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Abstract The exponential distribution is widely used in reliability and life testing analysis. In this paper, two tests of fit for
the exponential distribution based on Informational Energy and entropy are constructed. Consistency and other properties
of the tests are proved. Using a simulation study, critical values of the proposed tests are obtained and then power values of
tests are computed and compared with each other against various alternatives. Finally, we apply the tests for time between
failures of secondary reactor pumps and waiting times for fatal plane accidents in the USA from 1983 to 1998.
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1. Introduction

Suppose that the random variable X has distribution function F with density function f . The informational energy
ε(f) of the random variable is defined as

ε(f) =

∫ ∞

−∞
f(x)

2
dx.

Onicescu (1966) justified the name informational energy and its connection to Information Theory in the classical
mechanics. Rao (1973) obtained distributions describing equilibrium states in statistical mechanics based on the
informational energy. The informational energy has been used in many statistical problems, see Theodorescu
(1977), Onicescu and Stefanescu (1979), Pardo and Taneja (1991) and references there in.
In non-parametric statistics, an estimator of informational energy is useful for researcher. Pardo (2003) introduced
an estimator of informational energy as follows. He noted that ε(f) can be expressed as

ε(f) =

∫ 1

0

(
d

dp
F−1(p)

)−1

dp .

Then he constructed its estimator by replacing the distribution function F by the empirical distribution function
Fn, and using a difference operator instead of the differential operator. The derivative of F−1(p) is then estimated
by a function of the order statistics. Assuming that X1, . . . , Xn is a random sample, the proposed estimator by
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Pardo (2003) is as

εmn =
1

n

n∑
i=1

2m

n
(
X(i+m) −X(i−m)

) ,
where m is positive integer, m ≤ n

2
, and X(1) ≤ X(2) ≤ · · · ≤ X(n) are order statistics of the sample and X(i) =

X(1) if i < 1, X(i) = X(n) if i > n. Consistency of εmn is also proved by Pardo (2003).
Pardo (2003) showed that among all distributions that possess a density function f and have a support (0, 1), the
entropy ε(f) is minimized by the uniform distribution and based on this property he constructed a test of fit for the
uniform distribution. Its test statistic is given as

εmn =
1

n

n∑
i=1

2m

n
(
X(i+m) −X(i−m)

) .
Large values of εmn indicate that the sample is from a non-uniform distribution. Next he obtained the percentage
points of the test statistic and power of test by simulation.
Recently, Alizadeh Noughabi and Chahkandi (2015) introduced a test for the normal distribution based on the
informational energy and showed that their test has higher power than the competitor tests. Alizadeh Noughabi
and Jarrahiferiz (2019) proposed a test of fit for the Laplace distribution and investigated the performance of it.
They showed that their test has a good power and confidently can use in practice. Also, Balakrishnan et al. (2004),
Balakrishnan et al. (2007), Habibi Rad et al. (2011), and Pakyari and Balakrishnan (2012, 2013), Alizadeh and
Balakrishnan (2015), Jarrahiferiz and Alizadeh (2017), and Alizadeh (2017) proposed tests for Type II censored
data.
The exponential distribution is widely used in reliability applications and to model data with a constant failure
rate. It is often used to model the failure time of manufactured items in production. Some other properties of this
distribution are presented in Alizadeh et al. (2019) and Zardasht (2019). Therefore, constructing a goodness of test
for this distribution will be useful in practice. In this article, we apply the informational energy and introduce a
powerful goodness of fit test for the exponential distribution. Then the properties of the test are stated and compared
with the existing other tests.
In Section 2, we introduce two tests of fit for exponentality based on informational energy and entropy, respectively.
Consistency and other properties of the tests are established. In Section 3, we obtain critical values and then
compute power of the tests against a wide variety of alternatives and show that the test based on informational
energy has a good performance. Finally, we analyze two real data sets to illustrate the tests.

2. Test construction

In this section, we explain two methods for testing exponentiality.

2.1. Testing exponentiality based on informational energy

Suppose X1, . . . , Xn are a random sample from a continuous probability distribution F with density f over a
non-negative support and with mean µ <∞. We are interested to test the hypothesis

H0 : f(x) = f0(x) = λ exp(−λx), for all x ∈ (0,∞)

against the general alternative

H1 : f(x) ̸= f0(x) , for some x ∈ (0,∞).

where λ =
1

µ
is unspecified.

Without loss of any generality, by the probability integral transformation U = F0(X), we can reduce the above
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problem of goodness-of-fit, to testing the hypothesis of uniformity on the unit interval.
Therefore, if Ui = F0(Xi) , i = 1, 2, ...., n be the transformed sample, the hypothesis becomes

H0 : f(u) = 1, 0 < u < 1

against
H1 : f(u) ̸= 1, 0 < u < 1.

