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Abstract In this paper, we introduce the definition of higher-order K-(C,α, ρ, d)-convexity/pseudoconvexity over cone
and discuss a nontrivial numerical examples for existing such type of functions. The purpose of the paper is to study
higher order fractional symmetric duality over arbitrary cones for nondifferentiable Mond-Weir type programs under higher-
order K -(C,α, ρ, d)-convexity/pseudoconvexity assumptions. Next, we prove appropriate duality relations under aforesaid
assumptions.
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1. Introduction

Convexity and generalized convexity have been playing an important role in developing optimality and
duality results for multiobjective programming problems which are mathematical models for most of the
real world problems occuring in the fields of engineering, economics, finance, game theory etc. Higher-order
duality is significant due to its computational importance as it provides more higher bounds whenever
approximation is used. Mangasarian [1] formulated higher-order dual for a single objective nonlinear
problems,{minf(x), subject to g(x) 5 0}. Motivated by this concept, many researchers have worked in
this direction. Kassem [3] have been studied higher-order vector optimization problem and derived duality results
under generalized convexity assumptions.

In last many years, various optimality and duality results have been obtained for multiobjective fractional
programming problems. In Chen [2] multiobjective fractional problem and its duality relations have been
considered under higher-order (f, α, ρ, d)- convexity assumptions. Later on, Suneja et al. [4] proved higher-order
Mond-Weir and Schaible type nondifferentiable dual programs and their duality relations under higher-order
(f, ρ, σ) -type I- assumptions. Recently, Ying [5] has studied higher-order multiobjective symmetric fractional
problem and formulated its Mond- Weir type dual and duality theorems are proved under the higher-order
(f, α, ρ, d)-convexity assumptions. Several reseachers worked in the same fields[ [11]- [15]].
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In the present work, we formulate a pair of nondifferentiable multiobjective Mond-Weir type higher-order
symmetric fractional programming problems over arbitrary cones. For a differentiable function h : X ×Rn −→
R, (X ⊂ Rn), we introduce the definition of higher-order K − (C,α, ρ, d)-convexity/pseudoconvexity, which
extends some kinds of generalized convexity. Also, we give nontrivial concrete numerical examples which
is higher-order K − (C,α, ρ, d)- convex/pseudoconvex function, but it is neither higher-order (C,α, ρ, d)-
convex/pseudoconvex function nor higher-order K − (F, α, ρ, d)/(F, α, ρ, d)- convex/pseudoconvex function.
Finally, we establish appropriate duality theorems under higher-order K-(C,α, ρ, d) convexity/pseudoconvexity
assumptions followed by conclusions.

2. Preliminaries

Let P be a pointed convex cone with non empty interior in Rp
+. Then, for x, y ∈ Rp, we define three cone orders

with respect to P as follows:

x < y if and only if y − x ∈ intP,
x ≤ y if and only if y − x ∈ P\{0},
x 5 y if and only if y − x ∈ P.

Definition 2.1[9]. Let C be a compact convex set in Rn. The support function of C is defined by

s(x|C) = max{xT y : y ∈ C}.

A support function, being convex and everywhere finite, has a subdifferential, that is, there exists a z ∈ Rn such
that

s(y|C) = s(x|C) + zT (y − x), ∀x ∈ C.

The subdifferential of s(x|C) is given by

∂s(x|C) = {z ∈ C : zTx = s(x|C)}.

For a convex set D ⊂ Rn, the normal cone to D at a point x ∈ D is defined by

ND(x) = {y ∈ Rn : yT (z − x) 5 0, ∀z ∈ D}.

When C is a compact convex set, y ∈ NC(x) if and only if s(y|C) = xT y, or equivalently, x ∈ ∂s(y|C).

Definition 2.2.[9]. The positive polar cone P ∗ of a cone P is defined by

P ∗ = {y ∈ Rp : xT y = 0, ∀x ∈ P}

Now, consider the following multiobjective programming problem:

(P1) K− Minimize f(x)
subject to x ∈ X0 = {x ∈ S : −g(x) ∈ M}

where S ⊂ Rn is open, f : S → Rk, g : S → Rm, K and M are closed convex pointed cones with nonempty
interiors in Rk and Rm, respectively.

Definition 2.3. A feasible solution x̄ ∈ X0 is said to be an efficient solution of (P1) if there exists no
x ∈ X0 such that f(x)− f(x̄) ∈ K\{0}.

Definition 2.4[10]. Let C : X ×X ×Rn → R (X ⊆ Rn) be a function which satisfies Cx,u(0) = 0,
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∀(x, u) ∈ X ×X. Then, the function C is said to be convex on Rn with respect to third argument iff for
any fixed (x, u) ∈ X ×X ,

Cx,u(λx1 + (1− λ)x2) 5 λCx,u(x1) + (1− λ)Cx,u(x2), ∀λ ∈ (0, 1), ∀x1, x2 ∈ Rn.

Many generalizations of the definition of a convex function have been introduced in optimization theory in order
to weak the assumption of convexity for establishing optimality and duality results for new classes of nonconvex
optimization problems, including vector optimization problems. One of such a generalization of convexity in
the vectorial case, we introduce the following concept of higher-order K − (C,α, ρ, d)- convex/pseudoconvex
functions:

Definition 2.5. A differentiable function f : X → Rk is said to be higher order K − (C,α, ρ, d)-convex at
u ∈ X with respect to h : X ×Rn → Rk if for all x ∈ X and p ∈ Rk, ∃ ρ ∈ Rk, a real valued function
α : X ×X → R+ \ {0} and d : X ×X → Rk (satisfying d(x, z) = 0 ⇔ x = z) such that

1

α(x, u)

[
f1(x)− f1(u)− h1(u, p1) + pT1 ∇p1h1(u, p1)− ρ1d

2
1(x, u)

]
−Cx,u

[
∇xf1(u) +∇p1h1(u, p1)

]
,...,

1

α(x, u)

[
fk(x)− fk(u)− hk(u, pk)+pTk∇pk

hk(u, pk)− ρkd
2
k(x, u)

]
− Cx,u

[
∇xfk(u) +∇pk

hk(u, pk)
]
∈ K.

The function f is said to be higher-order K − (C,α, ρ, d)− convex over X if, ∀u ∈ X, it is higher K − (C,α, ρ, d)−
convex.

The following example shows that ∃ functions which are higher-order K − (C,α, ρ, d)- convex function,
but the functions do not others ( such as higher-order K − (F, α, ρ, d)/(F, α, ρ, d)- convex functions and higher-
order (C,α, ρ, d)- convex functions).

Example 2.1. Let X = [0, 5] and K =

{
(x, y) : |y| 5 20x and x = 0

}
.

Consider the function f = (f1, f2) → R2 given by

f1(x) = i(e−ix − eix), f2(x) = i(eix − e−ix).

Let the convex function C : X ×X ×R → R be defined by

Cx,u(a) =
a2

4
(x− u).

Further, the function h = (h1, h2) : X ×Rn → R2 be defined as

h1(u, p1) =
u2

2
p1, h2(u, p2) = −u2p2.

Next α(x, u) = 2, di(x, u) = |x− u|, i = 1, 2 and ρi = 0, i = 1, 2.

