw(F̄X(1:n)
, F̄ ) ≤ Iw(ḠY(1:n)

, Ḡ).

Proof
Since hw(.) is an increasing convex function for n ≥ 1, it follows by Shaked and Shanthikumar [17] that X ≤icx Y
implies hw(X) ≤icx hw(Y ). By recalling the definition of increasing convex order and Proposition 8 proof is
complete.

Proposition 10
Let X and Y be two non-negative random variables with survival function F̄ (x) and Ḡ(x), respectively. If
X ≤hr Y , then for n = 1, 2, ..., it holds that

Iw(F̄X(1:n)
, F̄ )

E(X)
≤
Iw(ḠY(1:n)

, Ḡ)

E(Y )
.

Proof
By noting that the function hw(x) =

∫ x

0
z[F̄ (z)]n−1[− log F̄ (z)]dz is an increasing convex function, under the

assumption X ≤hr Y , it follows by Shaked and Shanthikumar [17],

E [hw(X)]

E(X)
≤ E [hw(Y )]

E(Y )
.

Hence, the proof is completed by recalling (17).

Proposition 11
(i) Let X be a continuous random variable with survival function F̄ (.) that takes values in [0, b], with finite b. Then,

Iw(F̄X(1:n)
, F̄ ) ≤ bI(F̄X(1:n)

, F̄ ).

(ii) Let X be a non-negative continuous random variable with survival function F̄ (.) that takes values in [a,∞),
with finite a > 0. Then,

Iw(F̄X(1:n)
, F̄ ) ≥ aI(F̄X(1:n)

, F̄ ).

Assume that X∗
θ denotes a non-negative absolutely continuous random variable with the survival function

H̄θ(x) = [F̄ (x)]θ, x ≥ 0. This model is known as a proportional hazards rate model. We now obtain the weighted
cumulative residual measure of inaccuracy between H̄X(1:n)

and H̄ as follows:

Iw(H̄X(1:n)
, H̄) = −

∫ +∞

0

xH̄X(1:n)
(x) log

(
H̄(x)

)
dx

= −θ
∫ +∞

0

x(F̄ (x))nθ log F̄ (x)dx. (18)

Proposition 12
If θ ≥ (≤)1, then for any n ≥ 1, we have

Iw(H̄X(1:n)
, H̄) ≤ (≥)θIw(F̄X(1:n)

, F̄ ) ≤ (≥)θEw(X).

Proof
Suppose that θ ≥ (≤)1, then it is clear [F̄ (x)]θ ≤ (≥)F̄ (x), and hence (18) yields

Iw(H̄X(1:n)
, H̄) ≤ (≥)θEw(X).
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Theorem 13
Iw(F̄X(1:n)

, F̄ ) = 0, if and only if, X is degenerate.

Proof
SupposeX is degenerate at point a, obviously by definition of degenerate function and definition of Iw(F̄X(1:n)

, F̄ ),
we have Iw(F̄X(1:n)

, F̄ ) = 0.
Now, suppose that Iw(F̄X(1:n)

, F̄ ) = 0, i.e.

−
∫ ∞

0

x[F̄ (x)]n log F̄ (x)dx = 0. (19)

Then, by noting that integrand function of (19) is non-negative, we conclude that −x[F̄ (x)]n log F̄ (x) = 0, for
almost all x ∈ R+. Thus, F̄ (x) = 0 or 1, for almost all x ∈ R+.

Recently, Cali et al. [3] introduced the generalized CPI of order m defined as

Im(F,G) =
1

m!

∫ +∞

0

F (x)[− logG(x)]mdx. (20)

In analogy with the measure defined in (20), we now introduce the weighted generalized CRI (WGCRI) of order
m defined as

Iwm(F̄ , Ḡ) =
1

m!

∫ +∞

0

xF̄ (x)[− log Ḡ(x)]mdx. (21)

Remark 1
Let X be a non-negative absolutely continuous random variable with cdf F . Then, the WGCRI of order m between
F̄X(1:n)

and F is

Iwm(F̄X(1:n)
, F̄ ) =

1

m!

