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Abstract Insurance fraud carries hefty economic burdens worldwide, prompting insurers to create more advanced detection
capabilities that can transcend the weaknesses of static, traditional red-flag systems. Though many risk variables have been
studied with machine learning, the temporal aspect of claims—the timing of accident and claims submissions in respect to
the onset of policy—is an area largely left unexamined but potentially high leverage predictive area. In this research, we
examine the potential in temporal patterns as leading indicators in the early identification of automobile insurance fraud. Our
main goal here is to create and verify a powerful statistical model that systematically isolates and quantifies the predictive
strength of early-reporting behavior while also controlling for a large suite of well-known risks. A hierarchical logistic
modeling structure was used with a large sample size of 15,420 auto claims, including 923 confirmed instances of fraud.
Demographic, policy, and accident variables were gradually added in successive models prior to the final inclusion of binary
early-timed event (accidents and claims reported in the first 15 days after policy onset) indicators. The resulting final model
showed excellent discrimination and achieved an Area Under the Receiver Operating Characteristic Curve (AUC) value
of 0.800. We found that while policy characteristics (e.g., all-perils coverage), and accident conditions (policyholder at
fault, OR=14.2), were the most salient predictors, temporal patterns involving early-reporting behavior exhibited directional
associations with increased fraud risk, though statistical significance was limited by the low prevalence of early-event claims
in the dataset. These preliminary findings suggest that temporal dimensions warrant further investigation with larger samples
specifically enriched for early policy events. From an operational view, the model shows substantial efficiency benefits,
with the model identifying a successful 85.8% of all fraudulent instances in the top quartile (40% rounded down) of claims
sorted by the resulting risk score. This study establishes a methodological foundation for incorporating temporal analytics
into fraud detection frameworks, demonstrating the feasibility of operationalizing timing variables alongside traditional risk
factors and providing initial evidence that motivates larger-scale validation studies to definitively establish the predictive
value of temporal patterns in insurance fraud detection.
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1. Introduction

The insurance market is the bedrock of economic solidity, but its credibility is continuously compromised due
to fraudulent practices. Insurance fraud exists worldwide and produces staggering monetary losses, which are
projected at billions of dollars per year in high-income economies alone and thus pay in the form of increased
premium rates for truthful policyholders [1-3]. The automobile insurance market is no exception and highly
vulnerable to such wrongful practices, ranging from the occasional exaggeration in legitimate claims to the staging
of fake mishaps [4, 5]. The growing cunning in the fraudulent schemes demands a shift in paradigm from the
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customary detection practice, in its often manual view and stationary red-flag based systems, towards more dynamic
and information-driven ones that can discern subtle behavioral threads of wrongdoings [6, 7].

The core challenge for insurers is the discrimination with precision and efficiency between fraudulent and valid
claims from a large pool of submissions. The problem is further complicated by the fundamental information
asymmetry in the insurer-policyholder dyad [8]. To address the challenge, the area has relied increasingly on
machine learning and high-end statistical models in order to automatise and augment detection functions [9—11].
The methods have proved highly successful in the detection of intricate, non-linearity transactions across multiple
risk factors such as the demographics of the claimant, characteristics and conditions of the policy, and facts relating
to the accident [12, 13]. Despite the advances in analysis, there remains a substantial research gap in the systematic
canvassing of temporal dynamics in terms of predictive correlates with fraud.

Though earlier work has modeled extensively what a claim consists of (e.g., type of vehicle, age of policyholder),
it has looked far less at the extent of when a claim arises in the policy’s lifecycle [14]. How far in the future an
accident happens, or a claim arises, from the date policies were issued can provide essential behavioral cues. For
example, a claim made far too quickly after policies were acquired can be indicative of premeditation, the hallmark
of organized rings of crooks [15], though alternative explanations such as opportunistic coverage of pre-existing
damage or adverse selection by high-risk individuals anticipating claims must also be considered. In turn, other
temporal patterns can be suggestive of the existence of other types of fraudulent activity. Here, we conjecture that
such temporal signatures, hitherto little studied in the regular literature on fraud, are a rich and hitherto neglected
store of predictive information awaited in the calculus of risks [16].

Thus, this study endeavours to bridge the gap by methodically analyzing the predictive value of temporal patterns
in motor insurance claims. The main goals are three: first, to see if the date and timing of an accident and resulting
claim submission significantly enhances the predictive value of fraud detection models while controlling for an
exhaustive landmark set of guaranteed risk factors. Second, to construct a simple and understandable logistic
regression model that can be used for real-time stratification of risks. Third, to put a number on the operational value
of the model by gauging its potential for condensing fraudulent claims into a sizeable high-risk band amenable
to handling. The main research question is: Do temporal patterns, i.e., early-life policy events, turn statistically
significantly into predictors of motor insurance fraud?

The key contribution of the current paper is the incorporation of temporal analytics in a comprehensive
machine learning model for detecting fraud. Based on this new dimension, the current research proposes a fresh
perspective from which to examine and model fraudulent activity, beyond the static characteristics and extending to
dynamic, time-driven signals. This study represents an exploratory investigation that establishes the methodological
foundation for testing temporal hypotheses in fraud detection contexts, providing preliminary evidence regarding
the predictive signal of timing variables while acknowledging the data constraints that limit definitive statistical
conclusions. From a practical point of view, the resulting model produces an obvious route forward for insurers in
improving the process for screening claims such that more effective allocation of scarce investigative resources can
be achieved through focusing the claims with the maximum likely possibility for fraud. From a theoretical point of
view, the current work links behavioral economics principles of timing and purpose with the proven factors of risk
in the literature for insurance [3, 17].