We will prove that the function f = (f1, f2) is higher-order K − (C,α, ρ, d)-convex function at u = 0. For
this, we have to claim that

Π =

{
1

α(x, u)

[
f1(x)− f1(u)− h1(u, p1) + pT1 ∇p1h1(u, p1)− ρ1d

2
1(x, u)

]
− Cx,u

[
∇xf1(u) +∇p1h1(u, p1)

]
,

1

α(x, u)

[
f2(x)− f2(u)− h2(u, p2) + pT2 ∇p2h2(u, p2)− ρ2d

2
2(x, u)

]
− Cx,u

[
∇xf2(u) +∇p2h2(u, p2)

]}
∈ K

or
Π = (ϕ1, ϕ2) ∈ K,
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Figure 1. ϕ1 = (sinx− x), ∀x ∈ [0, 5] Figure 2. ϕ2 = (−sinx− x), ∀x ∈ [0, 5]

where

ϕ1 =
1

α(x, u)

[
f1(x)− f1(u)− h1(u, p1) + pT1 ∇p1h1(u, p1)− ρ1d

2
1(x, u)

]
− Cx,u

[
∇xf1(u) +∇p1h1(u, p1)

]
and

ϕ2 =
1

α(x, u)

[
f2(x)− f2(u)− h2(u, p2) + pT2 ∇p2h2(u, p2)− ρ2d

2
2(x, u)

]
− Cx,u

[
∇xf2(u) +∇p2h2(u, p2)

]
Substituting the values f1, f2, h1, h2, α, ρ1, ρ2 and di(x, u), i = 1, 2 in the above expressions, we have

ϕ1 =
1

2

[
i(e−ix − eix)− i(e−iu − eiu)− u2

2
p1 +

u2

2
p1 − 0× (x− u)2

]
− Cx,u

[
(e−iu + eiu) +

u2

2

]
and

ϕ2 =
1

2

[
i(eix − e−ix)− i(eiu − e−iu)− u2p2 + u2p2 − 0× ((x− u)2

]
− Cx,u

[
− (eiu + eiu) + u2

]
.

At the point at u = 0, we have

ϕ1 =
1

2

[
i(e−ix − eix)

]
− Cx,u

[
2
]

and
ϕ2 =

1

2

[
− (eix − e−ix)

]
− Cx,u

[
− 2

]
.

Using the condition Cx,u(a) =
a2

4
(x− u) in above expressions,

ϕ1 = (sinx− x)

and
ϕ2 = (−sinx− x).

Obviously, from the given figures (1) and (2), it follows that

Π = (ϕ1, ϕ2) ∈ K, ∀ x ∈ X

or
Π = (sinx− x, − sinx− x) ∈ K.

This shows that f = (f1, f2) is higher-order K − (C,α, ρ, d)- convex function at u = 0.

Obviously, Π = (sinx− x, − sinx− x) � 0, ∀ x ∈ X. This implies the f = (f1, f2) is not higher-order
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Figure 3. ϕ3 = x2, ∀x ∈ [0, 5] Figure 4. ϕ4 = x2

4 , ∀x ∈ [0, 5]

(C,α, ρ, d)- convex function at the point u = 0. Next, the function Cx,u(.) is not sublinear in the third positions.
Hence, the function is neither higher-order K − (F, α, ρ, d)- convex function nor higher-order (F, α, ρ, d)- convex
function at u = 0.

Definition 2.6. A differentiable function f : X → Rk, (X ⊆ Rn) is said to be higher order K − (C,α, ρ, d)-
pseudoconvex at u ∈ X with respect to h : X ×Rn → Rk if for all x ∈ X and p ∈ Rk,∃ ρ ∈ Rk, a real valued
function α : X ×X → R+ \ {0} and d : X ×X → Rk (satisfying d(x, z) = 0 ⇔ x = z) such that{
Cx,u

[
∇xf1(u) +∇p1h1(u, p1)

]
, Cx,u

[
∇xf2(u) +∇p2h2(u, p2)

]
, ..., Cx,u

[
∇xfk(u) +∇pk

hk(u, pk)
]}

∈ K

⇒
{

1

α(x, u)

[
f1(x)− f1(u)− h1(u, p1) + pT1 ∇p1h1(u, p1)− ρ1d

2
1(x, u)

]
,

1

α(x, u)

[
f2(x)− f2(u)− h2(u, p2) +

pT2 ∇p2h2(u, p2)− ρ2d
2
2(x, u)

]
, ...,

1

α(x, u)

[
fk(x)− fk(u)− hk(u, pk)+pTk∇pk

hk(u, pk)− ρkd
2
k(x, u)

]}
∈ K.

Example 2.2. Let X = [0, 5] and K =

{
(x, y) : |y| 5 20x and x = 0

}
.

Consider the function f = (f1, f2) → R2 given by

f1(x) = (4 + ex − ex), f2(x) =

(
e−x − ex

2

)
.

Let the convex function C : X ×X ×R → R be defined by

Cx,u(a) =
a2

4
(x2 + u2).

The function h = (h1, h2) : X ×Rn → R2 is defined as:

h1(u, p1) =
−u2

4
p1, h2(u, p2) = u4p2.

Next, α(x, u) = 2, di(x, u) = |x+ u|, i = 1, 2 and ρi = 0, i = 1, 2.

In order to prove that the function f = (f1, f2) is higher-order K − (C,α, ρ, d)-pseudo convex function at
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Figure 5. ϕ5 = sinhx, ∀x ∈ [0, 5] Figure 6. ϕ6 = −sinhx
2 , ∀x ∈ [0, 5]

u = 0. For this, we have to show that

Υ =

{
Cx,u

[
∇xf1(u) +∇p1h1(u, p1)

]
, Cx,u

[
∇xf2(u) +∇p2h2(u, p2)

]}
∈ K

⇒ Γ =

{
1

α(x, u)

[
f1(x)− f1(u)− h1(u, p1) + pT1 ∇p1h1(u, p1)− ρ1d

2
1(x, u)

]
,

1

α(x, u)

[
f2(x)− f2(u)

− h2(u, p2) + pT2 ∇p2h2(u, p2)− ρ2d
2
2(x, u)

]}
∈ K

or
Υ = (ϕ3, ϕ4) ∈ K ⇒ Γ = (ϕ5, ϕ6) ∈ K,

where
ϕ3 = Cx,u

[
∇xf1(u) +∇p1h1(u, p1)

]
, ϕ4 = Cx,u

[
∇xf2(u) +∇p2h2(u, p2)

]
,

ϕ5 =
1

α(x, u)

[
f1(x)− f1(u)− h1(u, p1) + pT1 ∇p1h1(u, p1)− ρ1d

2
1(x, u)

]
and

ϕ6 =
1

α(x, u)

[
f2(x)− f2(u)− h2(u, p2) + pT2 ∇p2h2(u, p2)− ρ2d

2
2(x, u)

]
.

