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Abstract This study develops a robust analytical-iterative framework for solving the fractional Fornberg—
Whitham equation by combining the Yasser—Jassim integral transform with the Variational Iteration Method
under the Atangana—Baleanu fractional derivative in the Caputo sense. An explicit series solution is constructed,
and a rigorous convergence analysis is established, yielding sufficient conditions for existence and uniqueness of
the solution. A computable bound for the truncation error is derived, providing a quantitative measure of the
approximation accuracy. Numerical simulations confirm the theoretical findings, showing rapid convergence and
excellent agreement with the exact solution. These results demonstrate the effectiveness, stability, and reliability
of the proposed approach, indicating its potential applicability to a broad class of nonlinear fractional partial
differential equations.
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1. Introduction

Fractional calculus (FC) has, in recent years, solidified its role as a critical mathematical paradigm
for the precise modeling of nonlocal and history-dependent behavior in diverse areas such as control
theory, bioengineering, and materials science, natural sciences, engineering, fluid dynamics, life sciences,
and other applied areas. By employing fractional-order tools, FC provides an effective framework
for representing systems characterized by memory and hereditary properties. In particular, fractional
derivatives (FDs) have shown significant capability in capturing such effects within different physical
and engineering contexts. Their applications span a wide range of domains, including diffusion-reaction
dynamics, frequency-dependent signal analysis, system identification, material damping behavior, and the
modeling of viscoelastic responses like relaxation and creep [1, 2, 3].

The investigation of nonlinear wave equations and their associated solutions represents a cornerstone in
numerous scientific disciplines. Among these, fractional nonlinear partial differential equations (FPDESs)
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are of particular interest due to their ability to capture complex dynamics through traveling wave
solutions. These solutions are essential for interpreting the behavior of intricate physical and mechanical
systems. Notably, several FPDEs—such as the Korteweg—de Vries and Camassa—Holm equations—exhibit
a variety of traveling wave forms that effectively describe nonlinear dispersive wave processes, especially
in shallow water contexts [4]. In a similar vein, the Fornberg-Whitham equation (FWE) has attracted
increasing attention in mathematical physics, owing to its broad applicability across multiple scientific
fields.
The fractional Fornberg-Whitham equation (FFWE) [9, 10] is defined as:

ABDY® — @y + By + OO, = 30, D + DBy, (1)

where 0 < 9 < 1.

This equation describes the qualitative dynamics of wave breaking in nonlinear dispersive waves. The
FWE is known for its peaked solutions (peakons), which provide a mathematical framework for analyzing
wave height limitations and the occurrence of wave breaking. In 1978, Fornberg and Whitham introduced

a peaked solution expressed as:
o(x,1) = Ce/?>7213, (2)

where C is a constant.

Throughout the past decades, the Fornberg—Whitham equations (FWEs) have been the subject of
intensive analytical and numerical investigation. Diverse methodologies have been employed to analyze
their behavior, such as the Laplace decomposition method [5], Lie symmetry analysis [6], the variational
iteration technique [8], differential transformation method [7], as well as iterative strategies including
the new iterative method [11], the homotopy perturbation approach [12], and the homotopy analysis
transform method [13]. Moreover, a variety of sophisticated tools have been utilized to tackle both linear
and nonlinear fractional partial differential equations (FPDEs) [28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

In light of the increasing complexity introduced by fractional operators, the time-fractional variant of
the Fornberg-Whitham equation has attracted notable scholarly attention. Recent research trends have
focused on constructing precise analytical frameworks capable of addressing the unique characteristics
imposed by the fractional-order terms. These efforts have resulted in the development of several innovative
techniques aimed at deriving meaningful and accurate solutions.

This paper proposes a hybrid analytical-iterative approach for solving the fractional Fornberg—Whitham
equation by combining the Variational Iteration Method (VIM) with the Yasser—Jassim Transform
(YJ) under the Atangana-Baleanu fractional derivative. The YJ is shown to be more suitable than
classical transforms such as Laplace and Sumudu, as it is naturally compatible with the nonsingular
kernel of the Atangana—Baleanu operator and avoids the algebraic complexity and auxiliary assumptions
commonly encountered in Laplace-based methods. Unlike homotopy-based techniques, the proposed YJ—
VIM framework does not require embedding parameters, leading to a more direct and efficient iterative
scheme.

