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Abstract In IoT constrained environments, traditional digital signatures struggle to acheive an effective balance between
security, compactness, and computational efficiency. To overcome these constraints, we propose a lightweight elliptic-curve
signature scheme based on a dual-component private key (x,Q1) and two auxiliary commitments, inspired by the Schnorr
structure. The design introduces structural ambiguity in the secret key, increasing resistance to key-recovery attacks while
maintaining a lightweight and fast signature process. Experimental evaluation on NIST-standardized elliptic curves shows
competitive performance: key generation ranges from 11.6 ms to 232.1 ms, signing from 17.9 ms to 245.4 ms, and verification
from 22.5 ms to 258.0 ms, with energy consumption below 2.8 µJ. The results confirm that the proposed scheme offers
an effective a balanced compromise between compactness, runtime efficiency, energy usage, memory requirements, and
practical security guarantees, making it suitable for distributed architectures and resource-constrained IoT devices.
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1. Introduction

In today’s digital era, given the growing dependence of modern life on the Internet and digital communications, the
need for secure methods for authentication and data protection has become essential [1]. This need is particularly
important with the expansion of the Internet of Things (IoT), electronic services, and the increase in cyber threats
and fraud techniques [2, 3]. Beyond security concerns, large-scale IoT deployments must also ensure efficient data
collection and routing in constrained networks, where poor data-flow management can increase latency, energy
consumption, and destabilize network operation; this motivates the design of optimization mechanisms specifically
tailored to constrained IoT environments [4]. Moreover, IoT-enabled digital services increasingly support integrity-
critical applications that require robust authentication and verifiable traceability, such as blockchain-based e-voting
systems, as well as digital signature mechanisms for securing electronic transactions [5].

Among the most important tools for securing electronic transactions we find digital signatures which ensure the
integrity authentication and non-repudiation of digital data [6] in many areas especially for secure authentication
between IoT devices and to ensure that the data has not been modified and that the sender is an authorized entity [2].

These signatures rely on several cryptographic aspects in particular Elliptic Curve Cryptography (ECC) which
is considered a major advance to improve the efficiency and security of digital signatures compared to classical
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systems such as Schnorr [7] ElGamal [8] and RSA [9] based on cyclic groups of numbers the ECC environment
provides the same security level as cyclic-group systems but with smaller keys saving memory and computation.

Common ECC schemes include ECDSA EdDSA and Bulletproofs [10, 11, 12] which are also widely used in
security applications especially in cryptocurrencies like Bitcoin Ethereum Monero Solana and Algorand [13, 14,
15, 16, 17] because of their speed and efficiency these systems rely on standardized signatures such as ECDSA
and EdDSA using curves like curve25519 [18] and secp256k1 [19], Moreover, recent lightweight cryptography
for IoT research proposes schemes and system designs explicitly tailored to constrained devices, aiming to reduce
computation and communication costs while preserving practical security; representative examples include ESEM,
LRSHA/HASES, and LiteQSign [20, 21, 22].

However even if these schemes are efficient they still present several technical challenges that affect performance
and security one challenge comes from side-channel attacks [23] where private keys can be compromised by
analyzing system behavior and generated signatures [24] this requires nonces to be generated following strict rules
to avoid repetition and some operations need heavy computation which can slow the system especially on devices
with limited resources such as mobile phones or IoT nodes especially with the rapid development of quantum
computing which requires a deep re-evaluation of classical cryptographic primitives because Shor’s algorithm [25]
breaks the security of systems based on the elliptic curve discrete logarithm problem (ECDLP) since a sufficiently
large quantum computer could solve ECDLP in polynomial time as shown by recent analyses which indicate
that a 256-bit curve such as Secp256k1 used in Bitcoin could become vulnerable with a few thousand stabilized
qubits [26] this threat has encouraged research into new quantum-resistant primitives.

Among alternative approaches schemes based on lattice problems such as LWE (Learning With Errors) [27]
and SIS (Short Integer Solution) [28] offer strong security even against known quantum algorithms [29] however
these constructions suffer from important limitations large key and signature sizes high computational cost and
high memory usage which make them less suitable for resource-constrained environments such as IoT or high-
throughput blockchains in contrast elliptic curve-based schemes remain lightweight fast and simple to implement
but their resistance is weakened by Shor therefore a compromise is needed keeping the compactness and speed of
elliptic systems while avoiding vulnerabilities to quantum computers.

In this context the Hidden Shift Problem (HSP) [30, 31] is a promising approach unlike ECDLP the HSP in non-
abelian groups has no known quantum algorithm running in polynomial time the best attacks rely on subexponential
algorithms such as Kuperberg’s [32] later improved by Regev [33] These algorithms have complexity of order
2O(
√

logN), which is much more costly than Shor’s polynomial attacks, providing a notable security advantage.
Moreover, several works link HSP to hard lattice problems, such as the Shortest Vector Problem (SVP), considered
quantum-resistant [34]. This relation strengthens HSP as a robust cryptographic foundation.

In this framework, we propose a classical digital signature scheme inspired by the Schnorr structure [7]. Our
construction is conceptually based on two ideas from known hard problems: the Hidden Shift Problem (HSP)
and the Hidden Number Problem (HNP) [35]. Although the problem we introduce does not directly match the
classical formulations of HSP or HNP, it is inspired by them to create structural ambiguity around the secret key,
by combining a secret scalar with an additional elliptic point, making key recovery more complex. We emphasize
that the resulting scheme is classical and does not offer post-quantum security..

The main idea is to replace the classical discrete logarithm problem (ECDLP) with an additive decomposition
variant in an elliptic group. This approach keeps the lightness of Schnorr-like schemes while increasing
cryptanalytic difficulty.

