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Abstract The Poisson regression model is a vital analytical instrument that should be employed in the modeling of count
data. When the excess dispersion of variables is present, the model is inappropriate to employ if the mean value does not
equal the variance of the Poisson distribution. The results are compatible with data when there is the use of Bell regression
model. The number of zeros in the count data that is seen is very high. In this case, the Zero-Inflated Bell regression model
is an alternative to the Bell regression model. Parameters of the Zero-Inflated Bell regression model are estimated mostly
through the approach of maximum likelihood. In an extended linear model, in which the response variable is modeled
by two or more explanatory variables, as in the Zero-Inflated Bell regression model, linear dependence is a threat in a
real-life analysis. It reduced the maximum likelihood estimator in its effectiveness. In a bid to solve this issue, this paper
explores the performance of the generalized shrinkage estimator in the zero-inflated Bell regression model. The superiority
of the proposed approaches over the traditional maximum likelihood estimator is validated by results of the simulations and
implementations.

Keywords Over-dispersion, Poisson regression, Shrinkage estimator, Zero-Inflated Bell Regression

AMS 2010 subject classifications 62Jxx

DOI: 10.19139/soic-2310-5070-3302

1. Introduction

Poisson regression should be used especially where the data involves counts of events as the response variable,
such as how many customer complaints there were on a given day, how many hospital admissions there were last
month, or how many accidents there were at an intersection. Poisson regression, in contrast to linear regression,
is able to model predictions that are non-negative integers, unlike linear regression, which can predict unrealistic
negative values of counts (Aldoori et al. [3], 2025, Amin et al.[11], 2020, Salih and Hmood[32], 2020,Salih and
Hmood[33], 2021, Hamad and Algamal[22], 2021, Rashad and Algamal[30], 2019, Yahya Algamal[39], 2019,
Salih and Hussein[34]). The Poisson regression model is unquestionably the most widely used model for count
data in practice (Algamal[5], 2012, Alanaz and Algamal[2], 2018). The assumption that the variance and the mean
of the distribution are the same is often made in the distribution. A major weakness in the Poisson regression
model which normally occurs in count data is over-dispersion or variation that is higher than the mean. On the
Bell distribution and the count data Bell regression model, (Castellares et al[16]., 2018) proposed another count
data discrete distribution model called the Bell regression model in order to model count data with over-dispersion.
Recently, the ridge estimator and the Liu estimator were introduced to the estimation of the parameter of the Bell
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regression model with multicollinearity by (Amin et al.[10], 2023, Majid et al.[27], 2022, Algamal et al.[7], 2022,
Algamal et al.[8], 2023, Seifollahi et al.[37], 2025, Bulut et al.[15], 2024, Seifollahi et al[36]., 2024, Ertan et
al.[19], 2025, Ertan et al.[20], 2023). Another weakness of Bell regression model is the excess zeros in the count
data. Many applications such as medicine, public health, environmental sciences, agriculture, and manufacturing
applications are prone to the number being much larger than positive (or having many zeros) So a more appropriate
model to the count data is the Zero-Inflated Bell regression model. In point of fact, the computation of an MLE in
practice reveals the following implication of significant multicollinearity of the variables that are independent.
The reason for this is because estimation methods that are commonly employed, such as MLE, can be quite
wrong depending on the circumstances. Due to the fact that the linear regression model has a problem with
multicollinearity, a great number of authors have suggested using Ridge as an alternative, Liu, Liu-type, and others
(Alkhamisi and Shukur[9], 2007, Batah et al.[13], 2008, Al-Hassan[1], 2010, Dorugade and Kashid[17], 2010,
Månsson et al.[28], 2010, Dorugade[18], 2014, Asar et al.[12], 2014, Hoerl and Kennard[24], 1970, Algamal et
al.[6], 2016). Additionally, robust estimators have been suggested to address the Multicollinearity and outlier value
issues concurrently. Bell distribution refers to discrete probability distribution which counts partitions of a set.
The zero-inflated Bell distribution (ZIBRM) builds on the concept of zero-inflation. This distribution can be very
useful when modeling count data which contains a large proportion of zeros since it is far more flexible to allow
data to be fitted compared to the common count models. The issue of multicollinearity is widespread in the case
of explanatory variables that are continuous, as seen in the literature. No research has been conducted using the
Zero-Inflated Bell regression model that has considered multicollinearity. The Zero-Inflated Bell regression model
is a model used in ecological research studies to analyze the number of species in the various habitats. The absence
of the observed species in certain places also makes many ecological data sets have high numbers of zero values.
The ZIBell model enables researchers to have a more accurate determination of species distribution and abundance
because it accommodates instances of zero occurrences and definite counts. The main objective of the work is to
investigate the performance of the generalized shrinkage estimator in the model of the modeling of over-dispersion
counts data in the ZIBRM estimator. The proposed estimator will be successful in its performance compared to
some of the existing estimators in GLM. The benefits of the proposed estimators will be proven by a real-life
example and simulated exercises.