In contrast to most existing studies that focus mainly on numerical approximations, this work
establishes a rigorous convergence analysis. Sufficient conditions for convergence are derived, and a
well-defined convergence theorem is proved using appropriate norms. Moreover, a uniqueness theorem is
formulated under strict and verifiable conditions, strengthening the theoretical foundation of the proposed
method. Numerical results are compared with previously published methods, demonstrating the accuracy
and efficiency of the YJ-VIM approach.

Specifically, the study utilizes the recently developed Yasser—Jassim integral transform in conjunction
with the Variational Iteration Method (VIM) to handle the fractional Fornberg—Whitham equation
formulated with Atangana—Baleanu fractional derivatives. The procedure yields semi-analytical solutions
represented in the form of rapidly converging series.
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2 2 PRELIMINARIES

2. Preliminaries

Definition 2.1. For a function @(x) defined on x > 0, the Caputo fractional derivative of order ¥ is given
(see [21]) by

1 X
S )" o (dt, n—1<v9< N
i F(n—ﬁ)/o(x ) ()dt, n—1<9<n, neN,
Dlat-{ | 3
dxna)'(x), Y=n,neN.
Remark 2.1. By Definition 2.1, the Caputo derivative of the power function ¢# satisfies
F'B+1) 5.4
1 PP p—1<9<n B>n—1,BER,
DB = T(B—0+1) " smp>n=1.p (4)
0, n—1<9d<n BeN.

Definition 2.2. Following [22, 23], the Atangana-Baleanu fractional derivative of order ¥ (in the Caputo
sense) for a function @(r) on [a,t] is defined by

M 4 _
ABDY g5 (1) = %/ﬂ Eﬂ(—ﬂ(l’_j;)ﬂ) @'(x)dx, 0<VO<I, (5)

where the normalization function M() obeys M(0) =M(1) = 1.

Definition 2.3. The Atangana—Baleanu fractional integral of order ¥ is given in [23] by

1-9 )
Bg(t) = —=@(t) +

W00) o / (=) ' @x)dx, 0<d <1, (6)

M(9)T
with M(¥) as above.

Definition 2.4 (Yasser-Jassim Transform). The Yasser—Jassim transform of a function @(z) is
introduced in [38] as:

D)) = of /0 T VI () de (7)

This transformation moves the function from the time domain to a new spectral domain determined by
the parameter 7.

Some fundamental properties:

; {1} = T (8)
2.
A4y = wwl_;\@ )
3. .
A{Eg(bt)} = ﬂ@m (10)
* Y = o (V) PIT(D + 1) (11)
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Theorem 2.1. 1. For the Caputo fractional derivative:

. n—1 of
HCDI O} = O} - T o), ami<o e (1)

1
(Vi)
2. For the Atangana—Baleanu derivative:

#p) )y = 1)

- (@)} - VT B(0)] (13)

Proof

1. For the Caputo derivative:

A{D’@(1)} = ‘%ﬂ{l“(nl—ﬁ)/ot(t_ T)n—ﬂ—lw(n)(f)df}

Applying the convolution property of the YJ transform:

_ 1

A (@ (1)

Substituting the transformation of the nth derivative yields:

1 -4
= W%{(D(I)} —/;)Ww(k)(o)

2. For the AB derivative:

A{EpP @)} = %{m /(: Es (_W) > dT}

Using the convolution theorem:

O L e (<25} too)

Upon simplification, we obtain:

MO
- (—)ﬁ [%{w(x)} - m@wm)}
1=+ 0V
O
Definition 2.5. The two-parameter Mittag-Leffler function is described as [19, 20]:
o 2

E =) ———, U C ¥)>0 0. 14
2.0(2) n;)l“(m&urp)’ P,z € C, Re(89) >0, Re(p) > (14)
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4 3 METHODOLOGY

Remark 2.2. Based on Definition 14, the following identities can be established:

Ep1(x*) = cosh(x),

Epy(x?) = M,
Exa(x?) = é 1+ cosh(x)]

Fornberg—Whitham equation with Atangana-Baleanu fractional derivative

3. Methodology

Consider the FFWE :
ABD?wfwxxt‘f’wx"’wwx:3wxwxx+wwm7 0< 1-9§ 17
Imposing the initial condition:
@ (x,0) = g(x).
Using the VIM method, Equation (18) can be reformulated as:
t
Opi1 = O+ /0 A(x,t—8) {ABD};’ @y — By g + Oy + 0,0«
- 3a)-n,an,xx - ZZ)-lfta)-n,x,\fx:| dé
Applying the YJ transform to Equation (20), we get:
t
@) =@+ { [(45i-8) | PDLE, 0+ B