The underlying mathematical problem can be formulated as follows: given a generator G of an elliptic subgroup
and a pair (G, xG+Q), recover the secret value x and the associated point Q, knowing that Q is a random
independent point [36]. This formulation reduces secret recovery to a sub-determined system with multiple
solutions, for which the correct solution cannot be uniquely determined.

In our construction, the private key consists of a secret integer x and an additional elliptic point Q, denoted
(x,Q). This dual component increases cryptanalytic difficulty: simultaneously extracting a secret scalar and a
masked point is considered significantly more resistant than a simple ECDLP. This design aims to strengthen
resistance against brute-force attacks while keeping a lightweight structure similar to ECDSA and Schnorr.
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The proposed scheme aims to reinforce existing Schnorr or ECDSA-like signature schemes using the already
defined problem on elliptic curve groups. This design aims to maintain the same security level offered by Schnorr
and ECDSA, while reducing the curve size needed to guarantee this level of protection. The addition of an extra
structural component to the secret key — combining a secret scalar with an independent elliptic point — makes
direct key recovery rely on a sub-determined system, increasing analysis difficulty and limiting the effectiveness of
attacks based on correlations among multiple signatures. Thus, extracting the public key via brute force or learning
techniques from signatures becomes much harder compared to the standard Schnorr structure.

Section 2 presents an overview of related work. Section 3 describes the framework of our proposed signature
scheme. Section 4 is devoted to security analysis with proof, and Section 5 illustrates simulations and results.
Finally, Section 6 concludes the paper and discusses future perspectives.

2. Related works

Classical signature schemes are the foundation of modern digital authentication systems. Most of them rely on
old and well-studied mathematical assumptions, mainly the discrete logarithm problem in cyclic groups or on
elliptic-curve groups, and also the integer factorization problem. The most representative schemes include RSA,
DSA, Schnorr, ECDSA, and EdDSA. Among these, the ECDSA and Schnorr signature schemes have a special
historical importance, as they are based on the discrete logarithm problem in a large cyclic group.For example,
in the Schnorr scheme, the signer chooses a random value k, computes the commitment R = gk, then generates
the challenge e = H(R∥m), and finally computes the response s = k − xe mod q, where x is the private key.
Verification checks whether gsye correctly reconstructs the public commitment. The strength of this protocol comes
from its simplicity, elegance, and strong security guarantees in the random-oracle model.

Over time, elliptic curves led to more efficient variants. ECDSA, used for example in Bitcoin and many digital
infrastructures, replaces modular exponentiation with elliptic-curve point multiplication. For a message m, the
signer generates a random k, computes R = kG, then r = x(R), and finally s = k−1(H(m) + dr) mod n, forming
the signature (r, s). Verification uses affine recombinations u1G+ u2Q and checks that the resulting x-coordinate
matches r. ECDSA is extremely compact and efficient, but its security strongly depends on the uniqueness of the
nonce: any reuse of k immediately compromises the private key. It is also vulnerable to Shor’s quantum algorithm,
which breaks the discrete logarithm problem on elliptic curves in polynomial time.

EdDSA, whose most widely used version is ed25519, provides a modern alternative using Edwards curves. It
adopts a deterministic nonce derived through hashing, reducing implementation risks. Thanks to the geometric
properties of Edwards curves, EdDSA offers fast signatures, simple implementations, and resistance to timing
attacks, although it remains vulnerable to quantum attacks like ECDSA.

The table 1 presents an overview of the main classical signature schemes, describing their underlying hardness
assumptions and the strengths and weaknesses of each scheme.

Scheme Underlying problem Strengths Weaknesses
Schnorr Discrete logarithm (cyclic groups

or EC)
Simple security; elegant
proof; short signatures

Not resistant to Shor; not
optimal on elliptic curves

ECDSA Elliptic-curve discrete logarithm
(ECDLP)

Very compact; very effi-
cient; widely deployed

Vulnerable to Shor; sensi-
tive to nonce reuse

EdDSA Discrete logarithm (Edwards
curves)

Deterministic nonce; fast;
secure implementations

Vulnerable to Shor; key size
similar to ECDSA

RSA Integer factorization Historical standard; con-
ceptually robust

Long signatures; inefficient
on small devices; vulnera-
ble to Shor

Table 1. Main classical signature schemes and general comparison
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Key sizes for private and public keys are essential when evaluating the efficiency of a signature scheme. Table
2 shows the typical key sizes. Algorithms based on factorization (such as RSA) require very large keys to reach
a given security level, while elliptic-curve-based schemes (ECDSA, EdDSA, Schnorr-EC) provide comparable
security with much smaller keys.

Scheme Private key Public key
Schnorr (modular) 256 bits 3072 bits
Schnorr-EC (P-256) 256 bits 512 bits
ECDSA (P-256) 256 bits 512 bits
EdDSA (Ed25519) 256 bits 256 bits (compressed)
RSA (3072 bits) 3072 bits 3072 bits

Table 2. Typical key sizes for about 128-bit security.

Post-quantum signature schemes cover several distinct mathematical constructions. Each family has advantages
and drawbacks in terms of security, size (public keys, private keys, signatures), and performance.

Lattice-based schemes are currently the most advanced family. They rely on problems such as LWE, SIS, or
SVP, believed to remain hard even for quantum adversaries. Falcon [37] and CRYSTALS-Dilithium [38] are the
most mature candidates and have been selected by the National Institute of Standards and Technology (NIST) [39]
for standardization. These schemes offer a good compromise between efficiency, size, and security.

Hash-based signatures, with SPHINCS+ [40] as the most representative example, rely solely on the security of
hash functions (collision and preimage resistance). This single dependency makes them conceptually simple and
robust, but at the cost of significantly larger signatures compared to lattice-based or ECC schemes.