The rest of the paper is organized thus. Section 2 gives a comprehensive literature review on insurance fraud
detection, applications of machine learning, and the little research available on temporal analysis. Section 3 outlines
the data source, construction of variables and analytical methodology, including the definition of the hierarchical
logistic models. Section 4 displays the empirical findings, which includes comparisons of the performance of the
models and a sensitiveness analysis for the final model’s predictors. Section 5 gives the theoretical and practical
applications of the findings, the limitation in the study and the future research directions. Section 6 finally provides
concluding comments on the importance in including temporal pattern in current fraud detection systems.
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2. Literature Review

The acadmic exploration of efficient insurance fraud detection has undergone a remarkable transformation, shifting
from heuristic-based, manually operated “red flag” schemes to high-powered, data-driven techniques [7, 18]. Initial
research relied largely on statistical and econometric models, with logistic regression establishing a baseline due
to its ease of interpretation and strong performance in binary, classifying problems that are prevalent in detecting
frauds [2, 3]. In the last decade, however, the focus shifted predominantly to machine learning (ML), which boasts
superior capabilities in uncovering difficult-to-perceive, non-linear relationships commonly ignored by classical
statistical techniques [6, 11, 19]. Various ML models have been proven efficient in multiple works. Forest-like
models such as Random Forests and Gradient Boosting Machines (e.g., XGBoost, LightGBM) are often the best-
performing models due to the high precision and competency in processing the mixed types (heterogeneity) in
the types in the insurance claims encountered in the field [5, 20, 21]. Recently, deep learning models gained
recognition, specifically in utilizing the unstructured information such as text in the claim notes or photographs in
the accident scenes [22, 23]. In parallel, more advanced tools such as social network analysis (SNA) are utilized
nowadays in detecting organized crime rings committed in the operations in the field by examining the claimsants’
and the service providers’ and the others’ ties in the social structure [24, 25]. In spite of the latest works discussed
above, there exists a sizeable gap in the literature in the fact that there are lesser concerns in developing the dynamic,
temporal characteristics from the claimsants’ behaviors with a tendency more concentrated in developing the static,
cross-sectional characteristics.

The temporal aspect of claims—the “when” of a fraudulent behavior—constitutes a notably blind area in the
literature of insurance fraud. Even though temporal data analysis gained the pivotal role in fraud detection in other
fields such as credit card activities, in which sequential behavior takes center stage [16, 26, 27], its use in the
lifecycle of the insurance policy is in its early stages. The notion that the timing can be an important behavioral
cue is far from original; the early theoretical work proposed its possible significance [14] but has since been
subject to little rigorous empirical corroboration. Behavioral reasoning argues that timing can exhibit behavioral
explanations such as intents. A good example is that a claim reported for an accident that happened a short while
after the inception of the policy can indicate the premotion or the opportunistic coverage for the existing condition,
which supports main principles of fraud theory [8, 15] but, so far, little effort exists examining combined temporal
behavior such the interaction effect among the timing of the accident and the timing of the report of the accident
such can produce more substantial behavioral cues. The absence of focus in the area manifests in the opportunity
in deriving more subtle behaviorally-driven predictive models beyond the static attributes.

Empirically, no matter which specific model was employed, the literature pointed to a systematic set of static
risk factors. Gently, these are commonly categorized in several ways. (1) Demographic predictors, like the age,
gender, and marital status of the policyholder, are commonly used baseline controls [17]. (2) Policy features,
which capture the essential characteristics of the insurance contract, are commonly strong predictors. Moral hazard
and opportunity factors, like comprehensive “all-perils” coverage and low deductibles, are always correlated with
high fraud risk [28]. (3) Car factors, including the age, type (e.g., sport, utility), and value of the damaged vehicle,
are also used in assessing the risk. (4) Accident conditions contain important information, with incident-specific
conditions like the policyholder being at fault or the lack of a police report being strong discriminators in the
majority of the studies [2, 12, 29]. The consistency across various datasets and geographically different contexts
lends strong empirical support for developing and investigating new hypotheses.

The validity of any predictive model depends on stringent validation. In the fraud detection literature, a
consensus set of practices has developed so that models are not only correct but also robust and generalizable.
Discriminability, the most common measure for evaluating a model’s discriminatory power, is the Area Under
the Receiver Operating Characteristic Curve (ROC-AUC), which gives a comprehensive measure of the capacity
of a model to distinguish classes at all possible thresholds [30]. In addition to discrimination, calibration—the
concordance among predicted probabilities and observed outcomes—is essential for practical implementation and
commonly evaluated with techniques such as the Hosmer-Lemeshow test [31]. In addition, the practice of risk
stratification methods is widespread used to illustrate the operational value of a model by its potential to condense
fraudulent cases into high-risk bins. To secure stability and avoid overfitting, especially with elaborate ML models,
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internal validating procedures such as k-fold cross-validation or bootstrap validating are gaining prominence [32].
Validation procedures are paramount in establishing the reliability of inferences and the potential operational value
in real-world applications of a candidate model.

In short, while current literature provides a high-end range of methodologies and names a number of static
predictors of insurance fraud detection, it falls short in covering the temporal dynamics behind fraudulent activity.
The current work tries to fill the gap with a systematic exploration of the timing of major events in the lifecycle of
the insurance policy and the effect it has on the possibility of fraud. In more specific terms, the research explores
whether earlier accidental dates and date-of-reporting and whether earlier accidental date and date-of-reporting are
more predictive of fraudulent purpose and whether the temporal cues combine with policyholder characteristics and
policy features in making fraud risk bigger. Through the incorporation of temporal features in predictive models,
the current work endeavours to promote a more dynamic view of fraud detection, leaving the statics behind and
moving towards behaviorally driven, temporally aware risk estimation.

3. Methodology

It utilizes a quantitative, predictive modeling approach to examine the degree to which temporal patterns in motor
Insurance claims can aid in the identification of fraud. The research design is observational and utilizes the large-
scale admin dataset to derive and test a sequence of logistic regressions models. The section describes the data
source and preprocessing, lists the variables used in the analysis, describes the analytical plan, and lists the
procedures for validating models and evaluating the performance.