+ wnwn,x - 3wn,an,xx - wnwn,xxx] dé }

Since the Lagrange multiplier depends on r — & and the equation is written in terms
convolution theorem [38]

1
By} =A@+ LA ()| D0, ~ 0,4
+ wnwn,x - 3wn,an,xx - mnwn,xxx}] .

Introducing 5%,1 to both sides of Equation (22), we obtain:

1) 1) 1 H{®,}

(21)

of &, we apply the

)
5@, (Ot} = 5 HAOS+ s A A} [(1 9 ovTY)
— JZ%\/B(D-(X,O) - %{_wn,xxt + a)-n,x

+ a)-nwn,x - 3wn,an,xx - wnwn,xxx}]
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Considering the nonlinear terms as restricted variations, i.e.,

5[wnwn,x - 3a)-n,xa)-n,xx - wnwn,xxx] = 07

we have: #{5B,)
@,
H{O0®y 41} = {0, } + H{A(x,1)} 3 (24)
(1-9+0Ve)
The optimality condition for @, requires that s#{6®,+;} =0, leading to:
|
0= |14+ (x0)} , }%{5@}, (25)
(1-9+0Ve)
and thus: R
AN =—(1=8+0V ) (26)
By substituting Equation (26) into (22), we get:
By} = (@) — (1— 9+ OV ) {%{ABD;SGS,, — @yt + B
+ wnwn,x - 3wn,an,xx - wnwn,xxx}} (27)
Utilizing the inverse YJ transform, we derive the recurrence relation:
@yt = B (x,0) —%”‘1{(1 ~0+9Ve") {%{—wn,m + @
+ wnwn,x - 3wn,an,xx - wnwn,xxx}} } (28)
Finally, the solution is expressed as:
o (x,t) = lim @,. (29)

n—oo

4. Convergence of YJ-VIN

In this part, we analyze the convergence of the newly proposed YJ-VIM method applied to the Fornberg-
Whitham equation discussed earlier. The necessary conditions ensuring the method’s convergence, as well
as the associated error estimates, are outlined through the upcoming theorems.

Using equation (28) to defined the following operator

Ql[aﬂ =Wy — O, = GF()C,O) — W, - c%ﬁ_l{(l -9+ 19\/}6) {%{_WanTXt + a’mx
+ wnwn,x - 3wn,an,xx - wnwn,xxx}] } (30)

For simplicity, let L(@) = — Oy + Oy + OBy — 30,0y — O Oy
By simplifying and using the convolution property, we obtain the following equivalent formula:

t _ \0-1
mm—wmm—aﬁ{u—wum—éaan%)L@w*. (31)
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6 4 CONVERGENCE OF YJ-VIN

defined the component Ui,k =0,1,2,... as

(S CU(X,O)
(&)1 :Q([Uo]
(o)) ZQ([U()-FU]}

Opy1 = Q([Uo+U] +... +Ok]
(32)

Thus, it follows that @ (x,7) = lim, . ®, = Y;._o Uk. Accordingly, the solution to the problem (18)-(19) can
be expressed as

)= Y G (33)
k=0
Where the initial approximation Uy = @(x,0).

Theorem 4.1. Let 2 be an operator such that 2: H! — H'. The series solution @ (x,t) = Y o Ok converges
provided that there exists a constant 0 < y < 1 satisfying |Ugy1| < 7|Ux| for all k =0,1,2,..., where H!
denotes a Hilbert space.

Proof

let define the sequence {&,}*_ as
So=0Uo
S1=0p+ U
Gy =0p+01+06;

G, =0g+01+...4+40,

(34)
to demonstrate that the sequence {&,};_, is a Cauchy sequence in the Hilbert space H I consider,
16041 = &ull = [Bnsall S VITull < P Baer . < ¥ To (35)
For every n, j € N,n > j we have
HGn_G/H = HGn _6n71 +6n71 _6n72+'~~+6j+1 _GJH
< NS — Gl + [|Gn-t — Gual| + ..+ |6 11 — &
< }”IIUoHH’H [To]| -7+ [ To
y"*
———7" [0 (36)

Since 0 < y < 1, we have lim, j_se HGn — GjH =0 Hence, {&,}_, constitutes a Cauchy sequence in the
Hilbert space, which guarantees that the series solution @ (x,t) = Y;> , Uy is convergent. O
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In this theorem, the convergence of the solution series is rigorously established, and the sufficient
conditions for convergence are precisely formulated. These conditions are explicitly employed to derive
the stated results, thereby ensuring the validity of the convergence analysis and the soundness of the
underlying mathematical framework. The following theorem demonstrates that the convergent series
indeed represents the exact solution of the governing equation, thereby confirming that the obtained
solution is not merely an approximation but coincides with the true solution of the problem.