2. Zero-Inflated Bell Regression Model

Let (qi,mi), i = 1, 2, · · · , n and mi ∈ R(p+1) is independent data of the observed variables with the predictor
vector and the response variable that follows a distribution belonging to Bell distribution. Then, ti can be as:

P (Q = q) =
(υqe−eυ+1Bq)

q!
, q = 0, 1, 2, (1)

Where υ > 0 and Bq = 1
e

∑∞
i=0

(
iq

i!

)
is the Bell numbers. Then:

E(q) = υeυ (2)

Var(q) = υ(1 + υ)eυ (3)

Assuming φ = υeυ and υ = D◦(φ) where D◦(·) is the Lambert function. Then Equation 1 can be as:

P (Q = q) = exp
(
1− eD◦(φ)

) (D◦(υ)
qBq)

q!
, q = 0, 1, 2, (4)

The linear function is µi =
∑p

j=1 mijαj = mT
i α with mT

i = (mi1,mi2, . . . ,mip) and α = (α1, . . . , αp)
T . The

link function is δi = g−1(µi) = g−1(mT
i α). The Bell regression model (BRM) can be modeled by assuming

φi = exp(mT
i α) exp(exp(m

T
i α)) and logφi = mT

i α exp(mT
i α) as qi ∼ ”Bell”(D◦(φi)). The log-likelihood is
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defined:

(α,φ) =

n∑
i=1

qi log(exp(m
T
i α) exp(e

mT
i α)) +

n∑
i=1

(1− ee
mT

i αee
mT

i α

) + logBq − log(

n∏
i=1

qi!) (5)

Thereafter, the first derivative of the equation is equated to obtain the MLE. Equation 5 to zero. Once the iterative
solution to the first derivative is obtained, it is assumed that the value of the coefficients is estimated as:

α̂MLE =
(
MT ŴM

)−1

MT Ŵ v̂ (6)

F (x, γ) = 1− (1 + γx+ γ)

(1 + γ)
e−γx (7)

The survival function S(x) defined as follows

S(x, γ) =
(1 + γx+ γ)

(1 + γ)
e−γx (8)

Where τ ∈ (0, 1). Then, according to Equation 8, E(q) = (1− τ)υ, var(q) = (1− τ)υ[1 +D(υ) + υτ ]. In zero-
inflated regression modeling, there are two link functions used as:

log(φi) = δ1i = mT
i α, log

(
τi

1− τi

)
= δ2i = rTi ϑ (9)

Where ϑ = (ϑ1, ..., ϑq)
T are vectors of unknown regression coefficients which are assumed to be functionally

independent, and rTi = (ri1, ..., riq) are observation on q known explanatory variables. The log-likelihood function
is defined as:

l(α, ϑ) =
∑

(qi:qi=0)

log[eδ2i + exp(1− eD(µi))]−
n∑

i=1

log(1− eδ2i) +
∑

(qi:qi>0)

qi log[D(µi)]−
∑

(qi:qi>0)

eD(µi),

(10)
Then, the MLE estimator is α̂MLE and ϑ̂MLE (Seifollahi et al., 2025).