3.1. Data Source and Sample

The analysis utilized a publicly available dataset of motor vehicle insurance claims from the Kaggle repository
of data. While the specific insurer and geographic market are not disclosed, the dataset structure and fraud
prevalence rate (5.99%) are consistent with U.S. automobile insurance portfolios reported in the literature. The
dataset consisted of 15,420 unique claims and offered a cross-sectional snapshot of policyholder, motor, and
accident attributes for each attendant claim. Among them, 923 were marked fraudulent, which constituted a
fraudulent prevalence of 5.99% in the sample. Such a degree of class imbalance is common in fraud detection
applications and a main point of focus in the approach to modeling. The variables in the dataset were categorical
and numerical in mix, which required the preprocessing step in order to transform them in a form amenable to
regression analysis. Modelling and all data manipulation were carried out utilizing the R statistical programming
language and happened mostly with the aid of such packages like ‘dplyr* for the purpose of the wrangling of the
data, ‘pROC" for the purpose of performance evaluation, and ‘boot* for the purpose of the validation. Since the
data was publicly available and anonymized, direct ethical issues relating to the issue of policyholder’s privacy are
negligible.

3.2. Variable Definition and Construction

The dependent variable for our project is Fraud, a dummy indicator with a value of 1 for claims marked up as
fraudulent and O for legitimate claims. The independent variables were then built and binned into multiple bins,
with main emphasis on the new temporal predictors, which are explained in Table 1.
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Table 1. Variable Definitions and Specifications

Variable Type Categories/Range Description
Fraud Binary 0,1 Fraud indicator (1=Fraud,
0=Non-fraud)
AccidentTiming Categorical ~ VeryEarly (1-7  Accident timing category rel-
days), Early (8-15 ative to policy inception
days), Moderate
(15-30 days),
Late (>30 days),
NoAccident
ClaimTiming Categorical  Quick (8-15 days), Claim filing timing category
Moderate (15-30 relative to policy inception
days),  Delayed
(>30 days),
NoClaim
TemporalPattern Categorical LateBoth, Combined temporal pattern
EarlyAccOnly, classification
EarlyClaimOnly,
EarlyBoth
EarlyAccident Binary 0,1 Early accident indicator (<15
days or none)
EarlyClaimReport ~ Binary 0,1 Early claim report indicator
(<15 days)
Male Binary 0,1 Gender (1=Male, O=Female)
Married Binary 0,1 Marital status (1=Married,
0=Other)
AgeNum Continuous  16.5-70 Policyholder age (numeric
midpoint)
AgeGrp Categorical Young, Middle, Age group classification
Senior
PolicyGrp Categorical Liability, Policy type group
Collision,
AllPerils, Other
Deduct Continuous  300-700 Policy deductible amount
DrvRating Continuous 14 Driver rating score
PastClaims Continuous  0-5 Number of past claims
VehCat Categorical ~ Sedan, Sport, Util-  Vehicle category
ity
VehAge Continuous  0-8 Age of vehicle in years
VehPrice Ordinal 1-6 Vehicle price category
Urban Binary 0,1 Accident location (1=Urban,
O0=Rural)
Fault_.PH Binary 0,1 Fault attribution (1=Policy-
holder, O=Third party)
PoliceRep Binary 0,1 Police report filed (1=Yes,
0=No)
Witness Binary 0,1 Witness  present  (1=Yes,
0=No)
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The core temporal variables, EarlyAccident and EarlyClaimReport, were designed from the base data.
EarlyAccident was coded 1 if the accident happened in the first 15 days after the initiation of the policy or if
no date of accident was reported, and O if not. In the same light, EarlyClaimReport was coded 1 if the report
of the claim happened in the first 15 days after the commencement date of the policy, and O if not. The 15-
day threshold was selected based on behavioral economics literature suggesting premeditation windows, and the
binary operationalization provides clear, actionable decision rules for practitioners while maximizing statistical
power given the small number of early-event cases. While this simplified approach may not capture non-linear
relationships, it serves as an appropriate first test of whether temporal patterns have any predictive signal. In order
to control for the confirmed confounders, the whole range of demographic, policy, vehicle, and accident variables
was added.

3.3. Analytical Plan and Model Specification

The analytical plan’s centerpiece is a hierarchical logistic modeling plan for the regression. The reason for the
selection was the high interpretability through odds ratios (ORs), combined with the potential to systematically
assess the incremental predictive value of the variable blocks [31]. Logistic regression was chosen over more
complex machine learning methods because fraud detection models must be explainable to claims adjusters, legal
teams, and regulators, and our primary goal was to test whether temporal patterns have predictive value rather than
to maximize predictive accuracy. The logistic regression model’s general form is:

k
log <1pp) = o+ Z/BiXi
i=1

where p is the probability of a claim being fraudulent, X; are the independent variables, and /3; are the coefficients.

A five-step nested sequence of models was defined, as reported in Table 2, in order to single out the effect of each
block of variables. Models were compared with AIC, BIC, and McFadden’s pseudo—RQ; the effect significance of
the improvement was instead evaluated with the Likelihood Ratio Test (LRT) [33].

Table 2. Logistic Regression Model Specifications

Model Description Variables Included Purpose
Model 1  Demographics Only Male, Married, AgeNum Baseline demographic
effects
Model 2 Demographics + Pol- Model 1 + PolicyGrp, Deduct, DrvRating, Add policy-level fraud
icy PastClaims risk factors
Model 3 Model 2 + Vehicle & Model 2 + VehCat, VehAge, VehPrice, Add accident
Accident Urban, Fault_PH, PoliceRep, Witness circumstances
Model 4 Model 3 + Temporal Model 3 + EarlyAccident, EarlyClaimReport Test temporal pattern
Patterns hypothesis (KEY
MODEL)
Model 5 Model 4 + Interactions  Model 4 + EarlyAccidentxMale, Explore effect modifica-
EarlyAccident x AgeGrp, tion

EarlyClaimReportx PolicyGrp

Note: Models were built hierarchically. Model 4 is the primary model testing the temporal pattern hypothesis.