Theorem 4.2. If the series @(x,r) = Y., Ux converges, then it represents the exact solution to the
problem (18)-(19)

Proof
Assuming the series solution converges, denoted by ¢(x,1) = ¥, Uy, it follows that, lim; . U; = 0,
Yi—0[0j+1—0;] = Bnt1 —Up and so,

Y (641 — 0] = lim U; — By = — 0o (37)
j=0 e
Utilizing the operator 42D?
Y D7 [Bj41 -] =0 (38)
J=0

Meanwhile, based on definition (32), we obtain
ABD?[U/+1 -Uj] = ABD?[Q[[UO +014...+0;] AT+ 01 +... 4+ U] (39)

provided that j > 1 it follows from definition (31) that

DB - U] =D}

— [Uj]—(l —ﬁ){L(Uo—i—Ul+...—|—Uj)—L(U()+Ul —|—...+Uj_1)}

/Otﬁ([_r(fgj_l{L(Go+Ul+...+Uj)L(UO+UI+...+U,-_1)}dT] (40)

We observe in Equation (40) that when applying the operator ABD? , the second and third terms are the
inverse of the operator, resulting in the following:

BP0, — U] = —*BDP[5;] - {L(UO+61 + i U) = LG+ Uy +...+Uj_1)},j >1. (41)
Consequently, we have

Y. 402511~ = -0 o] { L) |
=0

ABDﬁ [Gy]— {L (Go+0y) — (Uo)}

—ABpP(15,] — {L Co+ 01 +0,) — (UO+UI)}

~*DP [ {L00+01+Uz+ AT, - (Uo+61+...+8n1)}
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8 5 UNIQUENESS

Therefore,
Y D00 -0 = ABD?{ Y U/} L{ Y Uj} (42)
j=0 =0 =0

From Equations (38) and (42), we can observe that the solution series represents the exact solution to
Problem (18)-(19). O

Theorem 4.3. Assume the infinite series .
) B
k=0
converges to the exact solution @(x,z). If one uses the partial sum
J
) Ui
k=0

as an approximation, then the truncation error E;(x,t) can be bounded by

,},j+l
E; < Ol
) < 22 o
Proof
from inequality (36), we have
1—9yrJ .
e ) (13)
For n > j, Now, as n — o then &, — @(x,t). So,
J 1—yJ .
Be)~ Y 0| < L o (44)
k=0 1=y

Also, since 0 < ¥y < 1 we have (1 —9"/) < 1, Then, we conclude

o(x,1)— iUk

k=0

1 ,
< J+1
<ol (@9

This theorem shows that the truncation error of the solution series can be explicitly controlled and
decays geometrically with respect to the contraction constant y. Consequently, increasing the number of
terms in the partial sum leads to a rapid improvement in accuracy, highlighting the numerical efficiency
of the proposed method.

5. Uniqueness

Assume that the analytical solution of the fractional Fornberg-Whitham equation (FWE) obtained
through the YJ-VIM is unique.
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Define the norm on [0,b],b > 0 by

|@|| = sup |@(t)|, for all @ € H(0,b),
t€[0,b]

Now, consider
BpPe = &(@)+N(@), 0<v¥<I, (46)

with the initial condition:
o(x,0) = g(x). (47)

Where £(@) = By — By, N(O) = 30,0y + BBy — OB, are linear and nonlinear operator respectively
and £,91 agree with lipschitz condition. Let y and ¢ be solutions of the equation (46) - (47), where the
initial conditions are the same. Using equation (28) and equation(29), the solutions can be written as
follows:

t _ \0-1
v=at - {1 -otw - [0 T 1wa). (19
t _ -1
o=~ {(1-oie) - [ 0" T Le)as}. (49
then, o
o -vi= |- ot L) + | [ 0T L0) - Lwar] (50
Using the triangle inequality to obtain the following
t _ \U-1
o-vi<l1-oiew)- Lol +|| [ o L) - L 61
t _ ~\0-1
oyl < =o)Lty Lo+ [ |0 110~ Liw) o (52
let M :Max[’ﬁ([}zf)_l ‘] and since 0 < ¥ <1, we get
p—vl< [ MiLig)-L(y)las (53)

