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Abstract Monkeypox (mpox) is a zoonotic infectious disease that has re-emerged as a global public health concern
due to its increasing transmission in various regions. In this study, we propose a fractional-order epidemiological model
to investigate the transmission dynamics of mpox involving human and rodent populations. The use of fractional-order
derivatives allows the model to incorporate memory effects, which are relevant for capturing the long-term influence of
past infections, immune responses, and exposure history. To evaluate effective intervention measures, an optimal control
framework is developed by combining two time-dependent control strategies: human vaccination and rodent eradication. The
optimal control problem is solved using Pontryagin’s Principle of Minimum in conjunction with a forward-backward iterative
algorithm, while the fractional-order system is numerically approximated using an Eulerian scheme. Model parameters
are estimated using real mpox case data, and the performance of the fractional-order model is compared across different
fractional-order values. Numerical simulations show that the combined control strategy significantly reduces the infected
population and overall implementation costs compared to a single control intervention. Furthermore, the results show that
higher fractional orders, approaching the integer order case, result in improved system performance and earlier separation
between control strategies. These findings highlight the importance of memory effects in mpox transmission dynamics and
provide insights for designing efficient and cost-effective intervention policies.
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1. Introduction

The viral disease caused by the monkeypox virus (MPOXV) is called mpox, this disease is classified in the genus
Orthopoxvirus. The virus was initially recognized in Denmark in 1958 among laboratory primates utilized for
scientific purposes. The inaugural recorded human infection transpired in 1970 in the Democratic Republic of the
Congo (DRC), affecting an infant aged nine months. The virus is classified into two separate genetic lineages:
clade I, which consists of subclades Ia and Ib, and clade II, encompassing subclades IIa and IIb. Clade IIb became
the most common type occurring worldwide from 2022 to 2023. The significant increase in mpox cases in the
Democratic Republic of Congo (DRC) and various other countries has caused concern, particularly regarding
clades Ia and Ib. Despite mpox being a non-fatal disease, it remains a public health issue that must be addressed
immediately. Transmission can occur through contact with contaminated materials, infected animals, or direct
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physical contact with infected individuals. Maternal infection can result in vertical transmission to the fetus or
infant, either during pregnancy or at delivery. Clinical signs consist of skin or mucosal lesions lasting two to
four weeks, often accompanied by fever, headache, myalgia, back discomfort, fatigue, and lymphadenopathy
[1]. Preventive strategies encompass vaccination with the JYNNEOS vaccine, specifically advised for persons
at heightened risk of exposure. Individuals having close contact with confirmed mpox cases should receive the
vaccine early, preferably within four days of exposure, to avert infection; nevertheless, vaccination administered
up to fourteen days post-exposure may still reduce illness severity [2].

Vaccination has an important role in controlling the spread of monkeypox, because lately it has happened around
the world. Since May 2022, there have been more than 64,290 confirmed cases. Using JYNNESOS effectively
is a good way to stop disease from spreading and protect susceptible groups. Its effectiveness varies based on
vaccination timing and population characteristics. For example, pre-exposure vaccination with JYNNEOS shows
a vaccine effectiveness (VE) of approximately 58.9% and is followed by an increase to 61.0% with two doses [3].
Whereas, a single dose indicates a VE of 78% for a single dose, with potential increases to 83.02% [4]. Furthermore,
a case study reports VE of 85.9% for someone receiving the full two-dose regimen [5].

Many studies have been conducted in recent years with a particular prominence on the modeling of the
transmission of mpox, occupying a variety of mathematical methods. Numerous studies in the current literature
have focused on examining the transmission dynamics of mpox through human-to-human interaction and animal
reservoirs [6, 7, 8, 9, 10, 11]. However, the most recent research has primarily focused on fractional order models
[12, 13, 14, 15]. A mathematical model for mpox vaccination was designed by the authors in [6]. The research
in [8] developed an optimum control model that described human-to-human transmission of the monkeypox virus
and assessed the efficacy of vaccination and public education as intervention options. Their study indicates that
immunization is the most effective way and that both vaccination and public education awareness can minimize
exposure and fatality rates linked to mpox. In [11], the authors developed a mathematical model for mpox that
included a public awareness campaign. Their results suggest that the disease control parameter (basic reproduction
number) will be decreased by the awareness campaign.

In addition, the model was formulated using the concept of fractional calculus, which allows the model to capture
memory effects. Compared to conventional integer-order formulations, which only describe the current state of the
system, fractional-order models explicitly account for the influence of past states on the present dynamics. This
modeling framework has received increasing attention in recent epidemiological studies, particularly for infectious
diseases exhibiting nonlocal temporal behavior that cannot be adequately represented by classical integer-order
models [16, 17, 18].