Substituting the values f1, f2, h1, h2, α, ρ1, ρ2 and di(x, u), i = 1, 2 in the above expressions, we have

ϕ3 = Cx,u

[
(eu + eu)− u2

2

]
, ϕ4 = Cx,u

[
eu + eu

2
+ u4

]
,

ϕ5 =
1

2

[
(4 + ex − ex)− (4 + eu − eu) +

u2

4
p1 −

u2

4
p1 − 0× (x+ u)2

]
and

ϕ6 =
1

2

[
e−x − ex

2
−
(
e−u − eu

2

)
− u4p2 + u4p2 − 0× (x+ u)2

]
which at u = 0, yields

ϕ3 = Cx,u

(
2
)
, ϕ4 = Cx,u

(
1
)
, ϕ5 =

(
ex − ex

2

)
and

ϕ6 =

(
e−x − ex

4

)
.
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Using the condition Cx,u(a) =
a2

4
(x2 + u2) in above expressions,

ϕ3 = x2, ϕ4 =

(
x2

4

)
, ϕ5 = sinhx

and

ϕ6 =

(
−sinhx

2

)
.

Further,

Υ =

(
x2,

x2

4

)
∈ K

(
from figures (3) and (4)

)
and

Γ =

(
sinhx,

−sinhx

2

)
∈ K

(
from figures (5) and (6)

)
.

This gives that

Υ =

(
x2,

x2

4

)
∈ K ⇒ Γ =

(
sinhx,

−sinhx

2

)
∈ K

or
Υ = (ϕ3, ϕ4) ∈ K ⇒ Γ = (ϕ5, ϕ6) ∈ K.

Therefore, f = (f1, f2) is higher-order K − (C,α, ρ, d)- pseudoconvex function at u = 0.

Next, Υ = (sinhx,
−sinhx

2
) � 0, ∀ x ∈ X from the figures. This shows that the function f = (f1, f2) is

not higher-order (C,α, ρ, d)- pseudoconvex function at the point u = 0. Furthermore, the function Cx,u(.) is
not sublinear with respect to third variables. Therefore, the function is neither higher-order K − (F, α, ρ, d)-
pseudoconvex function nor higher-order (F, α, ρ, d)- pseudoconvex function at u = 0.

Remark 2.1.

(i) If K = R+, then the Definition 2.5 in reduces in higher-order (C,α, ρ, d)-convexity given by [6].
(ii) If Cx,u(a) = η(x, u)Ta, hi(u, pi) =

1
2p

T
i ∇fi(u)pi, k = 1, 2, ..., k, ρ = 0 and α(x, u) = 1 then Definition

2.5 becomes K − η bonvexity given by [8].

3. Higher-order Mond-Weir fractional symmetric duality

Consider the following multiobjective fractional symmetric dual programs over arbitrary cones::

(MFPP) K-minimize R(x, y, p) = (R1(x, y, p1), R2(x, y, p2), ..., Rk(x, y, pk))
T

subject to

−
k∑

i=1

λi

[
(∇yfi(x, y)− zi +∇piHi(x, y, pi))−Ri(x, y, pi)(∇ygi(x, y) + ri +∇piGi(x, y, pi))

]
∈ C∗

2 ,

yT
[ k∑

i=1

λi

[
(∇yfi(x, y)− zi +∇piHi(x, y, pi))−Ri(x, y, pi)(∇ygi(x, y) + ri +∇piGi(x, y, pi))

]]
= 0,

λ ∈ intK∗, x ∈ C1, zi ∈ Di, ri ∈ Fi, i = 1, 2, ..., k
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. (MFDP) K-maximize S(u, v, q) = (S1(u, v, q1), S2(u, v, q2), ..., Sk(u, v, qk))
T

subject to

k∑
i=1

λi

[
(∇xfi(u, v) + wi +∇qiΦi(u, v, qi))− Si(u, v, qi)(∇xgi(u, v)− ti +∇qiΨi(u, v, qi))

]
∈ C∗

1 ,

uT

[ k∑
i=1

λi

[
(∇xfi(u, v) + wi +∇qiΦi(u, v, qi))− Si(u, v, qi)(∇xgi(u, v)− ti +∇qiΨi(u, v, qi))

]]
5 0,

λ ∈ intK∗, v ∈ C2, wi ∈ Qi, ti ∈ Ei, i = 1, 2, ..., k,

where

Ri(x, y, pi) =
fi(x, y) + s(x|Qi)− yT zi +Hi(x, y, pi)− pTi ∇piHi(x, y, pi)

gi(x, y)− s(x|Ei) + yT ri +Gi(x, y, pi)− pTi ∇piGi(x, y, pi)
,

Si(u, v, qi) =
fi(u, v)− s(v|Di) + uTwi +Φi(u, v, qi)− qTi ∇qiΦi(u, v, qi)

gi(u, v) + s(v|Fi)− uT ti +Ψi(u, v, qi)− qTi ∇qiΨi(u, v, qi)
,

where fi : S1 × S2 → R; gi : S1 × S2 → R;Hi, Gi : S1 × S2 ×Rm → R and Φi,Ψi : S1 × S2 ×Rn → R are
differentiable functions for all i = 1, 2, ..., k. S1 ⊆ Rn and S2 ⊆ Rm are such that C1 × C2 ⊂ S1 × S2. Qi, Ei

are compact convex sets in Rn and Di, Fi are compact convex sets in Rm, pi ∈ Rn, qi ∈ Rm, i = 1, 2, ..., k,
p = (p1, p2, ..., pk), q = (q1, q2, ..., qk). C

∗
1 and C∗

2 are positive polar cones of C1 and C2, respectively. It is
assumed that in the feasible regions, the numerators are nonnegative and denominators are positive and K is a
closed convex cone with Rk

+ ⊆ K.

Let T = (T1, T2, ..., Tk)
T and W = (W1,W2, ...,Wk)

T . Then, we can express the programs (MFPP) and
(MFDP) equivalently as:

(MFPP)T K- minimize T subject to

(fi(x, y) + s(x|Qi)− yT zi +Hi(x, y, pi))− pTi ∇piHi(x, y, pi))

− Ti(gi(x, y)− s(x|Ei) + yT ri +Gi(x, y, pi)− pTi ∇piGi(x, y, pi)) = 0, i = 1, 2, ..., k, (1)

−
k∑

i=1

λi

[
∇yfi(x, y)− zi +∇piHi(x, y, pi)− Ti(∇ygi(x, y) + ri +∇piGi(x, y, pi))

]
∈ C∗

2 , (2)

yT
[ k∑

i=1

λi

[
∇yfi(x, y)− zi +∇piHi(x, y, pi)− Ti(∇ygi(x, y) + ri +∇piGi(x, y, pi))

]]
= 0, (3)

λ ∈ intK∗, x ∈ C1, zi ∈ Di, ri ∈ Fi, i = 1, 2, ..., k.

(MFDP)W K- maximize W subject to

(fi(u, v)− s(v|Di) + uTwi +Φi(u, v, qi)− qTi ∇qiΦi(u, v, qi))

−Wi(gi(u, v) + s(v|Fi)− uT ti +Ψi(u, v, qi)− qTi ∇qiΨi(u, v, qi)) = 0, i = 1, 2, ..., k, (4)
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k∑
i=1

λi

[
∇xfi(u, v) + wi +∇qiΦi(u, v, qi)−Wi(∇xgi(u, v)− ti +∇qiΨi(u, v, qi))

]
∈ C∗

1 , (5)

uT

[ k∑
i=1

λi

[
(∇xfi(u, v) + wi +∇qiΦi(u, v, qi))−Wi(∇xgi(u, v)− ti +∇qiΨi(u, v, qi))

]]
5 0, (6)

λ ∈ intK∗, v ∈ C2, wi ∈ Qi, ti ∈ Ei, i = 1, 2, ..., k.