Hence, test of exponentiality convert to test of uniformity.
Here, we apply the test introduced by Pardo (2003) for testing uniformity of the transformed sample, i.e.
Ui = F0(Xi) , i = 1, 2, ...., n. Consequently, the proposed test statistic can be stated as

Tmn =
1

n

n∑
i=1

2m

n
(
U(i+m) − U(i−m)

) =
1

n

n∑
i=1

2m

n
(
F0(X(i+m), λ̂)− F0(X(i−m), λ̂)

) ,
where F0 is the cumulative distribution function of the exponential distribution, i.e. F0(x, λ̂) = 1− exp(−λ̂x),

and λ̂ = 1
/
X̄ . Also, m is a positive integer, m ≤ n

2 , X(1) ≤ X(2) ≤ ... ≤ X(n) are order statistics and X(i) = X(1)

if i < 1, X(i) = X(n) if i > n. We can write

Tmn =
2m

n2

n∑
i=1

(
exp

{
−X(i−m)

/
X̄
}
− exp

{
−X(i+m)

/
X̄
})−1

.

It is obvious that the test statistic is invariant with respect to the scale transformations.

Remark 1
When the parameter of the distribution is specified as λ = λ0, the test statistic is

Tmn =
2m

n2

n∑
i=1

(
exp

{
−λ0X(i−m)

}
− exp

{
−λ0X(i+m)

})−1
.

Similar to the argument in Pardo (2003), the following theorems are stated and proved.

Theorem 1
Let X1, . . . , Xn be a random sample, we have

Tmn ≥ 1.

Proof
We know that the geometric mean does not exceed the arithmetic mean, therefore

Tmn = 2m
n2

n∑
i=1

(
exp

{
−X(i−m)

/
X̄
}
− exp

{
−X(i+m)

/
X̄
})−1

≥
n∏

i=1

(
2m
n

(
exp

{
−X(i−m)

/
X̄
}
− exp

{
−X(i+m)

/
X̄
})−1

)1/n
= exp

{
1
n

n∑
i=1

ln
(

2m
n

(
exp

{
−X(i−m)

/
X̄
}
− exp

{
−X(i+m)

/
X̄
})−1

)}
= exp{−Umn}.

where

Umn =
1

n

n∑
i=1

ln

(
2m

n

(
exp

{
−X(i−m)

/
X̄
}
− exp

{
−X(i+m)

/
X̄
}))

.
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In other hand, we have

exp {Umn} = exp

{
1
n

n∑
i=1

ln
(

n
2m

(
exp

{
−X(i−m)

/
X̄
}
− exp

{
−X(i+m)

/
X̄
}))}

=
n∏

i=1

(
n
2m

(
exp

{
−X(i−m)

/
X̄
}
− exp

{
−X(i+m)

/
X̄
}))1/n

≤
n∑

i=1

(exp{−X(i−m)/X̄}−exp{−X(i+m)/X̄})
2m

≤
(
exp

{
−X(1)

/
X̄
}
− exp

{
−X(n)

/
X̄
})

≤ 1.

Therefore,
Tmn ≥ exp {−Umn} ≥ 1.

Theorem 2
Let X1, . . . , Xn be a random sample from the exponential distribution, if m = o(n) and m ̸= 1, then

Tmn
Pr.−→ 1 as n→ ∞ ,m→ ∞.

Proof
Since Y = F0(X(i+j))− F0(X(i)) has a beta distribution with parameters j and n− j + 1 and

E

(
1

Y

)
=

n

j − 1
,

we can obtain E (Tmn) as

E (Tmn) =
2m
n2

{
m∑
i=1

E
(

1

F0(X(i+m),λ̂)−F0(X(1),λ̂)

)
+

n−m∑
i=m+1

E
(

1

F0(X(i+m),λ̂)−F0(X(i−m),λ̂)

)
+

n∑
i=n−m+1

E
(

1

F0(X(n),λ̂)−F0(X(i−m),λ̂)

)
= 2m

n

{
m∑
i=1

1
i+m−2 + n−2m

2m−1 +
n∑

i=n−m+1

1
n−i+m−1

}
= 2m

n

{
2

m∑
i=1

1
2m−i−1 + n−2m

2m−1

}
.

By using
m∑
i=1

1

(2m− 1)− i
= ψ(2m− 1)− ψ(m− 1) ,

where ψ is the digamma function, we have

E (Tmn) =
2m

n

{
2ψ(2m− 1)− 2ψ(m− 1) +

n− 2m

2m− 1

}
.