The memory effect is particularly relevant in the transmission dynamics of mpox, as the disease is influenced
by delayed immune responses, prolonged incubation and infectious periods, cumulative exposure to infected
individuals, and repeated contact with animal reservoirs. These biological mechanisms naturally introduce
hereditary effects, where the current infection dynamics depend not only on present conditions but also on the
accumulated history of transmission and exposure. Recent studies have shown that incorporating such memory
effects through fractional-order models improves the descriptive and predictive performance of epidemic models,
especially for emerging and re-emerging zoonotic diseases [17, 19].

The use of fractional derivatives therefore provides a more realistic framework for modeling mpox transmission,
allowing for a smoother transition between short-term outbreak behavior and long-term endemic dynamics. In this
context, fractional calculus enables the model to bridge the gap between instantaneous transmission assumptions
and the observed persistence of infection in real-world outbreaks. The use of fractional derivatives also allows for
more comprehensive modeling of this memory effect, resulting in more accurate and realistic interpretations [16].

The fractional order derivative used in this study is the Caputo type. The Caputo operator was chosen because
it allows us to use the initial values commonly used in epidemiological models (the initial number of individuals)
without having to consider the physically difficult fractional derivative. This choice provides a physically
meaningful interpretation of memory effects, where the current infection dynamics depend on the cumulative
influence of past transmission, immunity development, and implemented control measures. Furthermore, its
formulation simplifies the numerical implementation of fractional-order models using schemes such as fractional
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Figure 1. Diagram Transmission of Monkeypox

Euler or predictor–corrector methods. A comprehensive discussion of the Caputo derivative and its advantages can
be found in Diethelm [20].

To further enhance the applicability of the proposed framework, an optimal control problem is incorporated,
focusing on two intervention strategies: human vaccination to reduce disease transmission and rodent eradication
to mitigate the impact of animal reservoirs. By combining fractional-order dynamics with optimal control theory,
the proposed model extends existing mpox formulations and provides deeper insight into how memory effects
influence both disease progression and the timing and effectiveness of control interventions.

The combination of optimal control solutions and fractional-order dynamics creates a high level of complexity,
making numerical analysis of this model interesting. Researchers such as [21, 22, 23, 24] have studied optimal
control models. Meanwhile, [25, 26, 27, 28] have devoted fractional-order models. Furthermore, the combination
of optimal control and fractional-order models can be found in studies by [29, 30, 31, 32, 33]. To address this
challenge, we use a hybrid numerical technique that combines the Euler algorithm with a forward-backward
iterative method. This method effectively addresses the optimal control problem and also ensures accurate solutions
to the fractional differential equations governing the system.

2. Research Methods

The monkeypox transmission model in this section is formulated using the SIR–SI framework with normalized
transmission parameters that increase the reliability of the model. The transmission rate in human is caused by two
factors, infected human and rodent populations, while the transmission rate in rodents is only caused by infected
rodent populations.

2.1. Fractional Model Formulation

Therefore, the transmission dynamic of the monkeypox transmission model is illustrated in the diagram presented
in Figure 1. This diagram serves as a conceptual representation of the interactions and transitions among the various
compartments in the system.

Based on the transmission diagram in Figure 1, the system of fractional differential equations in the Caputo
derivative for the mathematical model of monkeypox spread is constructed as follows:
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Table 1. Description of variables used in the model.

Compartment Description
Sh(t) The number of human population that susceptible to the monkeypox
Ih(t) The number of human population that infected to the monkeypox
Rh(t) The number of human population that recovered to the monkeypox
Sr(t) The number of rodent population that susceptible to the monkeypox
Ir(t) The number of rodent population that infected to the monkeypox

Table 2. Description of model parameters.

Parameter Description
Λαh Human recruitment rate
Λαr Rodent recruitment rate
βα1 Rate of human-to-human transmission
βα2 Rate of rodent-to-human transmission
βαr Rate of rodent-to-rodent transmission
µαh Natural death rate of humans
δαh Monkeypox mortality rate of human
µαr Natural death rate of rodents
δαr Monkeypox mortality rate of rodent
ψαh Recovery rate of infected humans

c
0D

α
t Sh = Λαh − (βα1 Ih + βα2 Ir)Sh

Nh
− µαhSh,

c
0D

α
t Ih =

(βα1 Ih + βα2 Ir)Sh
Nh

− (µαh + ψαh + δαh )Ih,

c
0D

α
t Rh = ψαh Ih − µhRh,

c
0D

α
t Sr = Λαr − βαr IrSr

Nr
− µαr Sr,

c
0D

α
t Ir =

βαr IrSr
Nr

− (µαr + δαr )Ir.