∫ ∞

0

x[F̄ (x)]n[− log F̄ (x)]mdx

=
1

nm
Ew
m(X(1:n)), (22)

where

Ew
m(X) =

∫ ∞

0

x

[
− log F̄ (x)

]m
m!

F̄ (x)dx,

is a weighted generalized cumulative residual entropy (WGCRE) which introduced by Kayal [9].

Remark 2
In analogy with (8), a measure of WCRI associated with F̄ and F̄X(1:n)

is given by

Iw(F̄ , F̄X(1:n)
) = −

∫ +∞

0

xF̄ (x) log
(
F̄X(1:n)

(x)
)
dx = nEw(X). (23)

In the remainder of this section, we study dynamic version of Iw(F̄X(1:n)
, F̄ ). Let X be the lifetime of a system

under condition that the system has survived up to age t. Analogously, we can also consider the dynamic version
of Iw(F̄X(1:n)

, F̄ ) as

Iw(F̄X(1:n)
, F̄ ; t) = −

∫ +∞

t

x
F̄X(1:n)

(x)

F̄X(1:n)
(t)

log

(
F̄ (x)

F̄ (t)

)
dx

= log F̄ (t)Mw
(1:n)(t)−

∫ +∞

t

x
F̄X(1:n)

(x)

F̄X(1:n)
(t)

log
(
F̄ (x)

)
dx

Stat., Optim. Inf. Comput. Vol. 8, March 2020



116 WEIGHTED CUMULATIVE RESIDUAL INACCURACY FOR MINIMUM OF ORDER STATISTICS

= log F̄ (t)Mw
(1:n)(t)−

1

(F̄ (t))n

∫ +∞

t

x(F̄ (x))n log F̄ (x)dx. (24)

Note that limt→0 I
w(F̄X(1:n)

, F̄ ; t) = Iw(F̄X(1:n)
, F̄ ). Since log F̄ (t) ≤ 0 for t ≥ 0, we have

Iw(F̄X(1:n)
, F̄ ; t) ≤ − 1

(F̄ (t))n

∫ +∞

t

x(F̄ (x))n log F̄ (x)dx

≤ − 1

(F̄ (t))n

∫ +∞

0

x(F̄ (x))n log F̄ (x)dx =
Iw(F̄X(1:n)

, F̄ )

(F̄ (t))n
.

Theorem 14
Let X be a non-negative continuous random variable with distribution function F (.). Let the weighted dynamic
cumulative inaccuracy of the 1th order statistics denoted by Iw(F̄X(1:n)

, F̄ ; t) <∞ , t ≥ 0. Then Iw(F̄X(1:n)
, F̄ ; t)

characterizes the distribution function.

Proof
From (24) we have

Iw(F̄X(1:n)
, F̄ ; t) = log F̄ (t)Mw

(1:n)(t)−
1

(F̄ (t))n

∫ +∞

t

x(F̄ (x))n log F̄ (x)dx. (25)

Differentiating both side of (25) with respect to t we obtain:

∂

∂t
[Iw(F̄X(1:n)

, F̄ ; t)] = −λF (t)Mw
(1:n)(t) + nλF (t)I

w(F̄X(1:n)
, F̄ ; t)

= λF (t)
[
nIw(F̄X(1:n)

, F̄ ; t)−Mw
(1:n)(t)

]
.

Taking derivative with respect to t again we get

λ́F (t) =
(λF (t))

2
(
nλF (t)M

w
(1:n)(t) + n ∂

∂tI
w(F̄X(1:n)

, F̄ ; t)− t
)

∂
∂tI

w(F̄X(1:n)
, F̄ ; t)

.

(26)

Suppose that there are two functions F and F ∗ such that

Iw(F̄X(1:n)
, F̄ ; t) = Iw(F̄ ∗

X(1:n)
, F̄ ∗; t) = z(t).

Then for all t, from (26) we get

λ́F (t) = φ(t, λF (t)), λ́F∗(t) = φ(t, λF∗(t)),

where

φ(t, y) =
y2 [nys(t) + nź(t)− t]

ź(t)
,

and s(t) =Mw
(1:n)(t). By using Theorem 3.2 and Lemma 3.3 of Gupta and Kirmani [8], we have, λF (t) = λF∗(t),

for all t. Since the hazard rate function characterizes the distribution function uniquely, we complete the proof.