Since for large value of x,

ψ(x) ∼ log x− 1

2x
,

if n→ ∞ ,m→ ∞, m = o(n) and m ̸= 1, we have

limE (Tmn) = lim

{
4m

n
log

2m− 1

m− 1
+

2m

n(m− 1)
+

2m

2m− 1
− 2m(2m+ 1)

(2m− 1)n

}
= 1.

Therefore,
Tmn

Pr.−→ 1.

Stat., Optim. Inf. Comput. Vol. 8, March 2020



224 INFORMATIONAL ENERGY AND ENTROPY

2.2. Testing exponentiality based on entropy

The entropyH(f), of a continuous random variableX with a density function f(x) was defined by Shannon (1948)
to be

H(f) = −
∫ ∞

−∞
f(x) log f(x) dx .

Many researchers has been considered the problem of estimation ofH(f), including Vasicek (1976), van Es (1992),
Ebrahimi et al. (1994), Correa (1995), Yousefzadeh and Arghami (2008), Alizadeh Noughabi (2010), and Alizadeh
Noughabi and Arghami (2010).
LetX1, . . . , Xn be a random sample of size n, and X(1) ≤ X(2) ≤ ... ≤ X(n) denotes the order statistics of sample.
Vasicek (1976) first time introduced an estimator of entropy as:

HVmn =
1

n

n∑
i=1

log
{ n

2m
(X(i+m) −X(i−m))

}
,

where the window size m is a positive integer smaller than n/2, X(i) = X(1) if i < 1, X(i) = X(n) if i > n. He
proved the consistency of HVmn for the population entropy H(f).
Gokhale (1983) proposed a test statistic for the exponential distribution based on entropy. Then Ebrahimi et al.
(1992) obtained a test statistic using Kullback-Leibler information for the exponential distribution. Also, Alizadeh
Noughabi and Arghami (2013) showed that the tests based on entropy and Kullback-Leibler information are
equivalent. We explain exponentiality test based on entropy as follows.
It is known that if X is a nonnegative random variable and its mean E(X) = λ−1 is given then

H(f) ≤ 1− log(λ),

and among all nonnegative random variables the exponential distribution

f0(x) =

{
λ exp(−λx) x ≥ 0
0 otherwise

maximizes H(f) to H(f0) = 1− log(λ). A simple transformation leads

λ exp(H(f0)) = e .

Therefore, Gokhale (1983) proposed the following test statistic.

T = λ̂ exp(Ĥ(f)) .

By replacing λ̂ = 1/X̄ and Ĥ(f) = HVmn = 1
n

n∑
i=1

log
{

n
2m (X(i+m) −X(i−m))

}
, we have

TVmn =
exp(HVmn)

X̄
=

n2

2m

(
n∑

i=1

Xi

)−1 [ n∏
i=1

(
X(i+m) −X(i−m)

)]
,

whereHVmn is Vasicek entropy estimator and X̄ is the sample mean. We reject the null hypothesis for small values
of TVmn.

3. Simulation study

For small to moderate sample sizes, the critical values of the test based on informational energy with 30,000
replications and samples of size n are obtained. Table 1 presents the critical values of the Tmn-statistic various
sample sizes at significance level α = 0.05. Quantiles of TVmn are reported in Gokhale (1983) and we dont present
them.

To comparisons of the power values of the considered tests, we select the same three alternatives listed in
Ebrahimi et al. (1992) and their choices of parameters:
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Table 1. Critical values of the Tmn statistic at significance level α = 0.05

m
n 1 2 3 4 5 6 7 8 9 10
5 15.19 4.579
6 13.41 4.032 3.242
7 12.32 3.710 2.891
8 11.23 3.510 2.673 2.561
9 10.28 3.246 2.531 2.380
10 9.951 3.108 2.434 2.254 2.245
15 7.343 2.589 2.052 1.912 1.903 1.848 1.886
20 6.189 2.307 1.879 1.737 1.687 1.666 1.665 1.684 1.722 1.756
25 5.407 2.138 1.771 1.643 1.588 1.563 1.559 1.563 1.577 1.601
30 4.934 2.028 1.683 1.566 1.517 1.497 1.489 1.490 1.497 1.507
40 4.406 1.886 1.586 1.477 1.427 1.408 1.397 1.398 1.397 1.406
50 4.001 1.808 1.518 1.423 1.377 1.352 1.343 1.340 1.338 1.342

(a) the Weibull distribution with density function

f(x;λ, β) = βλβxβ−1 exp{−(λx)β} , β > 0, λ > 1, x ≥ 0;

(b) the gamma distribution with density function

f(x;λ, β) =
λβxβ−1 exp{−λx}

Γ(β)
, β > 0, λ > 1, x ≥ 0;

(c) the log-normal distribution with density function

f(x; v, σ2) =
1

xσ
√
2π

exp{− 1

2σ2
(ln(x)− v)2}, −∞ < v <∞, σ2 > 0, x > 0.