(1)

with c
0D

α
t representing the Caputo fractional derivative with α ∈ (0, 1], which accounts for memory effects in

disease dynamics.
The variables Sh, Ih, Rh, Sr, and Ir are non-negative, hence guaranteeing biological viability. The total

human population is represented by Nh = Sh + Ih +Rh ≥ 0, while the total rodent population is denoted by
Nr = Sr + Ir ≥ 0. Furthermore, all parameters defined within the model are assumed to be positive, namely Λαh ,
Λαr , βα1 , βα2 , βαr , µαh , µαr , δαh , δαr , and ψαh > 0. The fractional order α ensures dimensional coherence. Specifically,
the recruitment rates Λαh , Λαr have the dimension of population per unit time, while the remaining parameters
are characterized by the dimension of inverse time. The descriptions of variables and parameters are provided in
Table 1 and Table 2, respectively.

2.2. Euler’s Method

Euler’s method is one of the basic numerical approaches to approximating solutions to fractional differential
equations. Referring to [30], the following steps explain its implementation in the context of this research.

Consider the initial value problem (IVP):

C
0 D

α
t y(t) = f(t, y(t)), 0 < α ≤ 1, (2)
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with the initial condition
y(0) = y0, 0 < t ≤ tf ,

where f(t, y(t)) is a predefined function that satisfies the criteria of continuity and smoothness [34].
Furthermore, the function y(t), called the exact solution, satisfies the initial value problem in equation (2). This

numerical approach aims to estimate y(t) at specific points in the relevant interval. The interval [0, tf ] is partitioned
into n equal segments [tj , tj+1], each of length h =

tf
n , where the nodes are defined as tj = jh for j = 0, 1, . . . , n.

To obtain a numerical approximation, we first reformulate the fractional differential equation into a
corresponding Volterra integral equation [35] by applying the fractional integral operator C

0 D
−α
t to both sides

of (2):
y(t) = y0 +

C
0 D

−α
t f(t, y(t)). (3)

According to [35], C0 D
−α
t f(t, y(t)) is subsequently approximated using a left fractional rectangle formula as

follows:

y(tn+1) = y0 +
hα

Γ(α+ 1)

n∑
j=0

bj,n+1 f(tj , yj), (4)

where the coefficients bj,n+1 are defined as

bj,n+1 = (n+ 1− j)α − (n− j)α. (5)

3. Results and Discussion

3.1. Basic Reproduction Number (R0)

The basic reproduction number, orR0, for the proposed model is determined in this section. The basic reproduction
number is the expected number of secondary infections produced by a single infectious individual in a completely
susceptible population. To calculate R0, we initially ascertain the disease-free equilibrium (DFE) of the system,
representing the condition in which no illness remains in the population.

By setting all time derivatives to zero and assuming the infected compartments are null, we obtain the DFE as

E0 = (Sh, Ih, Rh, Sr, Ir) =

(
Λh
µh
, 0, 0,

Λr
µr
, 0

)
.

Next, we apply the next-generation matrix method described in [36]. The infection terms are collected into the
matrix F , representing the rate of appearance of new infections, while the transition terms (recovery, death, and
other removals) are grouped into the matrix Z. The basic reproduction number R0 is defined as the spectral radius
(dominant eigenvalue) of the matrix FZ−1.

After the algebra calculation, we will have the R0 given by:

R0 = max{R0h, R0r} = max

{
β1

µh + ψh + δh
,

βr
µr + δr

}
.

3.2. Fractional Parameter Estimation

The fractional-order model’s parameters are estimated in this section using Equation (1). We first collect data from
the CDC website [37], which tracks the 7-day moving average of monkeypox cases in the United States from
June 13, 2022, to September 16, 2022. The least-squares fitting method [38] is utilized to estimate the parameters
in the mpox model. To estimate the parameters, we employed the lsqcurvefit function from MATLAB, which
performs nonlinear least squares optimization. At each iteration, we numerically integrate the fractional-order
system and minimize the difference between the simulated infected cases and the original data. The lower and
upper bounds used are biologically reasonable and are set for each parameter. Certain parameters are estimated
using geographical data, specifically µαh , µαr , Λαh , and Λαr . The natural death rate is calculated as the reciprocal of
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Figure 2. Comparison of Fractional and Integer Order Mpox Models

life expectancy. The average life expectancy of humans and rodents is 79 years and 5 years, respectively. Thus, we
obtain µαh = 1

79×365 and µαr = 1
5×365 per day. Moreover, we estimate Λαh = 100000

79×365 ,Λ
α
r = 50000

5×365 individuals
per day.