Model building started with a baseline demographic model (Model 1), and then policy (Model 2), and
accident/vehicle characteristics (Model 3) were added in sequence in order to put in place a complete control
model. Policy and temporal key variables were added in Model 4 in order to examine the core hypothesis, and
interaction effects were added in Model 5. We retained the natural fraud prevalence rate (5.99%) without employing
resampling techniques, as this preserves realistic base rates needed for operational risk scoring and our sample
size of 923 fraud cases provides adequate statistical power (events-per-variable ratio of 51.3) for stable logistic
regression estimation.
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3.4. Model Validation and Performance Evaluation

A multi-perspective approach was adopted in order to establish the validity, robustness, and practical usefulness in
the final model (Model 4). The process incorporated its discrimination, calibration along with stability assessments.

Firstly, the discriminatory power if the model was assessed based on the Area Under the Receiver Operating
Characteristic Curve (AUC-ROC) [30]. Then, the calibration if the model was visually inspected with a calibration
plot and statistically with the Hosmer-Lemeshow goodness-of-fit test [31]. The Hosmer-Lemeshow statistic can be
computed from:

G
_ (Og — Eg>2
X%{L B Z Eg(l - Eg/”g)

where Oy, E,, and n, are the observed events, expected events, and total observations in group g.
Third, some robustness checks were carried out. To assess multicollinearity, the Variance Inflation Factor (VIF)
[34] was computed for each predictor j as:
1
VIF;

iT 1 _ p2
- R

where R? is the R-squared from the regression of predictor j against all others. The effect of single observations
was also determined with Cook’s distance (D;) [35] and model stability was then determined with a bootstrapping
protocol with 500 resampling for deriving an optimism-correction performance estimate [32].

Lastly, a risk stratification was also performed by partitioning claims along quintiles according to their Model
4 predicted fraud probability. This shows the useful applicability from the model in the focus of fraudulent claims
into high-risk groups.

4. Results

The second part includes the presentation of the empirical result of the project, which starts with the descriptive
statistic of the dataset, then follows with the intricate descriptions about the building and comparison of the
hierarchical model. Here, the result from the final predictive model (Model 4) are thoroughly discussed, including
the statistical analysis on the main predictors and the direct effect of the temporal variables. Lastly, the result from
the complete model diagnostic, validation process, and applicable risk stratification analysis are reported.

Table 3. Descriptive Statistics by Fraud Status — Continuous Variables

Variable Group N Mean (SD) Median Range p-value

AgeNum Non-Fraud 14497  39.52 (10.12) 38.00 16.5-70.0 0.001**
Fraud 923 38.40 (10.29) 38.00 16.5-70.0

Deduct Non-Fraud 14497 407.51 (43.77)  400.00  300.0-700.0 0.042%*
Fraud 923 410.73 (46.62)  400.00  300.0-700.0

DrvRating  Non-Fraud 14497 2.49 (1.12) 2.00 1.0-4.0 0.369
Fraud 923 2.52 (1.12) 3.00 1.04.0

PastClaims Non-Fraud 14497 1.98 (1.70) 1.00 0.0-5.0 <0.001%%*
Fraud 923 1.56 (1.58) 1.00 0.0-5.0

VehAge Non-Fraud 14497 6.59 (1.49) 7.00 0.0-8.0 <0.001***
Fraud 923 6.39 (1.65) 7.00 0.0-8.0

VehPrice Non-Fraud 14497 2.78 (1.43) 2.00 1.0-6.0 <0.0071***
Fraud 923 2.98 (1.67) 2.00 1.0-6.0

Note: *p<0.05, ¥**p<0.01, ***p<0.001. P-values from independent t-tests.
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4.1. Descriptive Statistics

The analysis was carried out for a sample size of 15,420 auto claims, among which fraudulent claims were detected
as 923 (5.99%). Table 3 shows the descriptive statistics for the continuous variables binned and stratified by fraud
status. Statistically significant differences (p < 0.05) were found at the level of fraudulent vs. non-fraudulent claims
for some variables. Fradulent claims were, statistically significantly (p < 0.05), slightly younger policyholders with
higher deductable, lower no. of prior claims, newer (more recent) cars and pricier cars.

Distribution of temporal patterns, the main focus in this analysis, is reported in Table 4. It is clear and highly
significant that timing of claims and fraud are related. Fraud rate for claims with *Early Accident Only’ (accident
<15 days since inception, however, claim >15 days) was 11.65%, and for claims with "Early Both’ (accident and
claim <15 days) was 14.29%. Both are roughly twice the 5.94% fraud rate in the *Late Both’ group, which covers
the large bulk of the claims. The initial bivariate analysis thus brings good initial support for the speculation that
early-life policy events are characterized more often with increased incidence of fraud.

Table 4. Temporal Patterns and Fraud Rates

Pattern Total N Non-Fraud N (%) Fraud N (%) Fraud Rate (%)

A. Accident Timing

Late 15247 14342 (94.1) 905 (5.9) 5.94

Moderate 49 46 (93.9) 3(6.1) 6.12

Early 55 50 (90.9) 5(9.1) 9.09

VeryEarly 14 13 (92.9) 1(7.1) 7.14

NoAccident 55 46 (83.6) 9(16.4) 16.36

B. Claim Timing

Delayed 15342 14428 (94.0) 914 (6.0) 5.96

Moderate 56 50 (89.3) 6 (10.7) 10.71

Quick 21 18 (85.7) 3(14.3) 14.29

NoClaim 1 1 (100.0) 0(0.0) 0.00

C. Combined Temporal Pattern

LateBoth 15296 14388 (94.1) 908 (5.9) 5.94

EarlyAccidentOnly 103 91 (88.3) 12 (11.7) 11.65

EarlyBoth 21 18 (85.7) 3(14.3) 14.29
Note: Overall fraud rate: 5.99%. Early patterns show 2-3x higher fraud rates than late
patterns.

4.2. Empirical Results and Interaction Effects

The final predictive model (Model 4)results are reported in Table 5. The odds ratios (ORs) are the multiplicative
effect of each predictor onto the odds ratio for the likelihood that a claim is fraudulent. Some predictors were found
highly significant.

