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Abstract Accurate short-term blueelectricity consumption forecasts are essential for maintaining grid stability and for
developing effective energy policies. In this study, we propose a novel multilevel forecasting methodology that enhances
forecast accuracy by carefully combining and reconciling the outputs of multiple machine learning models. Using high-
frequency data from South Africa, we apply Stochastic Gradient Boosting (SGB) and XGBoost to model the consumption
attributed to key energy sources: solar (PV and CSP), coal, diesel, nuclear, and wind. One of the important implications is
that forecast performance varies across energy sources. The performance of XGBoost outperforms that of the SGB model
for solar, coal, and diesel consumption, while the SGB model performs best for nuclear and wind energy. This split points to
the importance of source-specific models. We also demonstrate that a reconciled ensemble of these models yields the most
accurate and robust overall forecasts, particularly for complex, non-renewable sources. Beyond point estimates, we evaluate
probabilistic prediction intervals and demonstrate that linear quantile regression provides a significant improvement over
the benchmark linear regression, resulting in sharper intervals with narrower widths and better scores, without sacrificing
coverage. This study fills a gap in the literature by providing a validated, scalable framework that utilises a reconciled
ensemble of methods to enhance forecast quality. The results provide clear, actionable guidance for energy planners and
policymakers seeking to optimise the generation mix to provide a reliable electricity supply.
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1. Introduction

1.1. Overview

blueElectricity generation refers to the process of generating electricity power from primary sources of energy,
such as coal, wind, solar, and nuclear energy; whereas electricity consumption is the amount of electricity utilised
by residential, commercial and industrial users. [1]. blueThe electricity generation sector in South Africa (SA)
faces increased variability and uncertainty due to dependence on traditional (non-renewable) and renewable energy
sources. The traditional energy sources are coal, nuclear and diesel, which Eskom, the major player in electricity
generation in SA, mainly utilises. At the same time, renewable energy sources include wind and solar energy,
as well as other energy sources from independent power producers, such as biomass, landfill gas, and small
hydropower technologies. The South African economic development and quality of life depend on the stability and
efficiency of its electricity generation systems. The energy sector faces significant challenges, including fluctuating
energy demand, integrating renewable energy sources, and managing loads efficiently. Short-term forecasts are
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crucial in the electricity blueconsumption sector for maintaining supply and demand balance, optimising power
plant performance, and minimising outage risks.

Eskom supplies the electricity used to meet the consumption needs (86%), IPPs (10%) and imports (4%) [2].
Total electricity supplied by both Eskom and IPPs excluding pumping and wheeling come from the following
energy sources: coal (80%), wind (5.6%), hydro (4.5%), nuclear (3.9%), solar (3.1%), diesel (2.5%), and other
(0.5%) [2].

Accurate short-term forecasting alone is insufficient in a system with multiple abstraction levels, which
requires hierarchical forecasting across all layers and horizons. Therefore, forecasts must be coherent across all
dimensional hierarchies for optimal decision-making. Hierarchical forecasting involves coherent forecasts within
a set hierarchical structure [3].

Hierarchical forecasting requires models that capture dependencies and interactions to ensure accurate forecasts
are consistent across levels. The dependencies reflect how the national electricity blueconsumption forecast
depends on the sum of the forecasts of electricity consumption per energy sources utilised to generate electricity.
For example, the country-wide electricity blueconsumption forecast is based on the collective forecasts of
individual energy sources, so the aggregate electricity blueconsumption forecast is subject to the forecast of each
energy source. On the other hand, the interactions describe how changes at one level in the hierarchy affect the
forecasts at other levels. For example, a change in national electricity blueconsumption can affect individual
energy source’s forecasts, requiring adjustments for factors like maintenance issues to ensure adequate electricity
generation.

blueThis study focuses on electricity consumption. blueIt aims to construct a reliable and efficient short-
term forecasting modelling framework that will guide the decision-makers of the national power grid operators.
Forecasting electrical load at various scales, from individual consumers to the aggregate level, is an important
component in many smart grid applications [4].

Table 1. Summary of different publications that discuss hierarchical forecasting.

Authors Brief summary of contribution
Silveira & Gontijo [7] Applied hierarchical forecasting to Brazilian hourly power generation data

grouped by electrical subsystems. Compared ARIMA and ETS models using
bottom-up, top-down, and optimal reconciliation approaches (OLS, WLS,
MinT). Found MinT models performed best.

Hyndman et al. [6] Compared bottom-up, top-down, and optimal combination approaches for
forecasting Australian domestic tourism demand. Found optimal combination
outperformed bottom-up and top-down approaches.

Hansen et al. [5] Applied three-level spatial hierarchical forecasting to Western Denmark’s
onshore wind turbine production for day-ahead markets using hourly settlement
data. Showed spatial hierarchical forecast improved commercial forecasts.