Next, we prove weak, strong and converse duality theorems for (MFPP)T and (MFDP)W , which one equally apply
to (MFPP) and (MFDP).

Let z = (z1, z2, ..., zk), r = (r1, r2, ..., rk), w = (w1, w2, ..., wk) and t = (t1, t2, ..., tk). f : S1 × S2 → Rk;
g : S1 × S2 → Rm; H,G : S1 × S2 ×Rm → Rk and Φ,Ψ : S1 × S2 ×Rn → Rk are differentiable functions.

Theorem 3.1 (Weak duality). Let (x, y, T, z, r, λ, p) be feasible for (MFPP)T and let (u, v,W,w, t, λ, q)
be feasible for (MFDP)W . Let f(., v) + (.)Tw be higher order K − (C,α, ρ, d)− convex at u with
respect to Φ(u, v, q),−W (g(., v)− (.)T t) be higher-order K − (C,α, ρ, d)− convex at u with respect to
−WΨ(u, v, q), −(f(x, .)− (.)T z) be higher -order K − (C̄, ᾱ, ρ̄, d̄) -convex at y with respect to −H(x, y, p)
and T (g(x, .) + (.)T r) be higher -order K − (C̄, ᾱ, ρ̄, d̄)- convex at y with respect to TG(x, y, p) where
C : Rn ×Rn ×Rn → R and C̄ : Rm ×Rm ×Rm → R. If the following conditions hold:

either
k∑

i=1

λi[ρid
2
i (x, u) + ρ̄id̄i

2
(v, y)] = 0 or ρi = 0 and ρ̄i = 0, i = 1, 2, ..., k, (7)

Cx,u(a) + aTu = 0, ∀a ∈ C∗
1 , C̄v,y(b) + bT y = 0, ∀b ∈ C∗

2 . (8)

Then, T −W /∈ −K \ {0}.

Proof
Since f(., v) + (.)Tw and −W (g(., v)− (.)T t) is higher-order K − (C,α, ρ, d)− convex in the first variable at u
for fixed v, we have

1

α(x, u)

[
f1(x, v) + xTw1 − f1(u, v)− uTw1 − Φ1(u, v, q1) + qT1 ∇q1Φ1(u, v, q1)− ρ1d

2
1(x, u)

]
− Cx,u

(
∇xf1(u, v) + w1 +∇q1Φ1(u, v, q1)

)
, ...,

1

α(x, u)

[
fk(x, v) + xTwk − fk(u, v)− uTwk − Φk(u, v, qk)

+qTk ∇qkΦk(u, v, qk)− ρkd
2
k(x, u)

]
− Cx,u

(
∇xfk(u, v) + wk +∇qkΦk(u, v, qk)

)
∈ K. (9)

and

1

α(x, u)

[
W1(−g1(x, v) + xT t1 + g1(u, v)− uT t1) +W1(Ψ1(u, v, q1)− qT1 ∇q1Ψ1(u, v, q1))− ρ1d

2
1(x, u)

]
− Cx,u

(
W1(−∇xg1(u, v) + t1)−W1∇q1Ψ1(u, v, q1)

)
, ...,

1

α(x, u)

[
Wk(−gk(x, v) + xT tk + gk(u, v)− uT tk)

+Wk(Ψk(u, v, qk)− qTk ∇qkΨk(u, v, qk))− ρkd
2
k(x, u)

]
− Cx,u

(
Wk(−∇xgk(u, v) + tk)−Wk∇qkΨk(u, v, qk)

)
∈ K.

(10)
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Since λ ∈ intK∗, therefore (9) and (10) yield

k∑
i=1

λi

α(x, u)

(
fi(x, v) + xTwi − fi(u, v)− uTwi − Φi(u, v, qi) + qTi ∇qiΦi(u, v, qi)

)
−

k∑
i=1

λi

α(x, u)
ρid

2
i (x, u) =

k∑
i=1

λiCx,u

(
∇xfi(u, v) + wi +∇qiΦi(u, v, qi)

)
.

and

k∑
i=1

λiWi

α(x, u)

[
− gi(x, v) + xT ti + gi(u, v)− uT ti +Ψi(u, v, qi)− qTi ∇qiΨi(u, v, qi)

]
−

k∑
i=1

λi

α(x, u)
ρid

2
i (x, u) =

k∑
i=1

λiCx,u

(
Wi(−∇xgi(u, v) + ti −∇qiΨi(u, v, qi))

)
.

Now, adding the above two inequalities and then multiplying with
1

τ
, where τ =

k∑
i=1

λi > 0 as λ ∈ intK∗ ⊆ intRk
+

and using convexity of C, we obtain

k∑
i=1

λi

α(x, u)τ

[
fi(x, v) + xTwi − fi(u, v)− uTwi − Φi(u, v, qi) + qTi ∇qiΦi(u, v, qi)

]
+

k∑
i=1

λiWi

α(x, u)τ

[
− gi(x, v) + xT ti + gi(u, v)− uT ti +Ψi(u, v, qi)− qTi ∇qiΨi(u, v, qi)

]
−2

k∑
i=1

λi

α(x, u)τ
ρid

2
i (x, u)

= Cx,u

[ k∑
i=1

λi

τ

((
∇xfi(u, v) + wi +∇qiΦi(u, v, qi)

)
−Wi(∇xgi(u, v)− ti +∇qiΨi(u, v, qi)

))]
. (11)

Now, from (8) as τ > 0, we have

a =

k∑
i=1

λi

τ
[(∇xfi(u, v) + wi +∇qiΦi(u, v, qi)−Wi(∇xgi(u, v)− ti +∇qiΨi(u, v, qi))] ∈ C∗

1 .

Hence, for this a, Cx,u(a) = −uTa = 0 (from (6)
)
. Using this, in (11), we obtain

k∑
i=1

λi

α(x, u)τ

(
fi(x, v) + xTwi − fi(u, v)− uTwi − Φi(u, v, qi) + qTi ∇qiΦi(u, v, qi)

)
+

k∑
i=1

λiWi

α(x, u)τ

[
− gi(x, v) + xT ti + gi(u, v)

−uT ti +Ψi(u, v, qi)− qTi ∇qiΨi(u, v, qi)
]
= 2

k∑
i=1

λi

α(x, u)τ
ρid

2
i (x, u).