Policy and Accident Characteristics were the strongest predictors. Claims in *AllPerils’ (OR = 55.2), and
"Collision’ (31.0) policies were far more likely to be fraudulent than in basic liability policies. The main point here
is the high moral hazard in comprehensive coverage. Fault attribution was the single strongest predictor, claims
where the policyholder was at fault (Fault_PH) were more than 14 times more likely to be fraudulent (14.2, p <
0.001). Police report presence (PoliceRep) was protective with the odds of fraud being about 45% less (0.553, p =
0.025).

Vehicle and Demographic Attributes also indicated significant effects. Fraud claims relating to sport vehicles
(VehCatSport) were with 2.5 times increased odds for fraud (OR = 2.45, p < 0.001). In demographics, age was
a significant attribute with each year older decreasing the odds for fraud by 1.4% (OR = 0.986, p = 0.002).
Policyholders being male increased the odds for submitting a fraudulent claim in total compared with females
by 25% (OR =1.25, p = 0.041).
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Temporal Patterns, our variables of key interest, exhibited effects in the expected direction, although their
statistical significance was weak. An early accident (EarlyAccident) was linked with an 87% increase in the
odds of fraud (OR = 1.87), an effect that was borderline significant (p = 0.075). An early report of a claim
(EarlyClaimReport) was linked with over double the odds of fraud (OR = 2.17), but the effect was not statistically
significant (p = 0.362), and the very small number of the occasion in this code (n=21) almost certainly prevents
the effect from attaining significance. This result indicates that although temporal patterns are directionally in
agreement with fraud risk, the independent predictive capability is moderate in reference to other variables, and
bigger sample sizes in early events would be required in order to attain statistical significance.

Table 5. Logistic Regression Models Comparison (Odds Ratios)

Variable Model 1 Model 2 Model 3 Model 4

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)
Male 1.502 (1.224-1.861)%*** 1.338 (1.087-1.663)** 1.248 (1.008-1.560)* 1.252 (1.010-1.565)*
Married 1.116 (0.952-1.310) 1.088 (0.926-1.279) 1.150 (0.969-1.368) 1.145 (0.965-1.363)
AgeNum 0.985 (0.978-0.993)*** 0.982 (0.974-0.989)%*** 0.985 (0.976-0.994)** 0.986 (0.976-0.994)**
PolicyGrpCollision - 10.815 (7.763-15.550)***  31.468 (19.257-51.872)***  31.013 (18.969-51.142)%***
PolicyGrpAllPerils - 16.042 (11.482-23.121)***  55.856 (33.448-94.032)***  55.225 (33.056-93.006)***
Deduct - 1.002 (1.001-1.003)%** 1.002 (1.001-1.003)%** 1.002 (1.001-1.004)**
DrvRating - 1.025 (0.965-1.088) 1.016 (0.955-1.081) 1.016 (0.955-1.081)
PastClaims - 1.007 (0.963-1.052) 1.005 (0.961-1.051) 1.007 (0.963-1.054)
VehCatSport - - 2.483 (1.691-3.602)%** 2.449 (1.667-3.554)%*
VehCatUtility - - 0.772 (0.526-1.115) 0.763 (0.519-1.102)
VehAge - - 0.969 (0.915-1.026) 0.970 (0.916-1.027)
VehPrice - - 1.029 (0.975-1.084) 1.030 (0.977-1.086)
Urban - - 0.784 (0.644-0.961)* 0.779 (0.640-0.956)*
Fault_PH - - 14.119 (10.271-20.049)***  14.201 (10.328-20.167)***
PoliceRep - - 0.551 (0.315-0.899)* 0.553 (0.316-0.901)*
Witness - - 0.759 (0.180-2.178) 0.760 (0.180-2.179)
EarlyAccident - - - 1.866 (0.939-3.420)
EarlyClaimReport - - - 2.174 (0.407-9.381)
Model Fit Statistics
N 15420 15420 15420 15420
AIC 6965.5 6447.3 5897.9 5895.6
BIC 6996.1 6516.1 6027.9 6040.9
McFadden R? 0.0043 0.0799 0.1608 0.1617

Note: *p<0.05, **p<0.01, ***p<0.001. OR = Odds Ratio; CI = Confidence Interval.

Model 5 interaction results are reported in Table 6. Interaction terms were for the most part non-significant
and were marked by extremely large confidence intervals, which revealed low statistical power for detecting
these more advanced types of association. For example, the interaction between early gender and early accident
(Male:EarlyAccident) possessed a large odds ratio of 4.82, which implies a possible strong synergy, but was not
statistically significant (p = 0.164). Since Model 5’s predictive performance was only very slightly better in general
(see Figure 1), then the more conservative Model 4 was used instead and comprises our final model.

From the estimation outcomes in Model 4 and Model 5, the paper presents a differentiated evaluation of the
hypothesized links among temporal dynamics and the likelihood of fraud. The result shows that early accidents in
the policy term are positively correlated with the possibility of fraud, with an odds ratio of 1.87 (p = 0.075), which
indicates a directionally similar but insignificantly marginally effect. Correspondingly, early reportage of claims
presents a very strong positive correlation (odds ratio = 2.17, p = 0.362), although the effect does not become
statistically significant due possibly to the negligible number of observed fraudulent events. The hypothesized
interaction effect of early accident and early reportage was not confirmed since the interaction terms in Model
5 were statistically insignificant. Correspondingly, the investigation failed to identify any difference from the
expected subgroups in the temporal effects among the subgroups based in terms of demographics and policy
characteristics. In general, although the direction of effects moves in the same theoretical direction, the failure to
statistically confirm the findings implies that the temporal characteristics per se are possibly not enough predictors
of fraud without the incorporation of more behavioral and contextual information.
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Table 6. Final Model with Temporal Interactions (Model 5)