The remaining parameters are determined by minimizing the following objective function:

min
βα
1 ,β

α
2 ,β

α
r ,ψ

α
h ,δ

α
h ,δ

α
r

tf∑
z=0

(
Ihz

− Idata
hz

)2
,

where tf denotes the final time of the infected human data Idata
hz

(z = 0, 1, 2, . . . , tf ), and Ihz
represents the

numerical solution of the infected human compartment. Next, we set the initial compartments as follows:
(Sh0 , Ih0 , Rh0 , Sr0 , Ir0) = (100000, 5.8, 0, 50000, 20).

Based on the parameter estimation results, the mean absolute percentage error (MAPE) between the observed
data and the fractional-order model solution is 16.95%, indicating a satisfactory fit to the empirical data. In contrast,
the corresponding integer-order model yields a substantially larger error of 86.53%, highlighting the superior
performance of the fractional-order formulation in capturing the observed epidemic dynamics.

Furthermore, the estimated basic reproduction number is R0 = 1.3593 > 1, which indicates that the disease
persists in an endemic state within the population. The detailed estimation results and the corresponding parameter
values are presented in Figure 2 and Table 3.

3.3. Sensitivity Analysis

To determine which attributes have the biggest effects on the fundamental reproduction number R0, we conduct
a sensitivity analysis in this section. Employing the techniques outlined in [39], we utilize the sensitivity index to
assess the impact of each parameter.
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Table 3. Estimated values of model parameters

Parameters Value (Days) Source

Λαh

(
100000

79× 365

)α
Estimated

βα1 0.1872α Fitted

βα2 0.1060α Fitted

µαh

(
1

79× 365

)α
Estimated

δαh 0.7551α Fitted

Λαr

(
50000

5× 365

)α
Estimated

βαr 0.4171α Fitted

µαr

(
1

5× 365

)α
Estimated

δαr 0.3063α Fitted

ψαh 0.5257α Fitted

The expression for R0 is given by:

R0 = max{R0h, R0r} = max

{
βα1

µαh + ψαh + δαh
,

βαr
µαr + δαr

}
.

The sensitivity index notation of R0 with respect to parameter m is defined as

Υ(R0)
m =

∂R0

∂m
× m

R0
.

This index measures the relative change in R0 caused by a relatively small change in the parameter m. For a
positive sensitivity index, an increase in the value ofm results in an increase inR0, while a negative result indicates
the opposite. Using the parameter values listed in Table 3, we calculated the sensitivity index for R0 and presented
the results in Table 4.

Table 4. Parameter Sensitivity Index

Parameters Sensitivity Index (R0h) Sensitivity Index (R0r)
βα1 1.0000 −
µαh −0.0000449 −
ψαh −0.4148 −
δαh −0.5851 −
βαr − 1.0000
µαr − −0.002481
δαr − −0.99752
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Figure 3. Impact of βα1 on the Infected Human Population

Based on the sensitivity calculation results, it was found that βα1 , µαh , ψαh , δαh , βαr , µαr , and δαr are the parameters
that most influence changes in R0, as indicated by their sensitivity values. In addition, to evaluate the impacts of
parameter value changes, we conducted simulations by selecting a number of βα1 values to analyze their effects on
the infected human population. The parameter βα1 represents the rate of transmission in the human population due
to human-to-human interactions. Furthermore, we can directly observe the impact of varying βα1 on the dynamics
of the mpox model, including the peak infection rate and the total number of infected individuals over a certain
time interval.

Figure 3 shows that the dynamics of the infected human population are directly influenced by the parameter
βα1 . Changing the value of this parameter also has a big impact on the affected human population. Increasing
the value of β1 will increase the human-to-human transmission rate, resulting in an increase in the number of
infections and a longer duration of the outbreak. Conversely, decreasing the value of βα1 through interventions
such as improving personal hygiene, public health education, or vaccination programs can rapidly reduce the basic
reproduction number R0, ultimately reducing the infected population.

3.4. Fractional Optimal Control Problem

In this section, we add control variables to the model in Equation (1). The control variables u1 and u2 represent the
human immunization program and the plan to eradicate rats, respectively. The main objective of rodent eradication
is to reduce the population of rodents that serve as disease vectors through the application of insecticides. In
addition, to avoid human contact with infected vectors, the preventative measures can involve the management
of the environment, the usage of protective equipment, and the establishment of public education and awareness
programs. The adjusted fractional order model, which incorporates these control variables, is expressed as follows:
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C
0 D

α

t Sh = Λαh − (1− u1)
(βα1 Ih + βα2 Ir)Sh

Nh
− µαhSh, (6)

C
0 D

α

t Ih = (1− u1)
(βα1 Ih + βα2 Ir)Sh

Nh
− (µαh + δαh )Ih, (7)