Proposition 15
IfX(1) ≤ X(2) ≤ ... ≤ X(n) represent the order statistics of the sampleX1, X2, ..., Xn. Then, the empirical measure
of Iw(F̄X(1:n)

, F̄ ) is obtained as

Îw(F̄X(1:n)
, F̄ ) = −

∫ +∞

0

x[ ˆ̄Fn(x)]
n log ˆ̄Fn(x)dx
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= −
n−1∑
k=1

∫ X(k+1)

X(k)

x

(
1− k

n

)n

log

(
1− k

n

)
dx

= −
n−1∑
k=1

Uk

(
1− k

n

)n

log

(
1− k

n

)
, (27)

where Uk =
X2

(k+1)−X2
(k)

2 , k = 1, 2, ..., n− 1.

Theorem 16
Let X be a absolutely continue non-negative random variable whit Iw(F̄X(1:n)

, F̄ ) <∞ , for all n ≥ 1. Then we
have

Îw(F̄X(1:n)
, F̄ ) −→ Iw(F̄X(1:n)

, F̄ ) a.s.

Proof
From (27) we have

Îw(F̄X(1:n)
, F̄ ) =

∫ ∞

0

x(− log ˆ̄Fn(x))(
ˆ̄Fn(x))

ndx

=

∫ 1

0

x(− log ˆ̄Fn(x))(
ˆ̄Fn(x))

ndx+

∫ ∞

1

x(− log ˆ̄Fn(x))(
ˆ̄Fn(x))

ndx

=: W1 +W2, (28)

where

W1 =

∫ 1

0

x(− log ˆ̄Fn(x))(
ˆ̄Fn(x))

ndx,

W2 =

∫ ∞

1

x(− log ˆ̄Fn(x))(
ˆ̄Fn(x))

ndx.

Using dominated convergence theorem (DCT) and Glivenko-Cantelli, we have∫ 1

0

x(− log ˆ̄Fn(x))(
ˆ̄Fn(x))

ndx −→
∫ 1

0

x(− log F̄ (x))(F̄ (x))ndx as m→ ∞. (29)

It follows that

xp ˆ̄Fn(x) ≤
1

n

n∑
i=1

Xp
i .

Morever, by using SLLN, 1
n

∑n
i=1X

p
i −→ E(Xp) and supn(

1
n

∑n
i=1X

p
i ) <∞, then ˆ̄Fn(x) ≤

x−p
(
supn(

1
n

∑n
i=1X

p
i )
)
= Cx−p. Now applying the DCT we have

lim
n→∞

W2 =

∫ ∞

1

x(− log F̄ (x))(F̄ (x))ndx. (30)

Finally by using (28) the result follows.

3. WCPI For Maximum of Order Statistics

We consider the WCPI between FX(n:n)
and F as follows:

Ĩw(FX(n:n)
, F ) = −

∫ +∞

0

xFX(n:n)
(x) log (F (x)) dx =

1

n
CEw(X(n:n)), (31)
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where

CEw(X(n:n)) = n

∫ +∞

0

x[F (x)]nΛ̃(x)dx.

Hereafter we consider some properties of Ĩw(FX(n:n)
, F ).

Proposition 17
Let X be an absolutely continuous non-negative random variable with Ĩw(FX(n:n)

, F ) <∞, for n ≥ 1. Then, we
have

Ĩw(FX(n:n)
, F ) =

∫ +∞

0

x[F (x)]n
(∫ ∞

x

f(z)

F (z)
dz

)
xdx

=

∫ +∞

0

∫ z

0

λ̃(z)x[F (x)]ndxdz, (32)

where λ̃(.) is the reversed failure rate function.

Proposition 18
Let X be an absolutely continuous non-negative random variable with Ĩw(FX(n:n)

, F ) <∞, for n ≥ 1. Then, we
have

Ĩw(FX(n:n)
, F ) = E

(
M̃w

(n:n)(Z)(F (Z))
n−1

)
, (33)

where

M̃w
(n:n)(z) =

1

(F (z))n

∫ z

0

x(F (x))ndx

is the weighted mean inactivity time (WMIT) of X(n:n).