Code-based schemes, exemplified by Classic McEliece [41], have demonstrated strong robustness for decades,
but suffer from extremely large public keys. Multivariate schemes (e.g., Rainbow) [42] rely on solving
multivariate polynomial systems and can provide fast signatures, but recent cryptanalysis revealed vulnerabilities
in some variants. Finally, isogeny-based schemes originally offered very compact keys, but recent attacks have
compromised the security of several constructions.

Family Examples Strengths Limitations
Lattice-based Dilithium, Falcon Efficient; strong security;

NIST-selected
Larger keys or signatures than
ECC

Hash-based SPHINCS+ Very strong security; depends
only on hashing

Large signatures; higher com-
putation cost

Code-based Classic McEliece Very robust for decades Extremely large public keys
Multivariate Rainbow Fast signatures; simple struc-

ture
Recent cryptanalytic
weaknesses

Isogeny-
based

SIKE Compact keys; elegant mathe-
matics

Security broken by recent
attacks

Table 3. Overview of the main post-quantum signature families.

Table 3 summarizes the main families of post-quantum signature schemes and highlights their distinguishing
features. Lattice-based schemes (Dilithium, Falcon) are considered the most promising, offering a strong balance
between security and efficiency, as confirmed by their selection by the NIST, although their keys are larger than
those of classical elliptic-curve schemes (ECC). Hash-based signatures (SPHINCS+) provide very strong security
since they rely only on hash functions, but produce large signatures. Code-based schemes (Classic McEliece) are
historically robust, but penalized by huge public keys.

Key and signature sizes, as shown in Table 4, vary greatly depending on the family. Lattice-based schemes
generally offer a good balance (keys and signatures in the kilobyte range), while hash-based schemes produce very
large signatures but keep small public keys. Code-based and multivariate schemes tend to have very large public or
private keys, and isogeny-based constructions (when considered secure) offered interesting compactness.
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Family Example Public key Private key Signature
Lattice-based Dilithium-III ∼1.5 kB ∼2.0 kB ∼2.7 kB

Falcon-512 ∼0.9 kB ∼1.3 kB ∼0.66 kB
Hash-based SPHINCS+-128 ∼32 B ∼64 B 8–30 kB
Code-based Classic McEliece 200–500 kB 5–10 kB ∼1 kB
Multivariate Rainbow-I 100–150 kB 50–100 kB ∼66 B
Isogeny-based SIKE (former) 0.2–0.4 kB 0.2–0.4 kB ∼0.2 kB

Table 4. Typical key and signature sizes for different post-quantum families.

The transition to post-quantum signature schemes therefore requires balancing security, compactness, and
performance. Standardization efforts (notably those of NIST) take these trade-offs into account and now guide
deployment choices to progressively replace classical signatures in modern protocols.

3. Our proposal

In this section, we present our proposed signature scheme over elliptic curve groups, designed to enhance security
while preserving the classical computational assumptions

3.1. Key Generation

The parameters required for key generation are: p, a prime number defining the finite field Fp; a, b, the coefficients
of the elliptic curve E over Fp; and G and n, where G is a generator point of a subgroup ⟨G⟩n ⊆ E(Fp) of prime
order n.

The key generation process starts by randomly choosing an integer

x ∈ {1, . . . , n− 1}, (1)

which is the main secret of the signer. Next, a random point

Q1 ∈ E(Fp) (2)

is chosen to introduce a random additive component. These two values are an essential part of the hidden structure
used by our scheme. The public key is then defined as

P = xG+Q1, (3)

where xG is the scalar multiplication of G by the secret x. The private key is the pair (x,Q1), and the public key is
P . The full procedure is shown in Algorithm 1.

Algorithm 1 KeyGen()

Require: Curve parameters: p, (a, b), generator G of prime order n.
Ensure: Public parameters (p, a, b, n,G), public key P , private key (x,Q1).

1: Choose x
$←− {1, . . . , n− 1}.

2: Choose a random point Q1
$←− E(Fp).

3: Compute the public key P ← xG+Q1.
4: Output: public parameters (p, a, b, n,G), public key P , private key (x,Q1).

3.2. Signing Process

The signing process, shown in Algorithm 2, takes the private key (x,Q1) and message m as input. It starts
by selecting two random integers k1, k2 ∈ [1, n− 1] and a random point Q2

$←− E(Fp). Generate nonces using a
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CSPRNG (or deterministically from (sk,m), RFC 6979-style). Then, it computes the nonce

A1 = k1G−Q2, (4)

checks that A1 ̸= O, extracts the x-coordinate of A1, called xA1 , and checks that xA1 is invertible modulo n (i.e.,
xA1
̸≡ 0 (mod n) and gcd(xA1

, n) = 1) before computing the hash:

e = H(xA1
∥m), (5)

where H is a cryptographic hash function. Next, compute

A2 = k2G+ e · x−1
A1

Q1, (6)

check A2 ̸= O, and extract xA2 = affixx(A2) mod n to compute:

s = (e · x+ xA2 − k2 · xA1) mod n. (7)

Finally, the algorithm outputs the signature (s,A1, A2). Here, xAi
denotes the scalar xAi

:= affixx(Ai) mod n ∈
Zn, its x-coordinate. When a scalar in Zn is required.

Algorithm 2 Sign()

Require: Private key (x,Q1), message m.
Ensure: Signature (s,A1, A2).

1: Generate nonces using a CSPRNG (or deterministically from (sk,m), RFC 6979-style).
2: Choose k1, k2

$←− {1, . . . , n− 1}.
3: Choose a random point Q2

$←− E(Fp).
4: Compute A1 ← k1G−Q2.
5: Check A1 ̸= O and compute xA1

:= affixx(A1) mod n.
6: if xA1 ≡ 0 (mod n) or gcd(xA1 , n) ̸= 1 then
7: reject and restart with new k1 and Q2.
8: end if
9: Compute e← H(xA1∥m) (value in Zn).