C
0 D

α

t Rh = ψαh Ih − µαhRh, (8)

C
0 D

α

t Sr = Λαr − βαr SrIr
Nr

− µαr Sr − γαu2Sr, (9)

C
0 D

α

t Ir =
βαr SrIr
Nr

− (µαr + δαr )Ir − γαu2Ir. (10)

The appropriate fractional optimal control problem objectives are to minimize the number of infected humans
and rodents while considering the implementation expenses of control measures. The objective function is defined
as

min J(Ih, Ir, u1, u2) =

∫ tf

0

(
A1Ih +A2Ir +

1

2
A3u

2
1 +

1

2
A4u

2
2

)
dt,

where A1 and A2 are weights constants for infected populations, and A3 and A4 represent the cost coefficients
associated with the control variables u1 and u2, respectively. All parameters satisfy 0 < Ai <∞ for i = 1, 2, 3, 4.

To solve this fractional optimal control problem, we apply Pontryagin’s Minimum Principle (PMP) for fractional
systems [30, 40]. The Hamiltonian is given by:

H = A1Ih +A2Ir +
1

2
A3u

2
1 +

1

2
A4u

2
2

+ λ1

(
Λαh − (1− u1)

(βα1 Ih + βα2 Ir)Sh
Nh

− µαhSh

)
+ λ2

(
(1− u1)

(βα1 Ih + βα2 Ir)Sh
Nh

− (µαh + ψαh + δαh )Ih

)
+ λ3 (ψ

α
h Ih − µαhRh)

+ λ4

(
Λαr − βαr SrIr

Nr
− µαr Sr − γαu2Sr

)
+ λ5

(
βαr SrIr
Nr

− (µαr + δαr )Ir − γαu2Ir

)
.

The optimality conditions from PMP ensure that the optimal controls are given by:

u∗1 =

((
0, (λ2 − λ1)

(βα1 Ih + βα2 Ir)Sh
A3

)
, 1

)
, u∗2 =

((
0,

γα(λ4Sr + λ5Ir)

A4

)
, 1

)
.

The adjoint system asserts that the co-state variables λi(t), i = 1, 2, 3, 4, 5, satisfy:
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C
t D

α
tf
λ1 = λ1µ

α
h + (1− u1)(λ1 − λ2)

(
(βα1 Ih + βα2 Ir)

Nh
+

(βα1 Ih + βα2 Ir)Sh
N2
h

)
,

C
t D

α
tf
λ2 = −A1 − λ3ψ

α
h + λ2(µ

α
h + ψαh + δαh )

− (1− u1)(λ1 − λ2)

(
βα1 Sh
Nh

− (βα1 Ih + βα2 Ir)Sh
N2
h

)
,

C
t D

α
tf
λ3 = λ3µ

α
h + (λ1 − λ2)(1− u1)

(βα1 Ih + βα2 Ir)Sh
N2
h

,

C
t D

α
tf
λ4 = (λ4 − λ5)

(
βαr Ir
Nr

− βαr SrIr
N2
r

)
+ λ4(µ

α
r + γαu2),

C
t D

α
tf
λ5 = −A2 + (λ1 − λ2)(1− u1)

(
βα2 Sh
Nh

− (βα1 Ih + βα2 Ir)Sh
N2
h

)
+ (λ4 − λ5)

(
βαr Sr
Nr

− βαr SrIr
N2
r

)
+ λ5(µ

α
r + δαr + γαu2).

The operator of this fractional system of right Riemann–Liouville derivatives is symbolized by RLtD
α
tf

.
Moreover, the subsequent transversality conditions are satisfied:

RL
t Dα−1

tf
λi

∣∣∣
tf

= 0 ⇔ RL
t I1−αtf

λi

∣∣∣
tf

= λi(tf ) = 0, i = 1, 2, 3, 45.

Here, RLt I1−αtf
denotes the right Riemann–Liouville fractional integral of order 1− α.

3.5. Forward–Backward Method

In this section, we introduce the method that will be used to solve the optimal control problem, namely the iterative
numerical forward–backward algorithm. Broadly speaking, there are two stages in this process: forward solving of
the state equations and backward calculation of the adjoint (co-state) equations. The control solution is gradually
improved through an iterative process to achieve the minimum result on the specified performance index. Based on
the study in [41], the forward–backward algorithm procedure is presented as follows:

1. Initialization: Determine the initial value of the state variable and the final condition of the adjoint variable.
The starting point of the iteration process begins with making an initial estimate for the control function u(t).
For the fractional-order system, the initial conditions are defined in the classical sense, which is admissible
due to the use of the Caputo fractional derivative.