Proof
By (32), we obtain

Ĩw(FX(n:n)
, F ) =

∫ +∞

0

∫ z

0

λ̃(z)x[F (x)]ndxdz

=

∫ +∞

0

f(z)

F (z)
dz

[∫ z

0

x[F (x)]ndx

]
=

∫ +∞

0

f(z)

F (z)
[F (z)]nM̃w

(n:n)(z)dz =

∫ +∞

0

f(z)[F (z)]n−1M̃w
(n:n)(z)dz. (34)

Thus, the proof is complete.

Proposition 19
Let a, b > 0. For n = 1, 2, ... it holds that

Ĩw(FaX(n:n)+b, FaX+b) = aĨw(FX(n:n)
, F ).

The next propositions give some lower and upper bounds for Ĩw(FX(n:n)
, F ).

Proposition 20
For a non-negative random variable X and n ≥ 1, it holds that

Ĩw(FX(n:n)
, F ) ≥ M̃w

(n:n)(t)| logF (t)|[F (t)]
n, (35)

where M̃(n:n)(t) is the WMIT of X(n:n).
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Proof
The proof follows from Baratpour [2].

Proposition 21
Let X be an absolutely continuous non-negative random variable with Ĩw(FX(n:n)

, F ) <∞, for n ≥ 1. Then, we
have

Ĩw(FX(n:n)
, F ) ≥

∫ +∞

0

x(F (x))nF̄ (x)dx. (36)

Proof
Recalling that − logF (x) ≥ F̄ (x), the proof then finally follows.

Proposition 22
Let X be an absolutely continuous non-negative random variable with Ĩw(FX(n:n)

, F ) <∞, for n ≥ 1. Then, we
have

Ĩw(FX(n:n)
, F ) ≤ CEw(X). (37)

Proof
Since F (x) ≥ [F (x)]n, x ≥ 0, when n ≥ 1, the proof then finally follows.

Proposition 23
If X is DRFRA, then

Ĩw(FX(n:n)
, F ) ≤ E

(
X2(F (X))n−1

)
. (38)

Proof
Since X is DRFRA, Λ̃(x)

x is decreasing with respect to x > 0, which implies that

F (x)Λ̃(x) ≤ xf(x), x > 0. (39)

By multiplying x[F (x)]n−1 ≥ 0 in (39) and then integrating, the result follows.

Proposition 24
Let X be an absolutely continuous non-negative random variable with Ĩw(FX(n:n)

, F ) <∞, for n ≥ 1. Then, we
have

Ĩw(FX(n:n)
, F ) = E

[
h̃w(X)

]
, (40)

where

h̃w(x) =

∫ ∞

x

z [− logF (z)] [F (z)]n−1dz, x ≥ 0.

Proof
From (31) and using Fubini’s theorem, we obtain

Ĩw(FX(n:n)
, F ) =

∫ ∞

0

z[− logF (z)][F (z)]n−1F (z)dz

=

∫ ∞

0

[∫ z

0

f(x)dx

]
z[F (z)]n−1[− logF (z)]dz

=

∫ ∞

0

f(x)

[∫ ∞

x

z[F (z)]n−1[− logF (z)]dz

]
dx = E

[
h̃w(X)

]
.
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Proposition 25
LetX and Y be two non-negative random variables with reliability functions F̄ (x), Ḡ(x), respectively. IfX ≤icx Y
, then

Ĩw(FX(n:n)
, F ) ≤ Ĩw(GY(n:n)

, G).

Proof
Since h̃w(.) is an increasing convex function for n ≥ 1, it follows by Shaked and Shanthikumar [17] that X ≤icx Y
implies h̃w(X) ≤icx h̃w(Y ). By recalling the definition of increasing convex order and Proposition 24 proof is
complete.

Proposition 26
Let X and Y be two non-negative random variables with survival function F̄ (x) and Ḡ(x), respectively. If
X ≤hr Y , then for n = 1, 2, ..., it holds that

Ĩw(FX(n:n)
, F )

E(X)
≤
Ĩw(GY(n:n)

, G)

E(Y )
.