Since vT ri 5 s(v|Fi) and using (4) in above inequality, we get

k∑
i=1

λi[fi(x, v) + xTwi − s(v|Di) +Wi(x
T ti − vT ri − gi(x, v))] = 2

k∑
i=1

λiρid
2
i (x, u). (12)
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Similarly, by the higher-order K − (C̄, ᾱ, ρ̄, d̄)− convexity of −f(x, .) + (.)T z and T (g(x, .) + (.)T r) in the second
variable at y, for fixed x and from the condition (8), for

b = −
k∑

i=1

λi

τ
[(∇yfi(x, y)− zi +∇piHi(x, y, pi)− Ti(∇ygi(x, y) + ri +∇piGi(x, y, pi))] ∈ C∗

2 ,

we get

k∑
i=1

λi[−fi(x, v) + vT zi − s(x|Qi) + Ti(v
T ri − xT ti + gi(x, v))] = 2

k∑
i=1

λiρ̄id̄i
2
(v, y). (13)

Adding the inequalities (12)-(13) and applying (7), we get

k∑
i=1

λi(v
T zi − s(v|Di) + xTwi − s(x|Qi)) +

k∑
i=1

λi(Ti −Wi)(gi(x, v) + vT ri − xT ti) = 0. (14)

Since λ > 0 and vT zi 5 s(v|Di), x
Twi 5 s(x|Qi), the above inequality gives

k∑
i=1

λi(Ti −Wi)(gi(x, v) + vT ri − xT ti) = 0.

Using (gi(x, v) + vT ri − xT ti) > 0, i = 1, 2, ..., k, above inequality gives

k∑
i=1

λi(Ti −Wi) = 0. (15)

Now, suppose on contrary

T −W ∈ −K \ {0}.

Since λ > 0, we have

k∑
i=1

λi(Ti −Wi) < 0.

which contradicts (15). This completes the proof.

Theorem 3.2 (Weak duality). Let (x, y, T, z, r, λ, p) and (u, v,W,w, t, λ, q) be feasible solutions of (MFPP)T and
(MFDP)W , respectively. Suppose that

(i) (f(., v) + (.)Tw)−W (g(., v)− (.)T t) is higher-order K − (C,α, ρ, d)- convex at u with respect to
(Φ(u, v, q)−WΨ(u, v, q)),

(ii) (−f(x, .) + (.)T z) + T (g(x, .) + (.)T r) is higher-order K − (C̄, ᾱ, ρ̄, d̄) -convex at y with respect to
−H(x, y, p) + TG(x, y, p),

(iii) either
k∑

i=1

λi

[
ρid

2
i (x, u) + ρ̄id̄i

2
(v, y)

]
= 0 or ρi = 0 and ρ̄i = 0, i = 1, 2, ..., k,

(iv) Cx,u(a) + aTu = 0, ∀a ∈ C∗
1 C̄v,y(b) + bT y = 0, ∀b ∈ C∗

2 .

Then, T −W /∈ −K \ {0}.

Proof: The proof follows on the lines of Theorem 3.1.
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Remark 3.1 Since every convex function is pseudoconvex, therefore the above weak duality theorem for
the symmetric dual pair (MFPP)T and (MFDP)W can also be obtained under higher-order K − (C,α, ρ, d)-
pseudoconvexity assumptions.

Theorem 3.3 (Weak duality). Let (x, y, T, z, r, λ, p) be feasible for (MFPP)T and let (u, v,W,w, t, λ, q)
be feasible for (MFDP)W . Let f(., v) + (.)Tw be higher order K − (C,α, ρ, d)− pseudoconvex at u with
respect to Φ(u, v, q),−W (g(., v)− (.)T t) be higher-order K − (C,α, ρ, d)− pseudoconvex at u with respect to
−WΨ(u, v, q),−(f(x, .)− (.)T z) be higher -order K − (C̄, ᾱ, ρ̄, d̄) -pseudoconvex at y with respect to −H(x, y, p)
and T (g(x, .) + (.)T r) be higher -order K − (C̄, ᾱ, ρ̄, d̄)-pseudoconvex at y with respect to TG(x, y, p) where
C : Rn ×Rn ×Rn → R and C̄ : Rm ×Rm ×Rm → R. If the following conditions hold:

either
k∑

i=1

λi[ρid
2
i (x, u) + ρ̄id̄i

2
(v, y)] = 0 or ρi = 0 and ρ̄i = 0, i = 1, 2, ..., k, (16)

Cx,u(a) + aTu = 0, ∀a ∈ C∗
1 , C̄v,y(b) + bT y = 0, ∀b ∈ C∗

2 . (17)

Then, T −W /∈ −K \ {0}.

Proof: The proof follows on the lines of Theorem 3.1.

Theorem 3.4 (Weak duality). Let (x, y, T, z, r, λ, p) and (u, v,W,w, t, λ, q) be feasible solutions of (MFPP)T and
(MFDP)W , respectively. Suppose that

(i) (f(., v) + (.)Tw)−W (g(., v)− (.)T t) is higher-order K − (C,α, ρ, d)- pseudoconvex at u with respect to
(Φ(u, v, q)−WΨ(u, v, q)),

(ii) (−f(x, .) + (.)T z) + T (g(x, .) + (.)T r) is higher-order K − (C̄, ᾱ, ρ̄, d̄) -pseudoconvex at y with respect to
−H(x, y, p) + TG(x, y, p),

(iii) either
k∑

i=1

λi

[
ρid

2
i (x, u) + ρ̄id̄i

2
(v, y)

]
= 0 or ρi = 0 and ρ̄i = 0, i = 1, 2, ..., k,

(iv) Cx,u(a) + aTu = 0, ∀a ∈ C∗
1 C̄v,y(b) + bT y = 0, ∀b ∈ C∗

2 .

Then, T −W /∈ −K \ {0}.

Proof: The proof follows on the lines of Theorem 3.1.

Theorem 3.5 (Strong duality). Let (x̄, ȳ, T̄ , z̄, r̄, λ̄, p̄) be an efficient solution of (MFPP)T , and fix λ = λ̄
in (MFDP)W . If the following conditions hold

(i) ∇xHi(x̄, ȳ, 0) = ∇xGi(x̄, ȳ, 0) = 0,∇qiΦi(x̄, ȳ, 0) = ∇qiΨi(x̄, ȳ, 0) = 0,Hi(x̄, ȳ, 0) = Gi(x̄, ȳ, 0) = 0,

Φi(x̄, ȳ, 0) = Ψi(x̄, ȳ, 0) = 0,∇yHi(x̄, ȳ, 0) = ∇yGi(x̄, ȳ, 0) = 0,∇piHi(x̄, ȳ, 0) = ∇piGi(x̄, ȳ, 0) =
0, i = 1, 2, ..., k,

(ii) for all i ∈ {1, 2, ..., k}, the Hessian matrix ∇pipiHi(x̄, ȳ, p̄i)− T̄i∇pipiGi(x̄, ȳ, p̄i) is positive or negative
definite,

(iii) the set of vectors {∇yfi(x̄, ȳ)− z̄i +∇piHi(x̄, ȳ, p̄i)− T̄i(∇ygi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i))}ki=1 is
linearly independent,

(iv) for p̄i ∈ Rn, p̄i ̸= 0 (i = 1, 2, ..., k) implies that
k∑

i=1

p̄i
T [∇yfi(x̄, ȳ)− z̄i +∇piHi(x̄, ȳ, p̄i)− T̄i(∇ygi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i))] ̸= 0,
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(v) T̄i > 0, ∀i ∈ {1, 2, ..., k}.