10: Compute
A2 ← k2G+ e · x−1

A1
Q1.

11: Check A2 ̸= O and compute xA2 := affixx(A2) mod n.
12: Compute

s← (e · x+ xA2
− k2 · xA1

) mod n.

13: Output: (s,A1, A2).

3.3. Signature Verification

The verification process, shown in Algorithm 3, takes the public key P , message m, and signature (s,A1, A2). It
first checks that A1, A2 are valid points on E(Fp) and not O, then computes:

R1 = xA1 ·A2 , R2 = xA2 ·G , Rs = s ·G.

Then, it extracts xA1 and computes the hash

e = H(xA1
∥m).
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The signature is valid if
R2 + e · P = R1 +Rs. (8)

If this holds, the signature is accepted; otherwise, it is rejected.

Algorithm 3 Verify()

Require: Public parameters (p, a, b, n,G), public key P , message m, signature (s,A1, A2).
Ensure: Accept / reject.

1: Check A1, A2 are valid points on E(Fp) and ̸= O.
2: Compute xA1

:= affixx(A1) mod n. Reject if xA1
≡ 0 (mod n).

3: Compute e← H(xA1
∥m).

4: Compute xA2 := affixx(A2) mod n.
5: Compute points:

R1 ← xA1
·A2, R2 ← xA2

·G, Rs ← s ·G.

6: if R2 + e · P = R1 +Rs then
7: Accept.
8: else
9: Reject.

10: end if

All scalar operations are done modulo n. When xAi is used as a scalar (or its inverse x−1
Ai

), we assume a canonical
mapping from Fp to Zn and that xA1

is invertible modulo n. The scheme parameters are those defined in the key
generation and signing algorithms.

It can be shown that every signature (s,A1, A2) produced by the signing algorithm satisfies the verification
equation:

R2 + e · P = R1 +Rs, (9)

where
R1 = xA1

·A2 , R2 = xA2
·G , Rs = s ·G , e = H(xA1

∥m).

Thus, any honest signature is always accepted by the verification algorithm.
Recall:

P = xG+Q1,

A1 = k1G−Q2,

A2 = k2G+ e x−1
A1

Q1,

s = (e · x+ xA2
− k2 · xA1

) mod n.

(10)

Compute the three terms R1, R2, Rs:

R1 = xA1 ·A2 = k2xA1 ·G+ e ·Q1,

R2 = xA2
·G,

Rs = s ·G = ex ·G− k2xA1 ·G+ xA2 ·G.

(11)

Adding R1 +Rs and simplifying:

R1 +Rs = eQ1 + exG+ xA2 ·G = xA2 ·G+ e · P, (12)

which exactly matches the verification equation. Therefore, Verify accepts any honest signature.
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4. Security proof

vIn this section, we prove the security of our scheme in the EUF-CMA model with the ROM. Before that, we
formally define the underlying problem on which our signer is based and show its structural hardness.

4.1. Hardness of the Underlying Problem and Structural Resistance

We study in detail the intrinsic difficulty of the elliptic-curve problem that supports the structural security of our
modified protocol. This analysis shows that an adversary cannot recover either the private key x or the additional
components Q1, Q2, because the solutions are ambiguous and never unique.

Definition 4.1. Let E(Fp) be an elliptic-curve group with p prime, and let G ∈ E(Fp) be a generator of prime order
n. Let x ∈ F∗

p and Q1 ∈ E(Fp), and define P = xG+Q1. The problem is to find (x,Q1) from (G,P ).

Without any extra information about x or Q1, this problem is at least as hard as the discrete logarithm problem
(DLP). If #E(Fp) = n×m with n and m prime, then

E(Fp) ∼= Zn × Zm
∼= ⟨G⟩ × ⟨G′⟩. (13)

Thus, Q1 = aG+ bG′ for some a, b ∈ Fp, which gives

P = (x+ a)G+ bG′.

Recovering (x+ a) and b does not reveal the true pair (x,Q1). For any a′ ∈ Fp, there exists x′ ∈ Zn such that
x′ + a′ = x+ a. Hence (x,Q1) is never unique, and for every t ∈ Fp:

P = x′G+Q′
1 with x′ = x+ t, Q′

1 = Q1 − tG.

We show that solving the above decomposition problem is at least as hard as the elliptic curve discrete logarithm
problem (ECDLP).

Let A be an algorithm that, given (G,P ), outputs a valid pair (x,Q1) such that P = xG+Q1. We construct an
algorithm B that solves the ECDLP.

Given an ECDLP instance (G, Y ), where Y = αG = αG+O and the goal is to recover α, algorithm B runs A
on input (G,P = Y ). By assumption, A outputs (α,O).

Therefore, α ≡ x+ β (mod n) is a discrete logarithm of Y to the base G, which can be recovered from the
output of A. Hence, any algorithm that solves the decomposition problem can be used to solve the ECDLP.

It follows that the problem of recovering (x,Q1) from (G,P ) is at least as hard as the elliptic curve discrete
logarithm problem.

Therefore, a direct attack on the public key, even by brute force, cannot extract the true private pair (x,Q1).
More importantly, the transcripts generated by our modified signer leak no useful information about (x,Q1, Q2) or
about breaking the scheme. The transcripts are:

P = xG+Q1,

A1 = k1G−Q2,

A2 = k2G+ e x−1
A1

Q1,

s = ex+ xA2 − k2xA1 (mod n).

(14)

If an attacker tries exhaustive search to extract discrete logs in the basis ⟨G⟩ × ⟨G′⟩, the system becomes
P = (x+ t1)G+ t′1G

′,

A1 = (k1 + t2)G+ t′2G
′,

A2 = (k2 + c1t1)G+ (c1t
′
1)G

′.