3. The Proposed Estimator

In the presence of multicollinearity, the generalized ridge estimator (GRE) involves the addition of a penalization
term to the likelihood-based estimation to reduce the estimates of the coefficients. This is done to minimize the
variance and improve estimation. In contrast to the traditional ridge estimator, which makes use of a scalar penalty
parameter h, the GRE makes use of a diagonal matrix H of penalty parameters, which is more adaptable and
performs more effectively thanks to its superior performance. The ridge estimator in the ZIBRM is defined as:

α̂Ridge = (MT ŴM + hI)−1MT ŴMα̂MLE (11)

Where h > 0. The GRE for the ZIBRM is defined as:

α̂GRE = (MT ŴM +H)−1MT ŴMα̂MLE (12)

Where H = ”diag”(h1, h2, . . . , hp). The advantage in which using GRE lies in finding the best values of k so
as to get the MSE which is smaller compared to when we using the ridge estimator and MLE. The choice of the
matrix H is extremely significant. Some of the methods used to estimate H in this paper, including (Hocking
et al.[23], 1976, Nomura[29], 1988, Troskie and Chalton[38], 1996, Firinguetti[21], 1999, Al-Hassan[1], 2010,
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Alkhamisi and Shukur[9], 2007, Asar et al.[12], 2014, Batah et al.[13], 2008, Bhat and Raju[14], 2017, Dorugade
and Kashid[17], 2010, Dorugade[18], 2014, Månsson et al.[28], 2010). These approaches are provided as follows
respectively:

ĥi(HK) =
1

α2
i

, (Hoerl and Kennard, 1970) (13)

ĥi(N) =
1

α̂2
i

{
1 +

[
1 + λi(α̂

2
i )

1/2
]}

(Nomura, 1988) (14)

ĥi(TC) =
λi

λiα̂2
i

(Troskie and Chalton, 1996) (15)

ĥi(F ) =
λi

λiα̂2
i + (n− p)

(Firinguetti, 1999) (16)

ĥi(HSL) =

∑p
i=1

(
λiα̂

2
i

)2(∑p
i=1 (λiα̂2

i )
)2 (Hocking et al., 1976) (17)

ĥi(AH) =

∑p
i=1

(
λiα̂

2
i

)2(∑p
i=1 (λiα̂2

i )
)2 +

1

λmax
(Al-Hassan, 2010) (18)

hi(D) =
1

λmaxα̂2
i

(Dorugade, 2014) (19)

ĥi(SB) =
λi

λiα̂2
i

+
1

λmax
(Bhat and Raju, 2017) (20)

ĥi(SV 1) =
p

α̂2
i

+
1

λMaxα̂2
i

(Bhat and Raju, 2017) (21)

hathi(SV 2) =
p

α̂2
i

+
1

2
(√

λMax/λMin

)2 (Bhat and Raju, 2017) (22)

ĥi(M) =
1

λMaxα̂2
i

(n−p)+λMaxα̂2
i

(Bhat and Raju, 2017) (23)

ĥi(AS) =
1

α̂2
i

+
1

λi
(Asar et al., 2014) (24)

4. Simulation Study

In this section, we have generated collinear explanatory variables as well as a zero-inflated bell-shaped response
variable (y). The explanatory factors will be identified based on the following research results[25]:

mij =
√

(1− ρ2)bij + ρbip, i = 1, . . . , n; j = 2, . . . p (25)

Where bij are independent standard uniform pseudo-random numbers, ρ denotes the correlation between the
explanatory variables such that ρ = 0.9, 0.95, and 0.99, n = 50 and 250, and p = 3 and 7. The n, p and ρ have
great influence on the shrinkage estimators, in general. We assumed that yi ∼ ZIBell(αi, π), where log(αi) =
α1mi1 + · · ·+ αpmip. The percentages of zeros values of the model are chosen such that π = 0.3 and 0.7. The
experiment was repeated 1000 times, and the mean squared error (MSE) was used to see how well the estimators
did. The mean squared error (MSE) scale was used because it is one of the most important measures used to assess
the impact of the chosen data estimation method on linear models [31], and researchers have focused their attention
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on this particular topic[26].