Then
(a) p̄i = 0, i = 1, 2, ..., k,
(b) there exists w̄i ∈ Qi and t̄i ∈ Ei, i = 1, 2, ..., k such that (x̄, ȳ, T̄ , w̄, t̄, λ̄, q̄ = 0) is a feasible solution of

(MFDP )W .

Furthermore, if the hypotheses in Theorems (3.1)− (3.4) are satisfied, then (x̄, ȳ, T̄ , w̄, t̄, λ̄, q̄ = 0) is an efficient
solution of (MFDP )W , and the two objective values are equal.

Proof
Since (x̄, ȳ, T̄ , z̄, r̄, λ̄, p̄) is an efficient solution of (MFPP)T . Hence, by the Fritz John necessary optimality
conditions [7], there exists α ∈ Rk , β ∈ Rk, γ ∈ C2, δ ∈ R, ξ ∈ Rk , η ∈ R, w̄i ∈ Rn and t̄i ∈ Rn, i = 1, 2, ..., k
such that

(x− x̄)T
[ k∑

i=1

βi(∇xfi(x̄, ȳ) + w̄i +∇xHi(x̄, ȳ, p̄i)− T̄i(∇xgi(x̄, ȳ)− t̄i +∇xGi(x̄, ȳ, p̄i)))

+ (γ − δȳ)T
k∑

i=1

λ̄i(∇yxfi(x̄, ȳ)T̄i∇yxgi(x̄, ȳ))

+

k∑
i=1

(∇pixHi(x̄, ȳ, p̄i)− T̄i(∇pixGi(x̄, ȳ, p̄i))
T ((γ − δȳ)λ̄i − βip̄i)

]
= 0, ∀x ∈ C1, (18)

k∑
i=1

βi(∇yfi(x̄, ȳ)− z̄i +∇yHi(x̄, ȳ, p̄i)− T̄i(∇ygi(x̄, ȳ) + r̄i +∇yGi(x̄, ȳ, p̄i)) +

k∑
i=1

λ̄i(∇yyfi(x̄, ȳ)

− T̄i∇yygi(x̄, ȳ))
T (γ − δȳ) +

k∑
i=1

(∇piyHi(x̄, ȳ, p̄i)− T̄i∇piyGi(x̄, ȳ, p̄i))
T (−βip̄i + (γ − δȳ)λ̄i)

− δ

k∑
i=1

λ̄i[∇yfi(x̄, ȳ)− z̄i +∇piHi(x̄, ȳ, p̄i)− T̄i(∇ygi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i))] = 0, (19)

αi − βi(gi(x̄, ȳ)− s(x̄|Ei) + ȳT r̄i +Gi(x̄, ȳ, p̄i)− p̄i
T∇piGi(x̄, ȳ, p̄i))

− (γ − δȳ)T∇y(λ̄i(gi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i)) = 0, i = 1, 2, ..., k, (20)

(γ − δȳ)T (∇yfi(x̄, ȳ)− z̄i +∇piHi(x̄, ȳ, p̄i)

− T̄i(∇ygi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i)− ξi + η)(λ− λ̄) = 0, ∀λ ∈ intK∗, i = 1, 2, ..., k, (21)

(λ̄i(γ − δȳ)− βip̄i)
T (∇pipiHi(x̄, ȳ, p̄i)− T̄i∇pipiGi(x̄, ȳ, p̄i)) = 0, i = 1, 2, ..., k, (22)

βiȳ + (γ − δȳ)λ̄i ∈ NDi(z̄i), i = 1, 2, ..., k, (23)

βiT̄iȳ + λ̄iT̄i(γ − δȳ) ∈ NFi(r̄i), i = 1, 2, ..., k, (24)

γT
k∑

i=1

λ̄i((∇yfi(x̄, ȳ)− z̄i +∇piHi(x̄, ȳ, p̄i))− T̄i(∇ygi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i))) = 0, (25)

Stat., Optim. Inf. Comput. Vol. 8, March 2020



200 SYMMETRIC DUALITY IN NONDIFFERENTIABLE MULTIOBJECTIVE FRACTIONAL PROGRAMMING

δȳT
k∑

i=1

λ̄i(∇yfi(x̄, ȳ)− z̄i +∇piHi(x̄, ȳ, p̄i)− T̄i(∇ygi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i)) = 0, (26)

λ̄T ξ = 0, (27)

η(λ̄T e− 1) = 0, (28)

w̄i ∈ Qi, t̄i ∈ Ei, x̄
T ti = s(x̄|Ei), x̄

T w̄i = s(x̄|Qi), i = 1, 2, ..., k, (29)

(α, δ, ξ) = 0, (α, β, γ, δ, ξ, η) ̸= 0. (30)

Since λ̄ > 0, and ξ = 0, (27) implies that ξ = 0.

Equation (19) can be re-written as

k∑
i=1

(βi − δλ̄i)((∇yfi(x̄, ȳ)− z̄i +∇piHi(x̄, ȳ, p̄i))− T̄i(∇ygi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i)))

+

k∑
i=1

βi((∇yHi(x̄, ȳ, p̄i)− T̄i∇yGi(x̄, ȳ, p̄i))− (∇piHi(x̄, ȳ, p̄i)− T̄i∇piGi(x̄, ȳ, p̄i))

+

k∑
i=1

λ̄i((∇yyfi(x̄, ȳ)− T̄i∇yygi(x̄, ȳ))
T (γ − δȳ)

+

k∑
i=1

((∇piyHi(x̄, ȳ, p̄i)− T̄i∇piyGi(x̄, ȳ, p̄i))
T (−βip̄i + (γ − δȳ)λ̄i) = 0. (31)

Inequality (21) is equivalent to

(γ − δȳ)T (∇yfi(x̄, ȳ)− z̄i +∇piHi(x̄, ȳ, p̄i)

−T̄i(∇ygi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i))− ξi + η = 0, i = 1, 2, ..., k. (32)

By hypothesis (ii) and (22), we have

λ̄i(γ − δȳ) = βip̄i, i = 1, 2, ..., k. (33)

Now, we claim that βi ̸= 0, ∀i. If possible, let βt0 = 0 for some t0, 1 ≤ t0 ≤ k, then from λ̄t0 > 0 and equation
(33), we have

γ = δȳ. (34)

Using (33) and (34), we obtain βip̄i = 0, i = 1, 2, ..., k. Hence, by hypothesis (i), we get

k∑
i=1

βi((∇yHi(x̄, ȳ, p̄i)− T̄i∇yGi(x̄, ȳ, p̄i))− (∇piHi(x̄, ȳ, p̄i)− T̄i∇piGi(x̄, ȳ, p̄i))) = 0. (35)

Using (33)-(35) in (31), we obtain

k∑
i=1

(βi − δλ̄i)(∇yfi(x̄, ȳ)− z̄i +∇piHi(x̄, ȳ, p̄i)− T̄i(∇ygi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i))) = 0, (36)
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which by hypothesis (iii), follows that

β̄i − δλ̄i = 0, i = 1, 2, ..., k. (37)

Now, for i = t0, we have δλ̄i = 0. This implies δ = 0. since λ̄ > 0. Hence, from (37) βi = 0, ∀i. Thus, from
relation (20), (34) and (37), we get αi = 0, i = 1, 2, ..., k. Also, from relations (20) and (34), we get η = 0 and
γ = 0, respectively, which contradicts the fact that (α, β, γ, δ, ξ, η) ̸= 0. Hence βi ̸= 0, i = 1, 2, ..., k.