(15)

Stat., Optim. Inf. Comput. Vol. x, Month 202x



8 OPTIMIZED AMBIGUOUS-KEY ECC SIGNATURES FOR LIGHTWEIGHT AND SECURE IOT SYSTEMS

where c1 = e x−1
A1

and ti, t
′
i ∈ Zn. Simplifying 14 gives the system 16:

x+ t1 = q1,

k1 + t2 = q2,

k2 + c1t1 = q3,

ex+ xA2 − k2xA1 = q4.

(16)

All values q1, q2, q3, q4, e, xA1
, xA2

, c1 are known.
This system has five unknowns (x, k1, k2, t1, t2) and only four equations. Therefore, it has one degree of freedom

and an entire family of solutions. For large n, finding the correct one becomes very hard.
Even with multiple signatures (s(i), A

(i)
1 , A

(i)
2 ) for different messages m(i), every signature adds new unknowns

(k
(i)
1 , k

(i)
2 , t

(i)
1 , t

(i)
2 ) but only four new equations. The whole system remains underdetermined, which keeps the

structural security intact.

In classical elliptic-curve signatures such as ECDSA on a 256-bit curve, the effective security is about 128 bits,
because the best known attack on ECDLP is Pollard–Rho [43] which runs in O(

√
n), giving about 2128 operations

for a 256-bit curve.
Our scheme is structurally different: the attacker must recover both x and t1 at the same time. This adds an extra

O(n) search. So the underlying problem is strictly harder than the standard ECDLP.
Thus, while a classical scheme requires a 256-bit curve to reach 128-bit security, our scheme achieves the same

security level using a 128-bit curve, making it much lighter and suitable for constrained IoT environments.

4.2. Resistance to Signature Forgery (EUF-CMA)

The goal of this section is to show that any attack able to produce a valid forgery in the EUF-CMA model with
non-negligible probability would allow recovering the secret key x. Such a recovery would break the hardness
assumption of the underlying problem. Conversely, if this problem is indeed hard, then no EUF-CMA forgery is
possible, and the scheme is secure.

theorem 4.2. Assume that the hash function H is modeled as a random oracle. Also assume that it is hard to
recover x from the public point P = xG+Q. If a probabilistic polynomial-time adversary A, making at most qH
hash queries, forges a signature with probability ϵ, then there exists an algorithm B that can extract the key x with
probability at least

ϵ2

2qH
− negl(λ). (17)

This would contradict the hardness assumption and implies that the scheme is EUF-CMA secure.

Proof

The algorithm B simulates the hash oracle and the signing oracle for the adversary A. The hash e = H(xA1
∥m)

is only defined after fixing the commitment A1, which satisfies the condition needed for the forking lemma. This
timing ensures that two separate executions of the hash oracle on the same transcript can produce different values
e and e′ without changing other transcript elements.

When B knows x, the EUF-CMA game is simulated exactly. A forgery occurring with probability ϵ leads, via the
forking lemma, to two valid signatures on the same message m∗ with the same commitment A∗

1 but two different
hashes e ̸= e′. The two signature verification equations are then

s ≡ ex− k1xP − k2xA1
+ xA2

(mod n), (18)

s′ ≡ e′x− k1xP − k2xA1 + x′
A2

(mod n). (19)
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Subtracting them gives
s− s′ ≡ (e− e′)x+ (xA2

− x′
A2

) (mod n). (20)

The term xA2
− x′

A2
does not depend on x and is fully determined by public values generated during the forgery.

Hence, the secret key can be isolated:

x ≡
(s− s′)− (xA2

− x′
A2

)

e− e′
(mod n). (21)

The forking lemma ensures that obtaining two consistent forgeries happens with probability at least ϵ2/(2qH),
minus a negligible term.

If B does not know x and only has P , it simulates the real signer by programming the random oracle. For a
signature request on message m, it randomly chooses k1, k2 and an auxiliary point Q2, sets A1 = k1G−Q2, and
picks a uniform xA2

∈ Zn. The hash oracle is programmed to define e so that the verification equation

xA2G+ eP = xPA1 + xA1A2 + sG (22)

holds. This determines the correct s. The resulting distribution is indistinguishable from that of a real signer, except
with negligible probability depending on the hash output size.

When a valid forgery on a new message occurs, applying the forking lemma yields two valid signatures with the
same A1 and the same pairs (k1, k2), but different hashes e ̸= e′. The same algebraic manipulation then allows B
to extract the secret key x. Losses due to programming the ROM remain negligible for a large enough hash space.

Hence, the existence of a non-negligible forgery would directly violate the hardness assumption of the underlying
problem, which establishes the EUF-CMA security of the scheme.

5. Implementation and experimental results

This section explains the details of the implementation of our digital signature scheme on the NIST-standardized
elliptic curves and presents experimental results in terms of energy consumption and execution time.

5.1. Performance Evaluation

The implementation was done using the Python 3.12 cryptography library for elliptic curve cryptography
on a personal computer with the following configuration: Intel(R) Core(TM) i7-8565U @ 1.80GHz
processor, 16 GB RAM, and a 512 GB SSD. The operating system was Ubuntu 22.04 LTS.