2. Forward Integration: Solve the state variables from the initial condition t0 to the final time tf using the
control function. This step produces the state variable profile x(t) during that time interval. The fractional-
order state equations are numerically integrated using a predictor–corrector scheme, which is suitable for
Caputo-type derivatives and explicitly accounts for the memory effect inherent in the system dynamics.

3. Backward Integration: Solve the adjoint equation in a backward direction from tf to t0 using the obtained
state and control profiles. This process yields the value of the adjoint variable λ(t) at each point in time
within the interval. The adjoint equations are discretized consistently with the fractional-order formulation
and solved backward in time to preserve numerical stability and accuracy.

4. Control Update: Using the state variable x(t) and adjoint variable λ(t) obtained from steps 2 and 3 to
update the control variable u(t). The updated control is obtained from the characterization of the optimality
condition and is projected onto the admissible control set to ensure feasibility.

5. Convergence Check: Evaluate the differences for the control, state, and adjoint variables at the current
and previous steps. If these differences are within a specified tolerance limit, the iterative process is
terminated. Otherwise, the algorithm returns to the forward integration phase, and the process is repeated
until convergence is achieved. In this study, convergence is achieved when the relative errors of the control
variables between successive iterations fall below a predefined tolerance.
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3.6. Numerical Simulation

The following section presents the results of numerical simulations for fractional optimal control problems. The
fractional differential equation system will be approximated using a combination of the forward-backward sweep
algorithm and the Euler method. This method is efficient and powerful for solving fractional optimal control
systems.

The parameter values used in the numerical simulation, as well as the values generated from the parameter
estimation process, are summarized in Table 3. The initial values for each compartment are given as follows:

Sh(0) = 100000, Ih(0) = 100, Rh(0) = 0, Sr(0) = 50000, Ir(0) = 100.

This simulation assumed a convergence tolerance of 10−3. We then analyzed three different control strategies:

• Strategy 1: Control u1, which stands for the human vaccination.
• Strategy 2: Control u2, which stands for the rodent eradication.
• Strategy 3: Simultaneously controlling u1 and u2, which represent the combined strategy of human

vaccination and rodent eradication.

All simulations were performed in intervals of tf = 50 days, considering three fractional orders α = 0.869, 0.9,
and 1. This setup allows for investigation of how different fractional orders influence the dynamical behavior of the
system under each control strategy.

In Figures 4–6 present multi-scale visualizations of infected human and rodent populations under various
fractional orders. For each value of α, the original-scale plots illustrate the overall epidemic dynamics, while
the zoomed-in subfigures are included to reveal subtle differences between control strategies that are not readily
apparent at the usual scale.

For the infected human population, the original scale trajectories corresponding to both the control strategy u1
alone and the strategies u1 and u2 simultaneously appear to nearly overlap during the early stages of the outbreak
for all fractional orders considered. As a result, their relative effectiveness is difficult to distinguish from the main
plots alone. However, the zoomed-in views provide a clearer picture of how these control strategies differ over time.
In particular, for the integer-order case α = 1, noticeable differences between the two strategies begin to emerge
around t ≈ 3. Beyond this point, the combined control strategy u1 and u2 consistently yields a slightly lower
infected human population compared to the single control strategy u1. Although the magnitude of this difference is
relatively small, it persists throughout the simulation and cumulatively contributes to distinct values of the objective
functional.

For fractional orders α = 0.869 and α = 0.9, the divergence between the infected human trajectories develops
more gradually and remains less visually evident at the original scale. Nevertheless, the zoomed-in figures confirm
that the combined strategy maintains a marginal but consistent advantage over the single control strategy, in
agreement with the numerical outcomes.

Regarding the infected rodent population, the effects of the control strategies become more pronounced toward
the end of the simulation period. While the original-scale plots display similar long-term trends across all fractional
orders, the zoomed-in views highlight persistent differences in rodent infection levels. This pattern reflects the
cumulative and delayed response of the reservoir host population to the implemented control measures.

Overall, although the qualitative ranking of control strategies remains unchanged for all values of α, the timing
at which differences between strategies become apparent is not identical. In particular, for the integer-order
case α = 1, the separation between trajectories appears earlier, around t ≈ 3. This observation suggests that the
fractional order influences not only the magnitude of the control impact but also the temporal manifestation of its
effects during the course of the epidemic.

Furthermore, Figures 7–9 illustrate the fractional optimal control profiles u1(t) and u2(t) obtained using the
Euler method for different values of the fractional order α. In general, both control variables remain close to their
upper bounds for most of the simulation period, indicating that the optimal strategy favors strong intervention
during the early and middle stages of the time horizon.