Variable Coefficient OR 95% CI p-value
Male 0.2039 1.226 (0.989-1.534) 0.069
Married 0.1379 1.148 (0.967-1.366) 0.118
AgeNum —0.0140 0.986 (0.977-0.995) 0.003**
PolicyGrpCollision 3.4479 31.435 (19.218-51.863)  <0.001***
PolicyGrpAllPerils 4.0234 55.889 (33.436-94.169)  <0.001***
Deduct 0.0022 1.002 (1.001-1.004) 0.002%*
DrvRating 0.0162 1.016 (0.955-1.081) 0.608
PastClaims 0.0079 1.008 (0.963-1.054) 0.731
VehCatSport 0.9096 2.483 (1.689-3.605) <0.001%#%*
VehCatUtility —0.2699 0.763 (0.520-1.103) 0.159
VehAge —0.0326 0.968 (0.915-1.026) 0.265
VehPrice 0.0313 1.032 (0.978-1.087) 0.248
Urban —0.2508 0.778 (0.639-0.954) 0.014*
Fault_ PH 2.6533 14.200 (10.323-20.178)  <0.001***
PoliceRep —0.5959 0.551 (0.315-0.898) 0.025*
Witness —0.2778 0.757 (0.179-2.170) 0.651
EarlyAccident —0.4485 0.639 (0.033-3.680) 0.681
EarlyClaimReport —9.6701 0.000 (0.000-7.74€7) 0.970
Male:EarlyAccident 1.5735 4.823 (0.742-96.398) 0.164
EarlyAccident: AgeGrp Young —11.9838 0.000 (0.000-2.02¢19) 0.973
EarlyAccident: AgeGrpSenior —1.7165 0.180 (0.009-1.058) 0.116
PolicyGrpCollision:EarlyClaimReport 10.0515 23191.007  (0.000-0.000) 0.969
PolicyGrpAllPerils:EarlyClaimReport 11.3993 89259.959  (0.000-0.000) 0.965
Model Fit Statistics

N 15420

AIC 5899.0

BIC 6082.4

McFadden R? 0.1627

Note: *p<0.05, **p<0.01, ***p<0.001. OR = Odds Ratio; CI = Confidence Interval.

A. Model Fit: AIC and BIC B. Pseudo R? Progression C. ROC Curves Comparison
Lower values indicate better fit Model improvement with additional predictors
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Figure 1. Model Development and Comparison. Panel A shows the AIC and BIC for each of the five models, with lower
values indicating better fit. Panel B tracks the progression of McFadden’s and Nagelkerke’s Pseudo R? as more variable
blocks are added. Panel C displays the ROC curves for each model, illustrating the significant improvement in discriminatory
power from Model 1 to Model 3.
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4.3. Model Comparison and Evolution

The five successive logistic models’ performance is reported in Table 5 and in Figure 1. From the hierarchical
approach, there is a distinct pattern in model performance. Model 1, with only the demographic variables,
possessed extremely low predictive strength with an AUC of only 0.557 and an R? of only 0.0043. Adding policy
characteristics in Model 2 resulted in a marked increase in performance with the AUC reaching 0.700 and the R?
achieving 0.0799. The largest gain in performance was with the addition of the characteristics from the vehicle and
accident in Model 3, which saw the AUC and R? increased to 0.800 and 0.1608, respectively. The later addition of
the temporal pattern variables in Model 4 resulted in a minor improvement in fit statistics (AUC still 0.800, R? rose
to 0.1617). Analogously, the interaction terms in Model 5 only offered a tiny boost in performance (AUC 0.801, R?
0.1627), demonstrated by the almost horizontal lines between Models 3, 4, and 5 in Figure 1, panels B and C. This
important finding indicates that although policy and accident-oriented variables are the main cause of predictive
strength, the temporal patterns offer a statistically significant though tiny contribution to the explanatory potential
of the model. Due to the low performance improvement and Model 5’s increased complexity, Model 4 was chosen
as the final, most simplified model for close scrutiny and proof.

4.4. Model Diagnostics and Validation

Detailed diagnostic and validation checks verified Model 4 as robust and well-specified. The findings are tabulated
in Table 7 and illustrated in Figure 2. The Hosmer-Lemeshow test resulted in a non-significant statistic (x? = 8.426,
p = 0.393), with no indication of poor fit. The calibration plot (Panel C) visually verifies this, resulting in close
alignment in the predicted and observed rates of fraud. Multicollinearity was also not an issue, with mean VIF =
1.229 and no predictor with a resulting VIF ¢ 3.131. Though 906 instances (5.88% instances) were detected with
high influence through Cook’s Distance (Panel B), the resulting percentage represents the expected fraction due to
the actual rate of fraud (5.99%), indicating that the points with high influence are the actual rates of fraud and thus
expected.

Table 7. Model 4 Diagnostics, Performance, and Validation

Model Diagnostics Model Performance
Metric Value Metric Value (95% CI)
A. Goodness-of-Fit D. Discrimination
Hosmer-Lemeshow > 8.426 AUC-ROC 0.800
H-L p-value 0.393 95% CI (0.788-0.813)
H-L degrees of freedom 8
B. Multicollinearity (VIF) E. Bootstrap Validation
Mean VIF 1.229 (500 iterations)
Max VIF 3.131 Bootstrap Mean AUC 0.803
Variables with VIF > 5 0 Bootstrap Median AUC 0.803
Bootstrap 95% CI (0.791-0.814)
Optimism —0.0025
C. Influential Observations FE. Model Comparison
Cases with high Cook’s D 906 Model 1 AUC 0.557
% of total cases 5.88% Model 2 AUC 0.700
Model 3 AUC 0.800
Model 4 AUC 0.800
Model 5 AUC 0.801
Improvement (M4 vs M1) +0.244
Note: H-LL = Hosmer-Lemeshow; VIF = Variance Inflation Factor; AUC = Area Under
ROC Curve.