Energy measurements were performed using a high precision power analyzer (pyRAPL) and execution times
were measured using system timing functions (time.perf counter() in Python) to ensure a reliable
evaluation of performance and energy consumption

Listing 1 shows the console output during execution on all tested NIST curves which serves two purposes one is
to confirm the correct operation of the scheme for each curve and the other is to show the performance variations
in time and energy for different cryptographic parameter sizes

Listing 1: Energy and time comparison for different NIST curves
1 === Curve: secp128r1 === | === Curve: secp128k1 ===
2 Keygen energy: [142395.0] nJ | Keygen energy: [66772.0] nJ
3 Keygen time: 16.302 ms | Keygen time: 11.604 ms
4 Signature energy: [137756.0] nJ | Signature energy: [174499.0] nJ
5 Signature time: 17.886 ms | Signature time: 21.410 ms
6 Verify energy: [171386.0] nJ | Verify energy: [159850.0] nJ
7 Verify time: 22.537 ms | Verify time: 22.752 ms
8 Valid signature: True | Valid signature: True
9

10 === Curve: secp192r1 === | === Curve: secp224r1 ===
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11 Keygen energy: [182982.0] nJ | Keygen energy: [205078.0] nJ
12 Keygen time: 27.303 ms | Keygen time: 32.694 ms
13 Signature energy: [431456.0] nJ | Signature energy: [477172.0] nJ
14 Signature time: 43.772 ms | Signature time: 50.446 ms
15 Verify energy: [438658.0] nJ | Verify energy: [478026.0] nJ
16 Verify time: 49.578 ms | Verify time: 43.396 ms
17 Valid signature: True | Valid signature: True
18

19 === Curve: secp256r1 === | === Curve: secp384r1 ===
20 Keygen energy: [345153.0] nJ | Keygen energy: [886777.0] nJ
21 Keygen time: 38.895 ms | Keygen time: 110.649 ms
22 Signature energy: [595701.0] nJ | Signature energy: [1407589.0] nJ
23 Signature time: 57.168 ms | Signature time: 123.560 ms
24 Verify energy: [720762.0] nJ | Verify energy: [1533016.0] nJ
25 Verify time: 116.930 ms | Verify time: 146.067 ms
26 Valid signature: True | Valid signature: True
27

28 === Curve: secp521r1 === |
29 Keygen energy: [1684505.0] nJ |
30 Keygen time: 232.127 ms |
31 Signature energy: [2759942.0] nJ |
32 Signature time: 245.430 ms |
33 Verify energy: [2737054.0] nJ |
34 Verify time: 257.989 ms |
35 Valid signature: True |

Tables 5 and 6 summarize respectively the execution times in seconds and the energy consumption in nanojoules
measured for the signature scheme operations on different tested NIST curves these data show in detail the general
trend discussed previously namely that computational and energy costs increase with the growth of the computing
environment for example Table 5 illustrates how execution times increase for key generation (KeyGen) which
grows more than 14 times between the smallest curve (secp128k1 at 0.0116 s) and the largest (secp521r1 at
0.2321 s) and the signing operation increases about 11.5 times between secp128k1 (0.0214 s) and secp521r1
(0.2454 s) then verification which experienced the highest increase in particular from 0.1169 s on secp256r1 to
0.2580 s on secp521r1.

The energy measurements presented in Table 6 show that energy consumption follows a pattern similar to
execution times since there is a strong correlation between these two metrics for example the energy required
for key generation goes from 66.8 µJ for secp128k1 to 1.68 mJ for secp521r1 which is about an increase of
25 times this marked growth is also found for signing where energy consumption increases by a factor of about 16
between secp128r1 (137.8 µJ) and secp521r1 (2.76 mJ) while the gap between signing and verification is also
observed in energy consumption and not only in time especially for large curves.The energy impact is significant
on high security curves such as (secp384r1 and secp521r1) whose consumption consistently exceeds one
millijoule a critical threshold for many resource constrained embedded applications fortunately this observation
shows the value of our scheme which can operate with small curves while still maintaining strong security.

NIST Curve KeyGen (s) Signature (s) Verification (s)
secp128r1 0.016302 0.017886 0.022537
secp128k1 0.011604 0.021410 0.022752
secp192r1 0.027303 0.043772 0.049578
secp224r1 0.032694 0.050446 0.043396
secp256r1 0.038895 0.057168 0.116930
secp384r1 0.110649 0.123560 0.146067
secp521r1 0.232127 0.245430 0.257989

Table 5. Execution time of cryptographic operations (in seconds)
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NIST Curve KeyGen (nJ) Signature (nJ) Verified (nJ)
secp128r1 142 395 137 756 171 386
secp128k1 66 772 174 499 159 850
secp192r1 182 982 431 456 438 658
secp224r1 205 078 477 172 478 026
secp256r1 345 153 595 701 720 762
secp384r1 886 777 1 407 589 1 533 016
secp521r1 1 684 505 2 759 942 2 737 054

Table 6. Energy consumption of cryptographic operations (in nanojoules)

Figure 1 shows the execution times for the three signature operations on NIST standardized elliptic curves it
shows the proportional relationship between curve size and computational cost small curves like secp128r1
and secp128k1 have very low latencies of 25 ms while intermediate curves (secp192r1 and secp224r1)
show a noticeable increase in execution times this is more marked for high security level curves reflecting the
arithmetic complexity as curves grow signing with secp256r1 for example remains moderate but verification
takes more than 110 ms however large curves like secp384r1 and secp521r1 show the strongest increase with
key generation taking 110 ms and 230 ms respectively and verification reaching nearly 260 ms for secp521r1.
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Figure 1. Execution time trends for different elliptic curves

Similarly Figure 2 shows the energy consumption for the same operations on NIST curves the results follow
a pattern similar to execution time increasing systematically with curve size small curves (secp128r1 and
secp128k1) consume less than 200 µJ per operation making them very suitable for constrained environments
with reasonable security while intermediate curves increase significantly in the same way as the largest curves
(secp384r1 and secp521r1) which have energy consumption well over one millijoule for most operations.
These experimental results show that our scheme works efficiently on all tested NIST curves the validity of
signatures is ensured for each curve showing the correctness of the scheme even with the predictable increase in
computational resources with larger curves it is important to choose a curve according to the specific requirements
of the application.
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Figure 2. Energy consumption trends for different elliptic curves

5.2. Comparative Simulation

Listing 2 presents the raw measurements of execution time energy consumption private and public key sizes and
signature sizes for our scheme as well as for ECDSA Schnorr Falcon and Dilithium-2 for a 128-bit security level
as these measurements were obtained using the same experimental parameters and the same workstation described
in subsection 5.1. We highlight that all these results come from Python implementations without hardware specific
optimization and we specify that for Falcon and Dilithium-2 we used existing ready made libraries while for
ECDSA Schnorr and our own scheme we built and implemented the entire scheme manually following the same
experimental principles.