Given that L(@) = £(@) +N(®@), it follows that L(®) satisfies the Lipschitz condition because £(@) and
N(@) themselves satisfy the Lipschitz condition, then, we have

t
lp—y| < /0 Mk|o —y|dt where k constant (54)

Now, by applying Gronwall’s inequality, we obtain the following inequality

lo—w| <0 (55)

By the properties of the norm, we conclude that the two solutions are identical; hence, the solution is
unique
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10 6 APPLICATION

6. Application

In this part, we will present an example as an application of the above method and demonstrate the
steps involved in the derivation process. This example will highlight the practicality and efficiency of the
proposed method in solving complex problems. Additionally, they will provide a deeper understanding of
how the iterative solutions converge to the exact solution under different scenarios.

Example 6.1. Consider the fractional Fornberg-Whitham equation:
DV — By + By + OB, = 30,00x + OBy, 0< D <1 (56)

with the initial condition:

o(x,0) = (cosh %)2 . (57)

Using Equation (28), we obtain the following iterative solutions:

X\ 2
w:( hf),
0 cos4

1 1 x 9?11 x
@ =~ +-coshe — [1—0 —sinhZ
1= peoshy [ +r(19+1)] 325“1 2’
[ DO )
121 x 19 10
—“coshZ |(1—0)2+2(1- 0
TV 2{( Fr201-9)% CESI (219+1)}

I x{ﬁ(l—ﬁ)tﬁl 19%2”1}

— — ginh=Z
28 ™2 |7 ) T
11 11 9r?
§+§ Shi ﬁsmh [ —19+1_,<19+1)]
121 B0 20
—cosh —9)2+2(1 -0
HET 2[< 2 >r(0+1)+r(219+1)]
11 x [O(1—0)? 1 9220-]
——sin h +
T 128 (o) r(29)
t? 9220 93 11331 x
— (1= +3(1-9)?%=— +3(1 -0 inh =
[( VA3 =9) 5y + 3 )1“(219+1)+1“(319+1)} 8192 > 2
121 X tﬂfl 1521‘21971 193)/‘31971
h= [3(1—0)*0 51—
2048 "2 [ =9y P39 Tasy T2 e }
11 X ) t1972 1921‘21972 193131972
o sinhl |(1— 92— 4 2(1—
51272 [( D= P2 ras— tree -1
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The approximate solution is:

11 x 11 x A
@(x,1) ==+ ~cosh= — —sinh= |1 — O+ ———
(6,) = 3 + 5 cosh =35 sin 2{ +r(19+1)}
121 x A 1?0
—cosh= [(1-0)2+2(1—0
TV [( 2 )F(ﬂ+1)+r(219+1)}
11, x [0 =) 220!
— ——sinh = +
1287 2 r(9) (29)
t? 92?0 933 71331 . «x
—|(1=8)P+3(1-0)*0=——-+3(1 -0 inh =
{( VA3 =9 gy + 3 )r(w+1)+r(319+1)} 8192° "3
121 X [19_1 192t213—1 193[319_1
hZ [3(1-9)%0 51—
* 2043 2[( Oy T Taey T r(w)]
11 . X ) tz?72 192t21972 193t31972
— —sinh= |(1— —42(1— :
51272 [( D= P2 ras 1t ree -1
For ¥ =1, the exact solution is:
11
@ (x,1) = cosh? (2 — 24t) (58)

Figure 1. In Example 6.1, plots (a) and (b) demonstrate that the curve progressively converges toward the exact
solution as ¥ approaches 1. At ¥ =0.9. the curve aligns almost perfectlv with the one corresponding to ¥ = 1.

. Exact and Approximate Solution for =1 2 Approximate solution for different v values

Approximate Solution (i
= = = Exact Solution

25

20

10+

Remark 6.1. The parameter ¥ denotes the order of the fractional derivative used in the Atangana—
Baleanu operator.

The results presented in Table 2 clearly indicate the superiority of the YJ-VIM over the mVIM, as it
produces considerably smaller absolute errors for all values of s and fractional order 9. This superiority
becomes more evident for smaller values of 19, highlighting the accuracy and robustness of the proposed
method in comparison with previously published approaches for Fornberg—Whitham type equations.
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12 6 APPLICATION

Figure 2. In Example 6.1, plots (a), (b), (c), and (d) provide surface representations that highlight the
numerical solution and the exact solution, shown in plot (e).

correspondence between the

Approximate Solution u(x,t) at # =1

Approximate Solution u(x.t) at = 0.8

Surface Plot of (cosh((x/4) -

Approximate Solution u(x,t) at # = 0.9

Approximate Solution u(xt) at # = 0.7
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Table 1. A table displaying the absolute error for Example 6.1, where the Atangana-Baleanu operator is applied.