The value of α significantly influences the smoothness of the control profiles. For α = 1, corresponding to
the classical integer-order case, sharper variations in the control functions are observed. In contrast, when α < 1
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(b) Zoomed-in infected human view around t = 5
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(d) Zoomed-in infected rodent view around final time

Figure 4. Comparison of infected populations under fractional order α = 0.869. The top panels show the infected human
population, while the bottom panel presents the infected rodent population at different scales under the same fractional
order.

(α = 0.9 and α = 0.869), the control u1(t) decreases more gradually, reflecting the memory effect inherent in
fractional-order systems. Toward the end of the simulation period, both controls decline to zero, consistent with
the imposed terminal conditions of the optimal control problem.

3.7. Comparison of Objective Functional Values

Table 5 summarizes the cumulative objective functional values J for the three control scenarios across the
considered fractional orders. As further illustrated in Figure 10, the combined control strategy (u1, u2) consistently
yields the lowest value of J for all values of α, thereby identifying it as the most cost-effective intervention among
the strategies examined.

In addition, Figure 10 clearly shows that the objective functional value J increases with the fractional order α
for all control scenarios. This trend suggests that lower fractional orders enhance the overall effectiveness of the
control strategies, likely due to their improved ability to capture memory effects inherent in the disease transmission
dynamics.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



12

0 10 20 30 40 50

Time

0

100

200

300

400

500

600

700

800

900

P
o
p
u
la

ti
o
n
 o

f 
In

fe
c
te

d
 H

u
m

a
n

Fractional Optimal Control with Euler Method ( =0.9)

Without Control

Optimal u
1

Optimal u
2

Optimal u
1
 and u

2

(a) Infected human (original scale)

0 1 2 3 4 5 6 7

Time

0

20

40

60

80

100

P
o
p
u
la

ti
o
n
 o

f 
In

fe
c
te

d
 H

u
m

a
n

Fractional Optimal Control with Euler Method ( =0.9)

Without Control

Optimal u
1

Optimal u
2

Optimal u
1
 and u

2
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(d) Zoomed-in infected rodent view around final time

Figure 5. Comparison of infected populations under fractional order α = 0.9. The top panels show the infected human
population, while the bottom panel presents the infected rodent population at different scales under the same fractional
order.

Table 5. Comparison of cumulative functional values for different control scenarios.

Scenario J for α = 0.869 J for α = 0.9 J for α = 1

Single u1 2.2267× 106 2.1844× 106 1.9210× 106

Single u2 5.8918× 105 5.6549× 105 1.3809× 106

Combination u1, u2 5.8872× 105 5.6503× 105 1.3796× 106

3.8. Cost-Effectiveness Analysis Using ICER

In this section, an assessment and comparison of the effectiveness of the previously implemented control strategies
is carried out. The evaluation is conducted using the Incremental Cost-Effectiveness Ratio (ICER) as the primary
indicator. ICER is defined as the ratio of the difference in implementation costs between two strategies denoted as
strategies i and j to the difference in the total number of infections averted by those strategies [42]. Mathematically,

Stat., Optim. Inf. Comput. Vol. x, Month 202x



13

0 10 20 30 40 50

Time

0

200

400

600

800

1000

1200

P
o
p
u
la

ti
o
n
 o

f 
In

fe
c
te

d
 H

u
m

a
n

Fractional Optimal Control with Euler Method ( =1)

Without Control

Optimal u
1

Optimal u
2

Optimal u
1
 and u

2

(a) Infected human (original scale)

0 1 2 3 4 5 6

Time

0

20

40

60

80

100

120

140

P
o
p
u
la

ti
o
n
 o

f 
In

fe
c
te

d
 H

u
m

a
n

Fractional Optimal Control with Euler Method ( =1)

Without Control

Optimal u
1

Optimal u
2

Optimal u
1
 and u

2

(b) Zoomed-in infected human view around t = 5

0 10 20 30 40 50

Time

0

1000

2000

3000

4000

5000

6000

P
o
p
u
la

ti
o
n
 o

f 
In

fe
c
te

d
 R

o
d
e
n
t

Fractional Optimal Control with Euler Method ( =1)

Without Control

Optimal u
1

Optimal u
2

Optimal u
1
 and u

2

(c) Infected rodent (original scale)

49.985 49.99 49.995 50

Time

59

60

61

62

63

64

65

P
o
p
u
la

ti
o
n
 o

f 
In

fe
c
te

d
 R

o
d
e
n
t

Fractional Optimal Control with Euler Method ( =1)