H-L test p > 0.05 indicates adequate fit. VIF > 10 suggests multicollinearity. Optimism
near ( indicates minimal overfitting.
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The discriminatory power of the model was good, with an AUC at 0.800 (95% CI: 0.788-0.813), which can be
seen in Panel D. Bootstrap validation with iteration number = 500 also validated the stability of the model. The
bootstrap mean AUC was observed at 0.803 and the optimism calculated was only -0.0025, which suggests a very
low possibility of overfitting and indicates that the model should generalize well to new information.
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Figure 2. Model 4 Diagnostic Plots. Panel A shows Pearson residuals against fitted values, with no discernible pattern
indicating good fit. Panel B plots Cook’s distance for each observation, with influential points generally corresponding
to fraud cases. Panel C is the calibration plot, where the close alignment of points to the diagonal line indicates excellent
calibration. Panel D shows the ROC curve for the final model, with an AUC of 0.800.

4.5. Risk Stratification and Practical Performance

The practical value of Model 4 is illustrated in the risk stratification analysis presented in Table 8 and Figure 3.
When claims are sorted according to their predicted fraud probability and are segregated into quintiles, the model
does a good job of sitting risks apart. The fraud rate among the *Very High’ risks (upper 20% of claims) was
16.28%, which was 2.72 times the base fraud rate of 5.99%. On the other hand, the *Very Low’ risks only carried
a fraud rate of 0.48%.

This stratification converts into substantial operational efficiency. By devoting investigation resources to the top
two quintiles ("High’ and ’Very High’ risk), which account for only 40% of all claims, an insurer can recover an
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estimated 85.8% of all fraudulent instances. This enables the streamlined processing of the 60% of claims in the
less risky stratifications while focusing expert scrutiny where the scrutiny is most valuable, and thus enhancing the
whole claims handling process’s efficiency. This concentration of fraud cases into a manageable high-risk segment
demonstrates the model’s practical utility for real-world implementation, independent of the statistical significance
of individual temporal predictors.

Table 8. Risk Stratification and Fraud Detection Performance

Risk Group N Fraud N Non-Fraud N Observed Rate (%) Mean Pred Prob (%)

Very Low 3093 15 3078 0.48 0.49
Low 3075 26 3049 0.85 0.84
Medium 3084 90 2994 2.92 2.74
High 3084 290 2794 9.40 9.68
Very High 3084 502 2582 16.28 16.17
Total 15420 923 14497 5.99 5.99

Key Performance Indicators

High/Very High risk groups capture 85.8% of all fraud cases
High/Very High risk groups represent 40.0% of all cases
Lift in *Very High’ risk group: 2.72x baseline fraud rate

Note: Risk groups based on quintiles of predicted fraud probability. Lift = ratio of fraud rate in group
to overall fraud rate.

A. Predicted Pr ility Distri i B. Observed Fraud Rate by Risk Group C. Cumulative Fraud Capture
Separation between fraud and non-fraud cases Model successfully stratifies fraud risk Lift curve showing model efficiency
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Figure 3. Risk Stratification Performance. Panel A shows the density distribution of predicted probabilities for fraudulent
and non-fraudulent cases, illustrating the model’s ability to separate the two groups. Panel B displays the observed fraud
rate for each risk quintile, demonstrating successful risk stratification. Panel C presents the cumulative fraud capture curve,
highlighting that 85.8% of fraud cases are captured by targeting the top 40% of highest-risk claims.

5. Discussion

The research in this paper built and verified an automobile insurance fraud predictive model with the main objective
of assessing the usefulness of temporal pattern motives as early warning signs. The result improves our theory and
practice in the following ways: verifying the predictive values of the existing risks while revealing fresh light with
respect to the importance of the timing in claims. Here, we present the main findings and their theoretical and
practice values, the weaknesses in the research, and future research directions.

The findings produce four main results. Firstly, and most notably, the analysis verifies that the characteristics of
policies and the circumstances of accidents are the overriding predictors of motor insurance fraud. The enormouse
odds that are linked with AllPerils (OR = 55.2) and Collision (OR = 31.0) policies reflect the immense influence
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of moral hazard; increased coverage seems to provide a vastly greater potential for fraudulent activity. In the same
way, the fact that claims at fault (Fault_PH, OR = 14.2) are vastly more likely to prove fraudulent indicates that
fraudulent activity may often involve the misrepresentation of legitimate events more than fabrication in the raw.
The buffering effect from the presence of a police report (PoliceRep, OR = 0.55) further supports the view that
independent corroboration acts as a formidable inhibitor.

Second, the analysis yields directional, though not highly statistically significant, evidence for the hypothesis
that temporal regularity is a marker for fraud. Policies with claims for an accident that occurred in the first 15 days
after the initiation of the policy had 87% increased odds of being fraudulent (p=0.075). Though the result was not
significant at the traditional p j 0.05 level, it very strongly suggests the existence of a relationship that should be
explored in more detail. The result’s lack of significance must largely be due to the small sample size in the dataset
for early-event claims, which reduces statistical power and prevents the effect from being proven in the limit. We
acknowledge that multiple interpretations remain plausible: temporal patterns may represent weak but genuine
signals that provide marginal predictive value, they may be context-dependent and vary across insurance markets
and fraud typologies, or the observed effects may reflect insufficient statistical power rather than true associations.
The directional consistency with theoretical predictions of premeditation and intent suggests the relationship merits
further investigation, though definitive conclusions require larger samples specifically enriched for early policy
events.

Third, the best logistic regression model (Model 4) shows good and stable predictive ability with an AUC value
of 0.800. On the basis of the collected amount of precision, the value shows competitive performance with that
obtained in similar research with the aid of classical statistical and advanced machine learning models [5, 12],
and the efficiency for the purpose of a well-specified logistic regression model for the task becomes confirmed.
Thorough diagnostics verified the well-calibration, absence from multicollinearity, and stability of the model from
bootstrap validation.

Fourth, pragmatically speaking, the model works extremely well at risk stratification. By putting 85.8% of all
fraudulent claims in the top 40% of the cases sorted by risk, the model allows for a simple and effective method
for resource allocation. In doing so, this discovery points up the utility of the model from an operational point of
view, allowing the insurers to switch from a heuristic- or universal-based review process to a targeted, data-driven
approach.