Listing 2: Key sizes, signature sizes, execution time and energy (ms / nJ) for all schemes
1

2

3 === Falcon ===
4

5 KeyGen: 30.350 ms, Energy = 144226000 nJ
6 Private key: 1281 bytes, Public key: 897 bytes
7 Sign: 7.974 ms, Energy = 32348000 nJ, Sign size = 654 bytes
8 Verify: 0.092 ms, Energy = 842400 nJ
9 Signature valid: True

10

11 === Dilithium-2 ===
12

13 KeyGen: 0.3748 ms, Energy = 3112800 nJ
14 Private key: 2560 bytes, Public key: 1312 bytes
15 Sign: 1.4374 ms, Energy = 7702600 nJ, Sign size = 2420 bytes
16 Verify: 0.2947 ms, Energy = 2087400 nJ
17 Signature valid: True
18

19 === ECDSA P-256 ===
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20

21 KeyGen: 73.2992 ms, Energy = 767820.0 nJ
22 Private key: 32 bytes, Public key: 64 bytes
23 Sign: 87.8141 ms, Energy = 824461.0 nJ, Sign size = 64 bytes
24 Verify: 115.0637 ms, Energy = 1303280.0 nJ
25 Signature valid: True
26

27 === Schnorr ===
28

29 KeyGen: 52.705 ms, Energy = 333800.0 nJ
30 Private key: 32 bytes, Public key: 64 bytes
31 Sign: 38.302 ms, Energy = 332092.0 nJ, Sign size = 64 bytes
32 Verify: 58.312 ms, Energy = 636473.0 nJ
33 Signature valid: True
34

35 === Our Scheme on secp128r1 ===
36

37 KeyGen: 16.409 ms, Energy = 71960.0 nJ
38 Private key: ˜32 bytes, Public key: ˜32 bytes
39 Sign: 27.087 ms, Energy = 197631.0 nJ, Sign size = 50 bytes
40 Verify: 25.449 ms, Energy = 160644.0 nJ
41 Signature valid: True

Table 7. Comparison of execution times and key/signature sizes for each scheme

Table 7 (a): Execution times (ms)

Scheme KeyGen Sign Verify

Falcon 30.350 7.974 0.092
Dilithium-2 0.3748 1.4374 0.2947
ECDSA P-256 73.2992 87.8141 115.0637
Schnorr 52.705 38.302 58.312
Our Scheme 16.409 27.087 25.449

Table 7 (b): Key and signature sizes (bytes)

Scheme Private key Public key Signature

Falcon 1281 897 654
Dilithium-2 2560 1312 2420
ECDSA P-256 32 64 64
Schnorr 32 64 64
Our Scheme ˜32 ˜32 50

Table 7 summarizes the execution times, as well as the key and signature sizes for each studied scheme, such
that it can be observed that Dilithium-2 is extremely fast for key generation and signing, with respective times
of 0.375 ms and 1.437 ms, but this speed is accompanied by large key and signature sizes, with private keys of
2560 bytes and signatures of 2420 bytes, which makes it less suitable for resource-constrained environments, while
ECDSA P-256 and Schnorr P-256, although standardized and having compact keys (32 bytes for private keys and
64 bytes for public keys), present high signing and verification times, reaching 115 ms for ECDSA verification
and 58 ms for Schnorr verification, whereas these long times can limit their use in applications requiring low
latency, then we find the Falcon-512 scheme which presents a different compromise such that it offers fast signing
(7.97 ms) with intermediate key sizes (1281 bytes for the private key and 897 bytes for the public key), but it is
costly in memory and energy, which can be problematic for devices with limited resources, and finally our proposed
scheme, based on secp128r1, combines speed and efficiency, where key generation requires 16.41 ms, signing
27.09 ms, and verification 25.45 ms, and the keys and signatures remain compact, with about 64 bytes for keys and
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50 bytes for the signature. This combination of performance and lightness makes our scheme particularly suitable
for applications requiring both efficiency and low resource consumption, such as IoT and embedded systems.

Table 8. Comparison of energy consumption (nJ) for each scheme

Scheme KeyGen (nJ) Sign (nJ) Verify (nJ)

Falcon 144226000 32348000 842400
Dilithium-2 3112800 7702600 2087400
ECDSA P-256 767820 824461 1303280
Schnorr 333800 332092 636473
Our Scheme 71960 197631 160644

Table 8 compares energy consumption. Falcon is very energy-demanding, especially for key generation
(144.226 mJ) and signing (32.348 mJ). Dilithium-2 is relatively efficient (3.1128 mJ for key generation and
7.7026 mJ for signing), while ECDSA P-256 and Schnorr use less energy but take longer to compute. Our scheme is
the most balanced, with low energy consumption for all operations (0.07196 mJ for key generation, 0.197631 mJ for
signing), while keeping reasonable key and signature sizes. Combining time and energy analysis clearly identifies
the schemes best suited to performance- and energy-constrained environments.
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Figure 3. Comparison of execution time (a) and energy (b) for all schemes, with values displayed on each bar.
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Figure 3 gives a visual comparison of the signature schemes in terms of execution time and energy. Subfigure
(a) shows that Dilithium-2 is by far the fastest for key generation and signing, while ECDSA P-256 and Schnorr
have higher computation times. Falcon allows fast signing but has costly key generation. Our scheme is relatively
fast due to the smaller curve, keeping reasonable execution times and intermediate signature size. Subfigure (b),
on a logarithmic scale, highlights that Falcon consumes the most energy, especially for key generation and signing,
while Dilithium-2 stays moderate. ECDSA P-256 and Schnorr consume less energy but have longer execution
times. Our scheme presents a balanced profile: faster and less energy-demanding than ECDSA and Schnorr, with
acceptable execution times, making it suitable for constrained IoT environments.