We also chose the parameters so that E(X) = 1, i.e. λ = Γ(1 + 1
β ) for the Weibull, λ = β for the gamma and

v = −σ2/2 for the log-normal family of distributions.
We compute the power values of the informational energy based test with the power values of the entropy based

test, for samples of size equal to 10 and 20. Under each alternative, we generated 20,000 samples of size 10 and 20
and then computed the test statistics (Tmn, TVmn). By the frequency of the event the test statistic is in the critical
region the power value of the corresponding test was obtained.
Table 2 presents the estimated powers at significance levels α = 0.01 and α = 0.05. The power values of the entropy
test are based on the window sizes reported in Ebrahimi et al. (1992), which give the maximum power for this test.
For the proposed test, the maximum power was typically attained by choosing m = 5 for n = 10, and m = 10 for
n = 20. Generally, we can say that with increasing n the optimal choice of m increases.

From Table 2, it is seen that the tests are differ in power. It indicates a superiority of the procedure based on
informational energy to entropy test. It is observed that for small sample sizes the tests achieve the same power and
for large sample sizes the informational energy test has the most power. The difference of power values of the tests
Tmn and TVmn are substantial.
In the following examples, we use the tests for some real datasets. Histograms of the considered data sets are
presented in Figure 1.

Example 1
Suprawhardana and Sangadji (1999) presented 23 measures corresponding to time between failures (in thousands
of hours) of secondary reactor pumps. The data set is
2.160, 0.746, 0.402, 0.954, 0.491, 6.560, 4.992, 0.347, 0.150, 0.358, 0.101, 1.359, 3.465, 1.060, 0.614, 1.921,
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Table 2. Monte Carlo power estimates of the tests

Sample size Significance level Alternative
Gamma distribution Weibull distribution Log-normal distribution

n α β TVmn Tmn β TVmn Tmn β TVmn Tmn

10 0.01 2 0.101 0.094 2 0.345 0.330 -0.3 0.083 0.084
0.05 0.315 0.331 0.681 0.699 0.285 0.322
0.01 3 0.284 0.273 3 0.855 0.845 -0.2 0.228 0.226
0.05 0.627 0.652 0.981 0.983 0.560 0.615
0.01 4 0.485 0.482 4 0.986 0.986 -0.1 0.690 0.713
0.05 0.822 0.852 1.000 000.1 0.938 0.967

20 0.01 2 0.228 0.314 2 0.734 0.829 -0.3 0.198 0.323
0.05 0.502 0.634 0.933 0.965 0.475 0.671
0.01 3 0.658 0.773 3 0.999 1.000 -0.2 0.560 0.740
0.05 0.889 0.954 1.000 000.1 0.835 0.950
0.01 4 0.898 0.958 4 1.000 1.000 -0.1 0.985 0.998
0.05 0.982 0.995 1.000 000.1 1.000 000.1

4.082, 0.199, 0.605, 0.273, 0.070, 0.062, 5.320.
Here, we computed the values of the test statistics and then compared them with the critical values at the
significance level 0.05 and finally we concluded that these data follow an exponential distribution.

Figure 1. Histograms of the considered data and a fitted exponential density function.

Example 2
The following data are obtained based on inter-occurrence times in days for fatal accidents suffered by scheduled
large planes in the USA from 1983 to 1998. (data from NTSB [14]):
2 ,5, 7, 10, 11, 13, 14, 16, 17, 22, 22, 22, 22, 35, 36, 41, 50, 53, 53, 56, 60, 61, 63, 63, 65, 68, 70, 91, 98, 112, 116,
117, 125, 125, 127, 128, 143, 143, 148, 150, 151, 158, 162, 194, 216, 223, 236, 244, 253, 310, 426, 454.
The proposed tests for goodness of fit on inter-occurrence times of fatal accidents are used. After some computing
the values of the proposed tests, we concluded that the distribution of the data of the inter-occurrence times of fatal
accidents on scheduled large planes in the USA (1983C1998) does not differ significantly from the exponential.
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Therefore, the inter-occurrence times of fatal accidents suffered by scheduled large planes in the USA from
(1983C1998) is exponentially distributed.

4. Conclusion

In this paper, we first proposed two tests for exponentaility based on the estimated informational energy and
entropy, respectively. Consistency and other properties of the test statistics are presented. Then, we obtained
the critical values of the proposed test and also computed the power vales of the considered tests using Monte
Carlo computations for different sample sizes against various alternatives. We observed that the test based on
informational energy performs very well compared with the test based on entropy for Weibull, gamma, and log-
normal alternatives. Also, it can be seen that the relative superiority of the proposed test over entropy test increases
with sample size.
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