Without Control

Optimal u
1

Optimal u
2

Optimal u
1
 and u

2

(d) Zoomed-in infected rodent view around final time

Figure 6. Comparison of infected populations under fractional order α = 1. The top panels show the infected human
population, while the bottom panel presents the infected rodent population at different scales under the same fractional
order.
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Figure 7. Fractional Optimal Control Profiles at α = 0.869

ICER is defined as
ICERj|i =

Costj − Costi
Avertedj − Avertedi

. (11)
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Figure 8. Fractional Optimal Control Profiles at α = 0.9
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Figure 9. Fractional Optimal Control Profiles at α = 1
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Figure 10. Comparison of the objective functional values J under different control strategies for several values of the
fractional order α

The cost associated with each strategy is obtained from the cumulative objective functional value, while the
effectiveness is measured by the total number of infected cases averted relative to the no-control scenario. Prior
to computing ICER, all strategies are ranked from the least to the most effective based on the total number of
infections averted. Incremental comparisons are then performed step-by-step following standard health economic
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methodology. In this study, the ICER analysis is conducted for α = 0.869, which corresponds to the best parameter
estimation result obtained in the previous subsection.

Table 6. Comparison of ICER for each intervention strategy (α = 0.869)

Strategy Optimal Controls Total Infected Averted Total Cost ICER Remark
1 u∗1 1.1943× 104 2.2267× 106 186.44 Baseline
2 u∗2 1.6497× 106 5.8918× 105 −1.00 Dominates Strategy 1
3 u∗1, u

∗
2 1.6500× 106 5.8872× 105 −13.77 Dominates Strategy 2

The ICER values reported in Table 6 are obtained by ordering the strategies from least to most effective as
follows:

Strategy 1 < Strategy 2 < Strategy 3.

The corresponding incremental ICER calculations are given by

ICER(1) =
2.2267× 106 − 0

1.1943× 104 − 0
= 186.44,

ICER(2) =
5.8918× 105 − 2.2267× 106

1.6497× 106 − 1.1943× 104
= −1.00,

ICER(3) =
5.8872× 105 − 5.8918× 105

1.6500× 106 − 1.6497× 106
= −13.77.

The incremental comparison yields the following insights. Strategy 1 (u∗1) exhibits a high ICER value, indicating
a large cost per infection averted when compared with the no-control scenario. Strategy 2 (u∗2) produces a negative
ICER relative to Strategy 1, meaning that it is both more effective and less costly. Consequently, Strategy 2 strictly
dominates Strategy 1 and Strategy 1 can be excluded from further consideration. Similarly, Strategy 3, which
combines controls u∗1 and u∗2, yields a negative ICER compared to Strategy 2, indicating additional effectiveness at
a lower cost.

Based on these results, the combined control strategy u∗1 and u∗2 emerges as the most cost-effective intervention.
This strategy achieves the largest reduction in infections while simultaneously incurring the lowest total cost
among all considered strategies. Therefore, from a cost-effectiveness perspective, the combined intervention strictly
dominates both single-control strategies.

4. Conclusion

This study uses a fractional-order mathematical model to analyze the dynamics of mpox transmission, taking
into account human and rodent populations. By adopting the concept of fractional calculus, we consider memory
effects, which are useful for representing the long-term dynamics of mpox compared to conventional integer-order
models. This study aims to evaluate the effectiveness of various combined intervention strategies using the control
variables of human vaccination and rodent eradication.

Optimal control simulations were obtained by applying Pontryagin’s Minimum Principle, the forward-backward
iterative method, and the Eulerian numerical method to the fractional optimal control problem. Numerical
simulations show that implementing a combination of human vaccination and rodent eradication is the most
effective strategy in minimizing the objective function. Additionally, the memory effect of the fractional calculus
concept is useful in reducing the infected population and overall system costs. Sensitivity analysis was performed
to identify the parameters that most influence the basic reproduction number (R0). It was found that the rate of
human-to-human transmission has the highest influence on R0. This indicates that small changes in the value of
the parameter β1 significantly affect the value of R0.

Overall, this research helps improve understanding of mpox dynamics and the best intervention strategies. In
addition, optimal fractional control makes it a powerful tool for providing information to healthcare providers
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and governments in maximizing resource allocation efficiency and developing prevention strategies to manage
mpox and similar zoonotic diseases. Despite the insights provided by this study, several limitations should be
acknowledged. The model relies on reported case data, which may be subject to underreporting and reporting
delays. In addition, simplifying assumptions were adopted in the transmission structure and control implementation
to maintain analytical and computational tractability. Moreover, the numerical solutions of the fractional-order
optimal control problem depend on discretization schemes, which may introduce approximation errors. These
limitations suggest that future studies could incorporate more detailed data, alternative numerical schemes, and
additional biological mechanisms to further refine the model and enhance its predictive capability.
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