Proof
By noting that the function h̃w(x) =

∫∞
x
z[F (z)]n−1[− logF (z)]dz is an increasing convex function, under the

assumption X ≤hr Y , it follows by Shaked and Shanthikumar [17],

E
[
h̃w(X)

]
E(X)

≤
E
[
h̃w(Y )

]
E(Y )

.

Hence, the proof is completed by recalling (40).

Proposition 27
(i) Let X be a continuous random variable with survival function F̄ (.) that takes values in [0, b], with finite b. Then,

Ĩw(FX(n:n)
, F ) ≤ bĨ(FX(n:n)

, F ).

(ii) Let X be a non-negative continuous random variable with survival function F̄ (.) that takes values in [a,∞),
with finite a > 0. Then,

Ĩw(FX(n:n)
, F ) ≥ aĨ(FX(n:n)

, F ).

Assume that X∗
θ denotes a non-negative absolutely continuous random variable with the distribution function

Hθ(x) = [F (x)]θ, x ≥ 0. This model is known as a proportional hazards rate model. We now obtain the weighted
cumulative past measure of inaccuracy between HX(n:n)

and H as follows:

Ĩw(HX(n:n)
,H) = −

∫ +∞

0

xHX(n:n)
(x) log (H(x)) dx

= −θ
∫ +∞

0

x(F (x))nθ logF (x)dx. (41)

Proposition 28
If θ ≥ (≤)1, then for any n ≥ 1, we have

Ĩw(HX(n:n)
,H) ≤ (≥)θĨw(FX(n:n)

, F ) ≤ (≥)θCEw(X).

Proof
Suppose that θ ≥ (≤)1, then it is clear [F (x)]θ ≤ (≥)F (x), and hence (41) yields

Ĩw(HX(n:n)
,H) ≤ (≥)θCEw(X).
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Theorem 29
Ĩw(FX(n:n)

, F ) = 0, if and only if, X is degenerate.

Proof
SupposeX is degenerate at point a, obviously by definition of degenerate function and definition of Ĩw(FX(n:n)

, F ),
we have Ĩw(FX(n:n)

, F ) = 0.
Now, suppose that Ĩw(FX(n:n)

, F ) = 0, i.e.

−
∫ ∞

0

x[F (x)]n logF (x)dx = 0. (42)

Then, by noting that integrand function of (42) is non-negative, we conclude that −x[F (x)]n logF (x) = 0, for
almost all x ∈ R+. Thus, F (x) = 0 or 1, for almost all x ∈ R+.

Proposition 30
Let X be an absolutely continuous random variable with Ĩw(FX(n:n)

, F ) <∞, for n ≥ 1. Then, we have

Ĩw(FX(n:n)
, F ) =

∫ 1

0

F−1
X (u)

ψn(u)

fX
(
F−1
X (u)

)du,
where ψn(u) = −un log u, for 0 < u < 1. Note that ψn(0) = ψn(1) = 0.

Recently, Cali et al. [3] introduced the generalized CPI of order m defined as

Im(F,G) =
1

m!

∫ +∞

0

F (x)[− logG(x)]mdx. (43)

In analogy with the measure defined in (43), we now introduce the weighted generalized CPI (WGCPI) of order m
defined as

Iwm(F,G) =
1

m!

∫ +∞

0

xF (x)[− logG(x)]mdx. (44)

Remark 3
Let X be a non-negative absolutely continuous random variable with cdf F . Then, the WGCPI of order m between
FX(n:n)

and F is

Ĩwm(FX(n:n)
, F ) =

1

m!

∫ ∞

0

x[F (x)]n[− logF (x)]mdx

=
1

nm
CEw

m(X(n:n)), (45)

where

CEw
m(X) =

∫ ∞

0

x
[− logF (x)]

m

m!
F (x)dx,

is a weighted generalized cumulative entropy (WGCE) which introduced by Kayal and Moharana [10].