The results from this research have some key theoretical consequences. Overriding predictive strength from
variables such as policy type and fault assignment gives strong empirical backing for the ”Opportunity” and
the “Rationalization” aspects of the traditional Fraud Triangle theory [36, 37]. Inflation-oriented policies put the
opportunity for exaggerated claims in place, while an at-fault collision potentially places a prior setting in which a
claimant can more readily rationalize stretching the damages.

In addition, the directional temporal pattern evidence works in the direction of behavioral economic theory. The
increased risk in early-life claims can be seen in light of behavioral indications of premeditation or intent [38].
However, alternative explanations warrant consideration: early claims may reflect opportunistic coverage of pre-
existing damage, adverse selection by high-risk individuals anticipating claims, or reporting confusion among new
policyholders unfamiliar with coverage terms, though the latter would predict lower rather than higher fraud rates.
Fraud planners are likely to buy a policy with the express purpose of making a claim some short time later, a
process which can be hard to apprehend with the use of static variables only. Thus, the current work represents
a first step in the incorporation of behavioral timing cues in broader theoretical models of insurance fraud, with
the possibility that the different typographies of fraud (e.g., opportunistic vs. premeditated) can exhibit different
temporal footprints.

The proven model has considerable practical value for the insurance market. Its first application includes the
use as an automated decision-aids tool, which can be embedded at the First Note of Loss (FNOL). During the
preliminary moment, the model can produce in real-time a real-time risk score for each incoming claim, which
allows for a triage-based workflow:

1. Claims Processing Workflow Optimization: Those 60% of claims in the low and medium-risk quintiles
which combined contain only 14.2% of the fraud cases can potentially be put in an expedited payment track.
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Not only would this save the administration money, but it also would really enhance the customer experience
for the large majority of truthful policyholders.

2. Intensified Vigilance and Utilization of Resources: The high and very-high-risk high 40% of claims can
simultaneously be highlighted and sent straight to specialist investigating teams. In this way, careful attention
and specialist resources are concentrated solely on the claims most likely to contain fraud, exponentially
raising the speed and efficiency with which the investigation process can identify and recover fraudulent
claims.

3. Underwriting Adjustments: The model findings can also be used in the case of underwriting and pricing
policies. Due to the very high risks in ‘AllPerils‘ and ‘Collision* policies, more detailed risk-based pricing
can be required for these policies or specific discouraging measures can be adopted, for example, the forceful
conductance of compulsory inspections for policies with early claims.

In spite of its strong results, the study has some limitations that provide future research directions. In the first
place, the analysis is based on one-source dataset, which can constrain the generalizability of the findings to
other insurers, geographic locations, and other regulatory regimes. External validity may be limited by market-
specific fraud patterns such as staged accident rings prevalent in certain regions, regulatory differences affecting
claim timing requirements across jurisdictions, and insurer-specific detection capabilities influencing which fraud
is identified. The analysis should be replicated with the bigger multi-insurer dataset in the future. Future validation
should prioritize multi-insurer datasets to assess model stability across organizations, cross-jurisdictional data to
test regulatory context effects, and temporal validation on data from different time periods.

Second, and more importantly for the main hypothesis, the prevalence of claims with early accident or reporting
behavior was exceedingly low. This low prevalence restricted the statistical strength to clearly establish the
temporal variables’ significance and consistently test interaction effects. A bigger sample with a greater prevalence
among the early events is required more assertively to establish their predictive value and investigate how their
influence could change in alternative demographic or policyholder alignments. Post-hoc power analysis suggests
that achieving 80% statistical power at a = 0.05 for the observed effect size would require approximately 85-90
early-event fraud cases, translating to a total portfolio size of 60,000-70,000 claims.

Third, logistic regression was used in this work due to its explanatory nature. Though it worked well, its
more advanced, non-linear machine learning counterparts, like gradient boosting machines or deep networks, may
discern more subtle data patterns and produce a more advanced degree of predictive precision [39]. Future work
should contrast the capabilities of these state-of-the-art models with the logistic regression baseline introduced here.
Benchmarking against advanced machine learning models would test whether temporal variables gain importance
when captured through flexible, non-linear approaches.

Lastly, the research is cross-sectional. A longitudinal examination that follows the behavior of policyholders
over time may yield more comprehensive findings about the changing nature of fraud risk and possibly dynamic
temporal leading up to a fraudulent claim. Prospective studies employing survival analysis methods such as Cox
proportional hazards models could more authentically capture temporal dynamics by modeling the hazard of
fraudulent claims over the policy lifecycle.

6. Conclusion

In this work, we aimed to identify whether temporal claims patterns can be used to augment the detection of
motor-direct-weber fraud at its earliest onset. This exploratory study establishes a methodological foundation for
incorporating temporal analytics into fraud detection frameworks, providing preliminary evidence that motivates
larger-scale validation. The model resulted in a strong logistic regression model with excellent predictive capability
(AUC = 0.800), largely due to well-understood risks along the lines of fault attribution and type of policy. The new
temporal variables were not quite statistically significant in the model, but indicated a distinct positive correlation
with fraud, and thus are useful predictors whose potential value should be explored with broader ranges of data. The
main methodological contribution of this research is the systematic incorporation and validation of these temporal
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variables in the context of a hierarchical modeling framework, deriving from them a new, behaviorally-informed
dimension in the detection of fraud.

From a practical point of view, the most significant implication is the demonstrated capability of the model
to stratify risk importantly. Its ability to capture 86% of the fraudulent claims in a specific 40% of the claims
population provides insurers with a valuable resource for optimizing investigative resources, lowering costs, and
enhancing efficiency. It allows for a more strategic claims handling, calibrating tough fraud control with a superior
experience for the great majority of legitimate customers. Despite some restrictions applicable only to the source
of the data and statistical power, this study successfully emerges the latent potentiality of temporal data. Following
studies must aim at the application of more sophisticated machine learning techniques in broader, longitudinal
databases in order to capitalize the directional promising findings we report here. In the longer term, this research
reinforces the value of data-driven techniques in the fight against insurance fraud and points the way to the
exploration of the timing behavior in fraudulent acts.
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