MSE(α∗) =
1

1000

1000∑
l=1

(α∗
l − α)T (α∗

l − α) (26)

Where α∗
l denotes the estimated vector of the true parameter vector α which represents the mean vector of the

generated data Tables 1-8 provide MSE of the simulated data under different conditions of simulation. The smallest
MSE values in each table generally indicate the best-performing methods under the given conditions. For almost
all tables, methods labeled SV1 consistently has the lowest MSE values, indicating superior prediction accuracy
or estimation stability in those scenarios. The MLE consistently shows the highest MSE values, suggesting poorer
performance relative to shrinkage or penalized estimators. The MSE values tend to increase as parameters change,
implying the influence of parameter tuning on estimator accuracy. Further, as n increases, the average MSE values
tend to increase across all methods but at different rates. This increase reflects that with more data, models
encounter more variability or complexity, especially if data become noisier or more challenging to fit. Methods
like SV1 consistently have the lowest MSE across all n, indicating robustness to sample size changes and strong
estimation/prediction ability. Traditional MLE usually has the highest MSE regardless of n, showing it is the least
efficient among tested methods. Related to p, MSE tends to rise with p across all methods. SV1 maintain better
performance (lower MSE) compared to MLE or non-regularized estimators. The gradual degradation of some
methods’ performance highlights the vulnerability of traditional estimators to high dimensionality.

Table 1. Average MSE values when n = 50, p = 3, and π = 0.3.

Methods ρ = 0.90 ρ = 0.95 ρ = 0.99

MLE 10.4841 10.6472 10.8618
Ridge 9.0101 9.0314 9.0091
HK 8.5648 8.6191 8.6337
N 8.2282 8.2364 8.2388

TC 8.3068 8.3611 8.3757
F 7.7814 7.8357 7.8503

HSL 8.1938 8.2481 8.2627
AH 8.119 8.1733 8.1879
D 8.0143 8.0251 8.0307

SB 8.3115 8.3658 8.3804
SV1 7.1524 7.2067 7.2213
SV2 8.0977 8.152 8.1666
M 8.1165 8.1703 8.1849
AS 8.1774 8.2317 8.2463
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Table 2. Average MSE values when n = 50, p = 3, and π = 0.7.

Methods ρ = 0.90 ρ = 0.95 ρ = 0.99

MLE 10.7425 10.9056 11.1202
Ridge 9.2685 9.2898 9.2675
HK 8.8232 8.8775 8.8921
N 8.4866 8.4948 8.4972

TC 8.5652 8.6195 8.6341
F 8.0398 8.0941 8.1087

HSL 8.4522 8.5065 8.5211
AH 8.3774 8.4317 8.4463
D 8.2727 8.2835 8.2891

SB 8.5699 8.6242 8.6388
SV1 7.4108 7.4651 7.4797
SV2 8.3561 8.4104 8.425
M 8.3749 8.4287 8.4433
AS 8.4358 8.4901 8.5047

Table 3. Average MSE values when n = 50, p = 7, and π = 0.3.

Methods ρ = 0.90 ρ = 0.95 ρ = 0.99

MLE 11.3671 11.5302 11.7448
Ridge 9.8931 9.9144 9.8921
HK 9.4478 9.5021 9.5167
N 9.1112 9.1194 9.1218

TC 9.1898 9.2441 9.2587
F 8.6644 8.7187 8.7333

HSL 9.0768 9.1311 9.1457
AH 9.002 9.0563 9.0709
D 8.8973 8.9081 8.9137

SB 9.1945 9.2488 9.2634
SV1 8.0354 8.0897 8.1043
SV2 8.9807 9.035 9.0496
M 8.9995 9.0533 9.0679
AS 9.0604 9.1147 9.1293

Table 4. Average MSE values when n = 50, p = 7, and π = 0.7.