Remark 4
In analogy with (31), a measure of WCPI associated with F and FX(n:n)

is given by

Ĩw(F, FX(n:n)
) = −

∫ +∞

0

xF (x) log
(
FX(n:n)

(x)
)
dx = nCEw(X). (46)

Stat., Optim. Inf. Comput. Vol. 8, March 2020



122 WEIGHTED CUMULATIVE RESIDUAL INACCURACY FOR MINIMUM OF ORDER STATISTICS

In the remainder of this section, we study dynamic version of Ĩw(FX(n:n)
, F ). If a system that begins to work

at time 0 is observed only at deterministic inspection times, and is found to be down at time t, then we consider a
dynamic version of Ĩw(FX(n:n)

, F ) as

Ĩw(FX(n:n)
, F ; t) = −

∫ t

0

x
FX(n:n)

(x)

FX(n:n)
(t)

log

(
F (x)

F (t)

)
dx

= logF (t)M̃w
(n:n)(t)−

∫ t

0

x
FX(n:n)

(x)

FX(n:n)
(t)

log (F (x)) dx

= logF (t)M̃w
(n:n)(t)−

1

(F (t))n

∫ t

0

x(F (x))n logF (x)dx. (47)

Note that limt→0 Ĩ
w(FX(n:n)

, F ; t) = Ĩw(FX(n:n)
, F ). Since logF (t) ≤ 0 for t ≥ 0, we have

Ĩw(FX(n:n)
, F ; t) ≤ − 1

(F (t))n

∫ t

0

x(F (x))n logF (x)dx

≤ − 1

(F (t))n

∫ +∞

0

x(F (x))n logF (x)dx =
Ĩw(FX(n:n)

, F )

(F (t))n
.

Theorem 31
Let X be a non-negative continuous random variable with distribution function F (.). Let the weighted dynamic
cumulative inaccuracy of the nth order statistics denoted by Ĩw(FX(n:n)

, F ; t) <∞ , t ≥ 0. Then Ĩw(FX(n:n)
, F ; t)

characterizes the distribution function.

Proof
From (47) we have

Ĩw(FX(n:n)
, F ; t) = logF (t)M̃w

(n:n)(t)−
1

(F (t))n

∫ t

0

x(F (x))n logF (x). (48)

Differentiating both side of (48) with respect to t we obtain:

∂

∂t
[Ĩw(FX(n:n)

, F ; t)] = −λ̃F (t)M̃w
(n:n)(t)− nλ̃F (t)Ĩ

w(FX(n:n)
, F ; t)

= −λ̃F (t)
[
M̃w

(n:n)(t)− nĨw(FX(n:n)
, F ; t)

]
Taking derivative with respect to t again we get

´̃
λF (t) =

(
λ̃F (t)

)2 (
nλ̃F (t)M̃

w
(n:n)(t) + n ∂

∂t Ĩ
w(FX(n:n)

, F ; t)− t
)

∂
∂t Ĩ

w(FX(n:n)
, F ; t)

.

(49)

Suppose that there are two functions F and F ∗ such that

Ĩw(FX(n:n)
, F ; t) = Ĩw(F ∗

X(n:n)
, F ∗; t) = z(t).

Then for all t, from (49) we get

´̃
λF (t) = φ(t, λF (t)),

´̃
λF∗(t) = φ(t, λF∗(t)),

Stat., Optim. Inf. Comput. Vol. 8, March 2020



S. DANESHI, A. NEZAKATI, S. TAHMASEBI 123

where

φ(t, y) =
y2 [nys(t) + nź(t)− t]

ź(t)
,

and s̃(t) = M̃w
(n:n)(t). By using Theorem 3.2 and Lemma 3.3 of Gupta and Kirmani [8], we have, λF (t) = λF∗(t),

for all t. Since the hazard rate function characterizes the distribution function uniquely, we complete the proof.

Proposition 32
If X(1) ≤ X(2) ≤ ... ≤ X(n) denote the order statistics of the sample X1, X2, ..., Xn. Then, the empirical measure
of Ĩw(FX(n:n)

, F ) is given by

ˆ̃Iw(FX(n:n)
, F ) = −

∫ +∞

0

x[F̂n(x)]
n log F̂n(x)dx

= −
n−1∑
k=1

∫ X(k+1)

X(k)

x

(
k

n

)n

log

(
k

n

)
dx

=
−1

nn

n−1∑
k=1

knUk log

(
k

n

)
, (50)

where Uk =
X2

(k+1)−X2
(k)

2 , k = 1, 2, ..., n− 1.