Now, equation (32) reduces to

(γ − δȳ)T (∇yfi(x̄, ȳ)− z̄i +∇piHi(x̄, ȳ, p̄i)

−T̄i(∇ygi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i)) + η = 0, i = 1, 2, ..., k. (38)

Multiplying by λ̄i and summing over i, we get

(γ − δȳ)T
k∑
i

λ̄i(∇yfi(x̄, ȳ)− z̄i +∇piHi(x̄, ȳ, p̄i)

−T̄i(∇ygi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i)) + η λ̄T ek = 0. (39)

Subtracting (26) from (25), we get

(γ − δȳ)T
k∑
i

λ̄i(∇yfi(x̄, ȳ)− z̄i +∇piHi(x̄, ȳ, p̄i)− T̄i(∇ygi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i)) = 0. (40)

Using (40) in (39), we get, η = 0.

Now, equation , yield

(γ − δȳ)T (∇yfi(x̄, ȳ)− z̄i +∇piHi(x̄, ȳ, p̄i)− T̄i(∇ygi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i)) = 0, i = 1, 2, ..., k. (41)

Since λ̄ > 0, using (33) in (34), we get

βip̄
T
i [∇yfi(x̄, ȳ)− z̄i +∇piHi(x̄, ȳ, p̄i)− T̄i(∇ygi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i))] = 0, i = 1, 2, ..., k. (42)

Since βi ̸= 0, i = 1, 2, ..., k, we obtain

p̄Ti [∇yfi(x̄, ȳ)− z̄i +∇piHi(x̄, ȳ, p̄i)− T̄i(∇ygi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i))] = 0, i = 1, 2, ..., k, (43)

or
k∑

i=1

p̄Ti [∇yfi(x̄, ȳ)− z̄i +∇piHi(x̄, ȳ, p̄i)− T̄i(∇ygi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i))] = 0. (44)

By the hypothesis (iv), we have p̄i = 0, i = 1, 2, ..., k. Further using, hypothesis (i), using (32)-(33) in (18)-(19),
we get

(x− x̄)T
[ k∑

i=1

βi(∇xfi(x̄, ȳ) + w̄i − T̄i(∇xgi(x̄, ȳ)− t̄i))

]
= 0, ∀x ∈ C1. (45)

k∑
i=1

(βi − δλ̄i)[∇yfi(x̄, ȳ)− z̄i − T̄i(∇ygi(x̄, ȳ) + r̄i)] = 0. (46)
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Using hypothesis (iii) in (46), we have

βi = δλ̄i, i = 1, 2, ..., k. (47)

Since βi ̸= 0, λ̄i > 0, i = 1, 2, ..., k and δ = 0, this implies that βi > 0, ∀i. Now, using (47) in (46), we obtain

(x− x̄)T
[ k∑

i=1

λ̄i(∇xfi(x̄, ȳ) + w̄i − T̄i(∇xgi(x̄, ȳ)− t̄i))

]
= 0, ∀x ∈ C1. (48)

Let x ∈ C1. Then x+ x̄ ∈ C1, as C1 is a closed convex cone. On substituting x+ x̄ in place of x in (48), we have

xT
k∑

i=1

λ̄i

[
(∇xfi(x̄, ȳ) + w̄i)− T̄i(∇xgi(x̄, ȳ)− t̄i)

]
= 0, (49)

which in turn implies that for all x ∈ C1, we have

k∑
i=1

λ̄i[(∇xfi(x̄, ȳ) + w̄i)− T̄i(∇xgi(x̄, ȳ)− t̄i))] ∈ C∗
1 . (50)

Also by letting x = 0 and x = 2x̄, simultaneously in (48), yields

x̄T
k∑

i=1

λ̄i(∇xfi(x̄, ȳ) + w̄i)− T̄i(∇xgi(x̄, ȳ)− t̄i)) = 0. (51)

Using p̄i = 0 in (33), we get, γ = δȳ and δ > 0, we have

ȳ =
γ

δ
∈ C2.

Since β > 0 by (23) and the fact that γ = δȳ, we get ȳ ∈ NDi(z̄i), i = 1, 2, ...., k. This implies

ȳT z̄i = s(ȳ|Di), i = 1, 2, ..., k. (52)

By (24) and hypothesis (v), we have ȳ ∈ NFi(r̄i), i = 1, 2, ....., k. Hence,

ȳT r̄i = s(ȳ|Fi), i = 1, 2, ....., k. (53)

Combining (29),(52)-(53) and given equation (1), reduce to

(fi(x̄, ȳ) + x̄T w̄i − s(ȳ|Di))− T̄i(gi(x̄, ȳ)− x̄T t̄i − s(ȳ|Fi)) = 0, i = 1, 2, ...., k. (54)

Combining this with (52)-(54), shows that (x̄, ȳ, T̄ , w̄, t̄, λ̄, q̄ = 0) is a feasible solution of (MFDP )V .

Under the assumptions Theorems (3.1)− (3.4), if (x̄, ȳ, T̄ , w̄, t̄, λ̄, q̄ = 0) is not an efficient solution
of (MFDP )W , then there exists other feasible solution (u, v,W, w̄, t̄, λ̄, q), of (MFDP )W , such that
W − T̄ ∈ K \ {0}.
Since (x̄, ȳ, T̄ , w̄, t̄, λ̄, p̄) is a feasible solution of (MFPP )T , by Weak duality theorem, we have W − T̄ /∈ K \ {0},
hence the contradiction implies that (x̄, ȳ, T̄ , w̄, t̄, λ̄, q̄ = 0) is an efficient solution of (MFDP )W . Hence, the
result.

Theorem 3.6 (Strong duality). Let (x̄, ȳ, T̄ , z̄, r̄, λ̄, p̄) be efficient solution of (MFPP)T , and fix λ = λ̄ in
(MFDP)W . Suppose that
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(i) ∇xHi(x̄, ȳ, 0) = ∇xGi(x̄, ȳ, 0) = 0,∇qiΦi(x̄, ȳ, 0) = ∇qiΨi(x̄, ȳ, 0) = 0,Hi(x̄, ȳ, 0) = Gi(x̄, ȳ, 0) =
0,Φi(x̄, ȳ, 0) = Ψi(x̄, ȳ, 0) = 0,∇yHi(x̄, ȳ, 0) = ∇yGi(x̄, ȳ, 0) = 0,∇piHi(x̄, ȳ, 0) = ∇piGi(x̄, ȳ, 0) =
0, i = 1, 2, ..., k.