Methods ρ = 0.90 ρ = 0.95 ρ = 0.99

Ridge 10.1515 10.1728 10.1505
HK 9.7062 9.7605 9.7751
N 9.3696 9.3778 9.3802

TC 9.4482 9.5025 9.5171
F 8.9228 8.9771 8.9917

HSL 9.3352 9.3895 9.4041
AH 9.2604 9.3147 9.3293
D 9.1557 9.1665 9.1721

SB 9.4529 9.5072 9.5218
SV1 8.2938 8.3481 8.3627
SV2 9.2391 9.2934 9.308
M 9.2579 9.3117 9.3263
AS 9.3188 9.3731 9.3877
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Table 5. Average MSE values when n = 250, p = 3, and π = 0.3.

Methods ρ = 0.90 ρ = 0.95 ρ = 0.99

MLE 8.8031 8.9662 9.1808
Ridge 7.3291 7.3504 7.3281
HK 6.8838 6.9381 6.9527
N 6.5472 6.5554 6.5578

TC 6.6258 6.6801 6.6947
F 6.1004 6.1547 6.1693

HSL 6.5128 6.5671 6.5817
AH 6.438 6.4923 6.5069
D 6.3333 6.3441 6.3497

SB 6.6305 6.6848 6.6994
SV1 5.4714 5.5257 5.5403
SV2 6.4167 6.471 6.4856
M 6.4355 6.4893 6.5039
AS 6.4964 6.5507 6.5653

Table 6. Average MSE values when n = 250, p = 3, and π = 0.7.

Methods ρ = 0.90 ρ = 0.95 ρ = 0.99

MLE 9.0615 9.2246 9.4392
Ridge 7.5875 7.6088 7.5865
HK 7.1422 7.1965 7.2111
N 6.8056 6.8138 6.8162

TC 6.8842 6.9385 6.9531
F 6.3588 6.4131 6.4277

HSL 6.7712 6.8255 6.8401
AH 6.6964 6.7507 6.7653
D 6.5917 6.6025 6.6081

SB 6.8889 6.9432 6.9578
SV1 5.7298 5.7841 5.7987
SV2 6.6751 6.7294 6.744
M 6.6939 6.7477 6.7623
AS 6.7548 6.8091 6.8237

5. Applications

The use was on a fish dataset to predict the number of fish that would be harvested by 250 groups visiting a state
park. The response variable is the number of fish caught and the predictors are whether or not live bait was used,
whether or not the fishermen brought a camper to the park, number of people in the group, and number of children
in the group (Algamal and Lee[4], 2017, Algamal et al.[6], 2016, Salih et al.[35], 2025). It has multicollinearity,
and it is indicated by the condition index of 181.76. The Poisson regression model based on Vuong test does
not fit as compared to the zero inflated Poisson regression model. This is further supported by the sufficiency
test based on AIC and log-likelihood of Table 9. The over-dispersion test results in a z-value of 2.2357 and
a p-value of 0.0000 which means that the data are over-dispersed. This illustrates the reason why the Poisson
regression model cannot give a good fit to the data. Although the Poisson regression model is inferior to the zero-
inflated Poisson regression model (ZIPRM), the latter model is also poor in comparison to other fitted models.
Recently, the zero-inflated negative binomial regression model (ZNBRM) was used to model the data by Alanaz
and Algamal[2], 2018. Table 9 provides the results. Even though it’s commonly used, the MLE has the highest
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Table 7. Average MSE values when n = 250, p = 7, and π = 0.3.

Methods ρ = 0.90 ρ = 0.95 ρ = 0.99

MLE 9.6861 9.8492 10.0638
Ridge 8.2121 8.2334 8.2111
HK 7.7668 7.8211 7.8357
N 7.4302 7.4384 7.4408

TC 7.5088 7.5631 7.5777
F 6.9834 7.0377 7.0523

HSL 7.3958 7.4501 7.4647
AH 7.321 7.3753 7.3899
D 7.2163 7.2271 7.2327

SB 7.5135 7.5678 7.5824
SV1 6.3544 6.4087 6.4233
SV2 7.2997 7.354 7.3686
M 7.3185 7.3723 7.3869
AS 7.3794 7.4337 7.4483

Table 8. Average MSE values when n = 250, p = 7, and π = 0.7.