Example 1
Consider the random sample X1, X2, ..., Xn from a Weibull distribution with density function

f(x) = 2λ exp(−λx2).

Then Yk = X2
k has an exponential distribution with mean 1

λ . In this case, the sample spacings 2Uk = X2
(k+1) −X2

(k)

are independent and exponentially distributed with mean 1
λ(n−k) (for more details see Pyke [14]). Now from (50)

we obtain

E[ ˆ̃Iw(FX(n:n)
, F )] =

−1

nn

n−1∑
k=1

kn

2λ(n− k)
log

k

n
, (51)

and

V ar[ ˆ̃Iw(FX(n:n)
, F )] =

1

n2n

n−1∑
k=1

k2n

4λ2(n− k)2

(
log

k

n

)2

. (52)

We have computed the values of E[ ˆ̃Iw(FX(n:n)
, F )] and V ar[ ˆ̃Iw(FX(n:n)

, F )] for sample sizes n = 10, 15, 20 and

λ = 0.5, 1, 2 in Table 1. We can easily see that E[ ˆ̃Iw(FX(n:n)
, F )] is decreasing in n. Also, we consider that

limn→∞ V ar[ ˆ̃Iw(FX(n:n)
, F )] = 0 .

Example 2
Let X1, X2, ..., Xn be a random sample from a population with pdf f(x) = 2x, 0 < x < 1. Then the sample
spacings 2Uk are independent of beta distribution with parameters 1 and n (for more details see Pyke [14]). Now
from (50) we obtain

E[ ˆ̃Iw(FX(n:n)
, F )] =

−1

nn

n−1∑
k=1

kn

2(n+ 1)
log

k

n
, (53)

and

V ar[ ˆ̃Iw(FX(n:n)
, F )] =

1

n2n−1

n−1∑
k=1

kn

4(n+ 1)2(n+ 2)

(
log

k

n

)2

. (54)
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We have computed the values of E[ ˆ̃Iw(FX(n:n)
, F )] and V ar[ ˆ̃Iw(FX(n:n)

, F )] for sample sizes n = 10, 15, 20

in Table 2. We can easily see that E[ ˆ̃Iw(FX(n:n)
, F )] is decreasing in n. Also, we consider that

limn→∞ V ar[ ˆ̃Iw(FX(n:n)
, F )] = 0.

Table 1. Numerical values of E[ ˆ̃Iw(FX(n:n)
, F )] and V ar[ ˆ̃Iw(FX(n:n)

, F )] for Weibull distribution.

E[ ˆ̃Iw(FX(n:n)
, F )] V ar[ ˆ̃Iw(FX(n:n)

, F )]

n λ = 0.5 λ = 1 λ = 2 λ = 0.5 λ = 1 λ = 2
10 0.0530 0.0265 0.0132 0.00150 0.00037 0.00009
15 0.0365 0.0182 0.0091 0.00068 0.00017 0.00004
20 0.0278 0.0139 0.0069 0.00038 0.00009 0.00002

Table 2. Numerical values of E[ ˆ̃Iw(FX(n:n)
, F )] and V ar[ ˆ̃Iw(FX(n:n)

, F )] for beta distribution.

E[ ˆ̃Iw(FX(n:n)
, F )] V ar[ ˆ̃Iw(FX(n:n)

, F )]

n=10 n=15 n=20 n=10 n=15 n=20
0.00339 0.00166 0.00098 2.57e-15 1.43e-23 2.11e-32

Theorem 33
Let X be an absolutely continuous non-negative random variable whit Ĩw(FX(n:n)

, F ) <∞ , for all n ≥ 1. Then
we have

ˆ̃Iw(FX(n:n)
, F ) −→ Ĩw(FX(n:n)

, F ) a.s.