X ABﬁzl ABﬁ:()_g ABﬁ:()_g AB,@ =0.7
5 0.005757 0.0039514 0.065314 0.17893
5.5 0.0070306 0.0070339 0.079532 0.22314
6 0.008746 0.010558 0.098746 0.28137
6.5 0.011011 0.014746 0.12416 0.35728
7 0.013967 0.01986 0.15738 0.45564
7.5 0.017801 0.026222 0.20049 0.58262
3 0.022754 0.034232 0.25619 0.74621
8.5 0.029136 0.044392 0.32799 0.95667
9 0.037348 0.057341 0.42039 1.2272
9.5 0.047907 0.073892 0.53921 1.5749

Table 2. Comparison of absolute errors for Example 6.1 demonstrates that the errors obtained using the proposed
method are significantly smaller than those reported in the previously published study [41], where the modified
variational iteration method (mVIM) was applied. These results indicate that the present approach provides
improved accuracy and convergence efficiency in solving Fornberg—Whitham—type equations.

1 ABy—i ‘ ABy—09 ABy—038
YJ-VIM mVIM YJ-VIM mVIM YJ-VIM mVIM
5 0.005757 0.005757 0.0039514 0.10332 0.065314 0.17664
5.5 0.0070306 0.0070306 0.0070339 0.13346 0.079532 0.22897
6 0.008746 0.008746 0.010558 0.17199 0.098746 0.29568
6.5 0.011011 0.011011 0.014746 0.22132 0.12416 0.38096
7 0.013967 0.013967 0.01986 0.28455 0.15738 0.49019
7.5 0.017801 0.017801 0.026222 0.36567 0.20049 0.63021
8 0.022754 0.022754 0.034232 0.46975 0.25619 0.80982
8.5 0.029136 0.029136 0.044392 0.60335 0.32799 1.0403
9 0.037348 0.037348 0.057341 0.77486 0.42039 1.3362
9.5 0.047907 0.047907 0.073892 0.99504 0.53921 1.716

7. Conclusion

In this work, a closed-form series solution for the fractional Fornberg—Whitham equation has been derived
using the Yasser—Jassim Variational Iteration Method (YJ-VIM) under the Atangana—Baleanu fractional
derivative. The proposed approach provides an explicit analytical representation of the solution together
with a systematic procedure for computing successive approximations.

A rigorous convergence analysis has been established by proving that the associated iteration operator
is contractive, which guarantees convergence of the solution series in the Hilbert space H'. In addition,
an explicit truncation error bound has been obtained, allowing a precise quantitative assessment of
the approximation accuracy. Existence and uniqueness of the solution have also been ensured through
operator-theoretic arguments.

From a comparative perspective, the proposed YJ-VIM method exhibits clear advantages over
the mVIM reported in the literature. While classical and mVIM-based approaches mainly focus on
constructing approximate solutions, the present method additionally provides a rigorous convergence
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theorem, a computable error estimate, and explicit uniqueness conditions. Moreover, the incorporation of
the Yasser—Jassim transform simplifies the treatment of the Atangana—Baleanu fractional operator and
leads to faster convergence with fewer iterations.

Numerical results confirm the theoretical analysis and demonstrate that the proposed approach achieves
high accuracy with reduced computational effort. Overall, the YJ-VIM framework offers a robust and
efficient alternative for solving nonlinear fractional partial differential equations. Future work may focus
on higher-dimensional problems, more general boundary conditions, or alternative fractional derivatives.

Table 3. List of Abbreviations

Notation Comment
YJ Yasser—Jassim Transform.
I'(5) Gamma Function.
Ey(1) Mittage-Leffler Function.
H! Hilbert space.
mVIM modified variational iteration method
ABFD Atangana-Baleanu Fractional Derivative.
ABFI Atangana-Baleanu Fractional Integral.
FC Fractional Calculus.
FWE Fornberg-Whitham Equation.
FFWE Fractional Fornberg-Whitham Equation.
FPDE Fractional Partial Differential Equation.
YJ-VIM Yasser—Jassim Transform-variational iteration
method.
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