Methods ρ = 0.90 ρ = 0.95 ρ = 0.99

MLE 9.9445 10.1076 10.3222
Ridge 8.4705 8.4918 8.4695
HK 8.0252 8.0795 8.0941
N 7.6886 7.6968 7.6992

TC 7.7672 7.8215 7.8361
F 7.2418 7.2961 7.3107

HSL 7.6542 7.7085 7.7231
AH 7.5794 7.6337 7.6483
D 7.4747 7.4855 7.4911

SB 7.7719 7.8262 7.8408
SV1 6.6128 6.6671 6.6817
SV2 7.5581 7.6124 7.627
M 7.5769 7.6307 7.6453
AS 7.6378 7.6921 7.7067

MSE in this scenario, meaning it performs the worst. This is probably because of its instability or volatility when
dealing with data characteristics like multicollinearity. Based on the mean squared error (MSE), the SV1 approach
produces the most reliable and accurate estimations in the given test case. By using regularization to handle
problems like multicollinearity and overfitting, shrinkage approaches like Ridge, HK, N, and TC often outperform
standard MLE. Differences between the shrinkage and adaptive approaches show how method customization can
lead to minor gains. Table 9 displays the mean squared error (MSE) values for each estimator, derived from the
actual fish catch dataset. The highest mean squared error (MSE) is seen with the maximum likelihood estimator
(MLE), indicating subpar performance due to multicollinearity and a surplus of zeros in the dataset. In contrast, all
shrinkage-based estimators exhibit enhanced performance relative to the maximum likelihood estimator, effectively
mitigating estimation variance. Specifically, SV1 exhibits the smallest MSE, thereby indicating enhanced stability
and accuracy in parameter estimation. This finding corroborates the theoretical benefits of generalized shrinkage
when addressing ill-conditioned information matrices. Consequently, the results support SV1 as the most effective
estimator for the zero-inflated Bell regression model in practical scenarios.
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Table 9. Caption

Methods MSE
MLE 7.4725
Ridge 5.9985
HK 5.5532
N 5.2166

TC 5.2952
F 4.7698

HSL 5.1822
AH 5.1074
D 5.0027

SB 5.2999
SV1 4.1408
SV2 5.0861
M 5.1049
AS 5.1658

6. Conclusion

The paper discusses the weakness of the conventional Poisson regression model in count data where over-dispersion
and excessive zeros are observed and the alternative that is developed is the Zero-Inflated Bell regression model
(ZIBRM). One of the major difficulties in estimating parameters of such models is that, multicollinearity of the
explanatory variables weakens the effectiveness of maximum likelihood estimator (MLE). To address this, the
paper proposes the generalized shrinkage estimator (GRE) of the ZIBRM which is an extension of the classical
ridge estimator where a flexible penalty matrix replaces a scalar penalty. The method reduces variance and
maximizes the accuracy of estimation in the multicollinearity situation. The excellence of the given GRE as
compared to the traditional MLE and classical ridge estimators is confirmed by extensive simulation and a real-
life task of fish catch data with high multicollinearity and zero-inflation. The SV1 estimator’s greater accuracy
is theoretically due to its ability to optimally balance bias and variance using eigenvalue-adaptive shrinkage. By
imposing direction-specific penalties, SV1 efficiently stabilizes estimation in the face of extreme multicollinearity,
which is prevalent in zero-inflated Bell regression models. Unlike conventional ridge and likelihood-based
estimators, SV1 regularizes the ill-conditioned information matrix while retaining important signal components.
This results in uniformly lower mean squared error, increased numerical stability, and robustness across a range
of sample sizes, predictor dimensions, and levels of zero inflation. As a result, SV1 improves risk at both the
finite-sample and asymptotic scales, explaining its persistent dominance in simulation and real-data studies. It is
consistently demonstrated through simulation that the GRE, particularly the SV1 variant, exhibits a significantly
reduced mean squared error (MSE), indicating greater accuracy and stability across diverse conditions of sample
size, predictor count, and zero-inflation proportion.
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