Proof
From (50) we have

ˆ̃Iw(FX(n:n)
, F ) =

∫ ∞

0

x(− log F̂n(x))(F̂n(x))
ndx

=

∫ 1

0

x(− log F̂n(x))(F̂n(x))
ndx+

∫ ∞

1

x(− log F̂n(x))(F̂n(x))
ndx

=: R1 +R2, (55)

where

R1 =

∫ 1

0

x(− log F̂n(x))(F̂n(x))
ndx,

R2 =

∫ ∞

1

x(− log F̂n(x))(F̂n(x))
ndx.

Using dominated convergence theorem (DCT) and Glivenko-Cantelli, we have∫ 1

0

x(− log F̂n(x))(F̂n(x))
ndx −→

∫ 1

0

x(− logF (x))(F (x))ndx as m→ ∞. (56)

It follows that

xpF̂n(x) ≤
1

n

n∑
i=1

Xp
i .
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Morever, by using SLLN, 1
n

∑n
i=1X

p
i −→ E(Xp) and supn(

1
n

∑n
i=1X

p
i ) <∞, then F̂n(x) ≤

x−p
(
supn(

1
n

∑n
i=1X

p
i )
)
= Cx−p. Now applying the DCT we have

lim
n→∞

R2 =

∫ ∞

1

x(− logF (x))(F (x))ndx. (57)

Finally by using (55) the result follows.

In the following example, we calculate Ĩw(FX(n:n)
, F ) and Iw(F̄X(1:n)

, F̄ ) for some specific lifetime distributions
which are widely used in reliability theory and life testing.

Example 3
(a) If X is uniformly distributed in [0, θ], then it is easy to see that Ĩw(FX(n:n)

, F ) = θ2

(n+2)2 , and Iw(F̄X(1:n)
, F̄ ) =

(2n+3)θ2

(n2+3n+2)2 , for all integers n ≥ 1. Note that Ĩw(FX(n:n)
, F ) and Iw(F̄X(1:n)

, F̄ ) are decreasing functions of n.
(b) If X has a Weibull distribution with survival function F̄ (x) = e−λqxq

, x > 0, λ, q > 0, then for all integers
n ≥ 1, we obtain Iw(F̄X(1:n)

, F̄ ) = 2

(λq)2n
q+2
q

Γ(2q ).

(c) IfX has a Pareto distribution with pdf f(x) = αβα

xα+1 , x ≥ β, β > 0, α > 0, then Iw(F̄X(1:n)
, F̄ ) = αβ2

(nα−2)2 , for
all integers n > 2

α . Note that Iw(F̄X(1:n)
, F̄ ) is a decreasing function of n for all α > 2

n .
(d) Let X be an exponential distribution with mean 1

λ , then Iw(F̄X(1:n)
, F̄ ) = 2

n3λ2 . Note that Iw(F̄X(1:n)
, F̄ ) is a

decreasing function of n.
(e) Let X be a non-negative random variable which has an inverse Weibull distribution with the cdf F (x) =

exp(−(αx )
β), x > 0, then for all integers n ≥ 1, we obtain Ĩw(FX(n:n)

, F ) = α2n
2−β
β

β Γ(β−2
β ).

4. Conclusion

In this paper, we discussed on concept of a weighted cumulative residual inaccuracy measure between F̄X(1:n)

and F̄ and studied some properties of its. We proposed a dynamic version of WCRI and studied characterization
results of it. It is also proved that Iw(F̄X(1:n)

, F̄ ; t) can uniquely determine the parent distribution F . Moreover,
we studied some new basic properties of Iw(F̄X(1:n)

, F̄ ) such as the effect of linear transformation, relationships
with other reliability functions, bounds and stochastic order properties. We estimated the WCRI by means of
the empirical cumulative inaccuracy for minimum of order statistics and proved that Îw(F̄X(1:n)

, F̄ ) converge
to Iw(F̄X(1:n)

, F̄ ). Finally, similarly, we proposed the WCPI measure between FX(n:n) and F . We also studied
some properties of Ĩw(FX(n:n)

, F ) such as the connections with other reliability functions, several useful bounds
and stochastic orderings. These concepts can be applied in measuring the weighted inaccuracy contained in the
associated residual (past) lifetime.
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