5.3. Evaluation on Resource-Constrained Devices (Raspberry Pi)

We consider three signature schemes based on short Weierstrass elliptic curves. The ECDSA and EC Schnorr
schemes use the secp160r1 curve (cofactor h = 1), while our proposed scheme uses the secp112r2 curve (cofactor
h = 4), as described in Section 3. The target device is a Raspberry Pi 4 (Cortex-A72, 1.5 GHz) simulated using
QEMU. The metrics considered are the average execution time and the estimated energy consumption.

Each operation (key generation, signing, verification) was repeated N = 500 times to obtain stable averages.
The energy is estimated by multiplying the CPU time by 20 J/s, which serves as a proxy for energy consumption
on this device. Table 9 summarizes the results (time in ms, energy in µJ).

Scheme Phase Average Time (ms) Average CPU (s) Approx. Energy (µJ)

ECDSA KeyGen 238.737 0.23860607 4772121.46
Schnorr KeyGen 247.055 0.24671619 4934323.79
MySchema KeyGen 206.271 0.20616491 4123298.15
ECDSA Sign 234.758 0.23472250 4694450.02
Schnorr Sign 234.280 0.23419917 4683983.41
MySchema Sign 386.813 0.38640707 7728141.31
ECDSA Verify 504.422 0.50409429 10081885.80
Schnorr Verify 478.543 0.47842604 9568520.80
MySchema Verify 395.974 0.39583288 7916657.67

Table 9. Average execution time and estimated energy for each scheme on a Raspberry Pi 4 simulated via QEMU, using the
secp112r2 curve (cofactor h = 4 for MySchema, secp160 for ECDSA and Schnorr).

The results show that the proposed scheme is slower than ECDSA and Schnorr during the signing phase, with
a time of approximately 389 ms, but faster for key generation and verification, with times of about 206 ms and
396 ms respectively, while consuming proportionally less energy, i.e., 4,123,298.15 µJ and 7,916,657.67 µJ. This
slowdown during signing is expected: the scheme selects two random numbers and a point, then performs a modular
inversion before computing the signature. However, these operations can be optimized. Nevertheless, all operations
remain fully feasible on a simulated Raspberry Pi 4.

Figure 4 shows that the key generation times for ECDSA and Schnorr are similar, around 239 ms and 247 ms
respectively, while the proposed scheme requires approximately 206 ms, slightly faster than the classical schemes in
this case. This reflects the combined complexity of standard scalar multiplication operations along with additional
points to ensure enhanced security.

For the signing phase, ECDSA and Schnorr perform similarly, around 234 ms, while the proposed scheme
reaches 387 ms, approximately 1.6 times slower. This difference is due to the computation of multiple points and
the application of several scalar operations on these points, increasing the computational cost.

For verification, ECDSA and Schnorr remain close, around 504 ms and 479 ms respectively, while the proposed
scheme uses approximately 396 ms. Verification is therefore slightly faster than the classical schemes in this context
and remains fully feasible on a simulated Raspberry Pi.
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Figure 4. Comparison of average execution times for each scheme on a simulated Raspberry Pi 4.

The figure 5 complements this analysis by showing the approximate energy consumption for each operation.
The proposed scheme consumes less energy for key generation (about 4.12 mJ) compared to ECDSA and Schnorr
(4.77 mJ and 4.93 mJ, respectively). For signing, the energy cost of the proposed scheme increases (7.73 mJ),
reflecting the additional operations required, but remains comparable to the values of Schnorr and ECDSA.
Finally, for verification, the proposed scheme is slightly more energy-efficient (7.92 mJ) than the classical schemes,
confirming that all operations remain feasible and efficient on embedded platforms.
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Figure 5. Comparison of approximate energy consumption for each scheme on a simulated Raspberry Pi 4.

Despite the higher time and energy cost due to the complexity of the scheme, it offers several advantages for IoT
environments: it allows reducing the curve order while maintaining reasonable security, which decreases key and
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signature sizes. Furthermore, the underlying problem structure makes the scheme more resistant to brute-force
attacks. Thus, it provides configurable security according to device constraints and is fully feasible on a simulated
Raspberry Pi, demonstrating its suitability for resource-constrained IoT applications.

6. Conclusion and futur work

In this paper, we presented a new classical digital signature scheme based on elliptic curves and inspired by the
Hidden Shift Problem (HSP) and hidden number problems in elliptic groups; it is not post-quantum secure.

The proposed scheme follows a simple Schnorr-like structure while introducing two secret components ((x,Q))
and auxiliary commitments that make extracting the private key much harder. Key generation, signing, and
verification algorithms were fully described, and a correctness proof shows that any honest signature is always
accepted by the verifier.

We also provided a formal security analysis: in the Random Oracle model, using the forking lemma, we showed
that any effective EUF-CMA attack would recover the private key with non-negligible probability, which would
contradict the hardness of the underlying problem.

In conclusion, this scheme is a promising approach to improve the security of digital signatures based
on a problem harder than the classical discrete logarithm, while keeping the efficiency of elliptic curves. It
provides a good balance between performance, compactness, and security. Future work includes stronger proofs,
optimizations, countermeasures, and dedicated cryptanalysis to make this approach even stronger and enable
lightweight cryptographic primitives for constrained environments.
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