(ii) T̄i > 0,∀i ∈ 1, 2, ......, k,
(iii) ∇pipiHi(x̄, ȳ, p̄i)− T̄i∇pipiGi(x̄, ȳ, p̄i) is nonsingular ∀i = 1, 2, ....., k,

(iv)

k∑
i=1

λ̄i(∇yyfi(x̄, ȳ)− T̄i∇yygi(x̄, ȳ)) is positive definite and p̄i
T
(
(∇yHi(x̄, ȳ, p̄i)− T̄i∇yGi(x̄, ȳ, p̄i))−

(∇pi
Hi(x̄, ȳ, p̄i)− T̄i∇piGi(x̄, ȳ, p̄i))

)
= 0, ∀i = 1, 2, ....., k, or

k∑
i=1

λ̄i((∇yyfi(x̄, ȳ)− T̄i∇yygi(x̄, ȳ)) is

negative definite and

p̄i
T (∇yHi(x̄, ȳ, p̄i)− T̄i∇yGi(x̄, ȳ, p̄i))− (∇piHi(x̄, ȳ, p̄i)− T̄i∇piGi(x̄, ȳ, p̄i)) 5 0, ∀i = 1, 2, ....., k.

(v) the set of vectors {∇yfi(x̄, ȳ)− z̄i +∇piHi(x̄, ȳ, p̄i)− T̄i(∇ygi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i) : i =
1, 2, ......, k} is linearly independent.

Then p̄ = 0, and there exists w̄i ∈ Qi and t̄i ∈ Ei, i = 1, 2, ......, k such that (x̄, ȳ, T̄ , w̄, t̄, λ̄, q̄ = 0) is a
feasible solution of (MFDP )W . Furthermore, if the hypotheses in theorems (3.1)− (3.4) are satisfied, then
(x̄, ȳ, T̄ , w̄, t̄, λ̄, q̄ = 0) is efficient solution of (MFDP )W , and the two objective values are equal.

Proof: The proof follows Theorem 3.5.

Theorem 3.7 (Converse duality). Let (ū, v̄, W̄ , w̄, t̄, λ̄, q̄) be efficient solution of (MFPP)W , and fix λ = λ̄
in (MFDP)T . If the following conditions hold

(i) ∇xΦi(ū, v̄, 0) = ∇xΨi(ū, v̄, 0) = 0,∇qiΦi(ū, v̄, 0) = ∇qiΨi(ū, v̄, 0) = 0, Hi(ū, v̄, 0) = Gi(ū, v̄, 0) =
0,Φi(ū, v̄, 0) = Ψi(ū, v̄, 0) = 0,∇yΦi(ū, v̄, 0) = ∇yΨi(ū, v̄, 0) = 0,∇piHi(ū, v̄, 0) = ∇piGi(ū, v̄, 0) =
0, i = 1, 2, ..., k.

(ii) for all i ∈ {1, 2, ..., k}, the Hessian matrix ∇pipi
Φi(ū, v̄, q̄i)− W̄i∇pipi

Ψi(ū, v̄, q̄i) is positive or negative
definite;

(iii) the set of vectors {∇xfi(ū, v̄) + w̄i +∇qiΦi(ū, v̄, q̄i)− W̄i(∇xgi(ū, v̄)− t̄i +∇qiΨi(ū, v̄, q̄i)))}ki=1 is
linearly independent;

(iv) for q̄i ∈ Rn, q̄i ̸= 0, (i = 1, 2, ..., k) implies that
k∑

i=1

q̄i
T [∇xfi(ū, v̄) + w̄i +∇qiΦi(ū, v̄, q̄i −

W̄i(∇xgi(ū, v̄)− t̄i +∇qiΨi(ū, v̄, q̄i))] ̸= 0,
(v) W̄i > 0, ∀i ∈ 1, 2, ..., k.

Then
(a) q̄i = 0, i = 1, 2, ..., k;
(b) there exists z̄i ∈ Di and r̄i ∈ Fi, i = 1, 2, ..., k such that (ū, v̄, V̄ , z̄, r̄, λ̄, p̄ = 0) is a feasible solution of

(MFDP )W .

Furthermore, if the hypotheses in Theorems (3.1)− (3.4) are satisfied, then (ū, v̄, W̄ , z̄, r̄, λ̄, p̄ = 0) is an efficient
solution of (MFDP )T , and the two objective values are equal.

Proof: The proof follows Theorem 3.5.

Theorem 3.8 (Converse duality). Let (ū, v̄, V̄ , w̄, t̄, λ̄, q̄) be efficient solution of (MFPP)W , and fix λ = λ̄
in (MFDP)T . Suppose that

(i) ∇xΦi(ū, v̄, 0) = ∇xΨi(ū, v̄, 0) = 0,∇qiΦi(ū, v̄, 0) = ∇qiΨi(ū, v̄, 0) = 0,Hi(ū, v̄, 0) = Gi(ū, v̄, 0) = 0,
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Φi(ū, v̄, 0) = Ψi(ū, v̄, 0) = 0,∇yΦi(ū, v̄, 0) = ∇yΨi(ū, v̄, 0) = 0,∇piHi(ū, v̄, 0) = ∇piGi(ū, v̄, 0) =
0, i = 1, 2, ..., k.

(ii) W̄i > 0, ∀i ∈ 1, 2, ......, k,
(iii) ∇qiqiΦi(ū, v̄, q̄i)− W̄i∇qiqiΨi(ū, v̄, q̄i) is nonsingular ∀i = 1, 2, ....., k,

(iv)

k∑
i=1

λ̄i(∇xxfi(ū, v̄)− W̄i∇xxgi(ū, v̄)) is positive definite and q̄i
T ((∇xΦi(ū, v̄, q̄i)− W̄i∇xΨi(ū, v̄, q̄i))

−((∇qiΦi(ū, v̄, q̄i)− W̄i∇qiΨi(ū, v̄, q̄i)) = 0, ∀i = 1, 2, ..., k,

or
k∑

i=1

λ̄i(∇xxfi(ū, v̄)− V̄∇xxgi(ū, v̄)) is negative definite and q̄i
T ((∇xΦi(ū, v̄, q̄i)− W̄i∇xΨi(ū, v̄, q̄i))−

((∇qiΦi(ū, v̄, q̄i)− W̄i∇qiΦiΨi(ū, v̄, q̄i)) 5 0, ∀i = 1, 2, ....., k.
(v) the set of vectors {∇xfi(ū, v̄) + w̄i +∇qiΦi(ū, v̄, q̄i)− W̄i(∇xgi(x̄, ȳ)− t̄i +∇qiΨi(ū, v̄, q̄i)) : i =

1, 2, ..., k} is linearly independent.

Then q̄ = 0 and there exists z̄i ∈ Di and r̄i ∈ Fi, i = 1, 2, ..., k such that (ū, v̄, W̄ , z̄, r̄, λ̄, p̄ = 0) is a
feasible solution of (MFDP)T . Furthermore, if the hypotheses in Theorems (3.1)− (3.4) are satisfied, then
(ū, v̄, W̄ , z̄, r̄, λ̄, p̄ = 0) is an efficient solution of (MFDP)T and the two objective values are equal.

Proof: The proof follows Theorem 3.5.

4. Conclusion

In this article, we have considered a pair of Mond-Weir type nondifferentiable higher order fractional
symmetric dual program with cone constraints and discussed duality theorems under higher order K −
(C,α, ρ, d)-convexity/K − (C,α, ρ, d) pseudoconvexity assumptions. The present work can further be extended
to nondifferentiable higher order symmetric fractional programming problem over cones under generalized
assumptions. This will orient the future task of the authors.
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