Wen et al. [9] Applied reconciliation methods (including bottom-up) to average profits of
four wind power producers in electricity markets using Danish transmission
system operator’s two-year hourly price data. Found reconciled average profits
outperformed individual average profits.

Rombouts et al. [11] Utilized random forest, XGBoost and LightGBM reconciliation methods for
delivery demand in London, Manchester and New York. Compared against
five state-of-the-art linear reconciliation approaches. Found ML-based forecast
reconciliation improved accuracy over linear methods.

Kafa et al. [12] Used ETS, ARIMA and LightGBM to predict monthly mail flow for a French
postal organization. Compared top-down, bottom-up and optimal combination
approaches. Found optimal combination-based ETS was most accurate, while
top-down-based LightGBM was best for social KPIs.

Athanasopoulos et al. [8] Provided a detailed discussion and review of forecast reconciliation methods.
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1.2. Hierarchical forecasting: Literature review

Table 1 provides a summative overview for a better understanding of different publications that will be used as part
of the literature review for this research work.

In a hierarchy, information is organised into different levels, and each level represents an aggregation of the
information from a level below [5]. Hierarchical time series is where multiple time series can be hierarchically
organised and aggregated in several different groups based on products, geography or other features [6]. There are
different approaches for forecasting hierarchical time series. However, this section only discusses the ones relevant
to this study.

In [7], hierarchical forecasting was applied to Brazilian hourly power generation data. The objective of [7]
was to measure the accuracy of the main measures of aggregating and disaggregating the forecasts using the
Autoregressive Integrated Moving Average (ARIMA) and Error, Trend, Seasonal (ETS) models. The data in [7] was
grouped by electrical subsystems. In [7], bottom-up (BU), top-down (TD) and optimal reconciliation approaches,
ordinary least squares (OLS), weighted least squares (WLS) and minimum trace (MinT) were utilised to aggregate
and dis-aggregate predictions made for grouped time series. In BU approaches, the forecast is performed at the
bottom level and then aggregated up [8, 10]. In the TD approach, the forecast is based on the aggregate series
and is disaggregated based on historical proportions [10, 16]. In [17], the reconciliation approach is defined as
the one that ensures that the hierarchical time series forecast adheres to aggregation constraints. However, in [5],
reconciliation is defined as adjusting or combining forecasts to ensure that forecasts from different levels of the
hierarchy are consistent with each other across all levels of the hierarchy. The reconciliation methods ensure that
the reconciled forecasts are unbiased if the base forecasts are unbiased [18].

The result in [7] showed that MinT models performed better than OLS and WLS. The hierarchical BU and TD
forecasting approaches were also utilised in [6] and compared with the optimal combination approach, where
the forecasting data was based on Australian domestic tourism demand. The results showed that the optimal
combination outperforms the BU and TD approaches. In [5], a three-level spatial hierarchical forecast was applied
to Western Denmark’s onshore wind turbine production. The forecast in [5] was intended for a day-ahead market,
where hourly settlement data was used. The results showed that the spatial hierarchical forecast improved the
commercial forecasts.

Recently, [9] applied different reconciliation methods, including the BU, to the average profits of four wind
power producers (WPPs) who participated in electricity markets. The data utilised in [9] was a two-year hourly
price data from the Danish transmission system operator. The reconciliation average profits outperformed the
individual average profits for all WPPs.

In certain situations, the demand values are volatile and correlated over time; conventional parametric forecasting
techniques, which include ARIMA and other models, do not yield good forecasting results [10]. The solution to
these challenges is a class of algorithms called universal approximators, some of them are Multi-Layer perceptron
(MLP), Random Forest (RF), Gradient Boosting (GB) and eXtreme Gradient Boosting (XGBoost), which are based
on machine learning techniques [10].

In the recent past [11] utilised random forest, XGBoost and light gradient boosting machine (LightGBM)
reconciliation methods and compared these reconciliation methods to a base forecast, which was based on preferred
forecast models and further benchmarked by five state-of-the-art linear reconciliation approaches. The data used in
[11] was the demand for deliveries in London, Manchester and New York. The results showed that the ML-based
forecast reconciliation results improved forecast accuracy compared to existing linear reconciliation methods.

In a recent study [12] utilised ETS, ARIMA and LightGBM to predict monthly mail flow for a major French
postal organisation. [12], computed the hierarchical forecasts based on the forecast combinations using the main
approaches: TD, BU and optimal combination (OC). The results showed that the OC-based ETS method was
the best in terms of accuracy, while the superior method was TD-based LightGBM for social KPIs. A detailed
discussion and review of forecast reconciliation methods is presented in [8].

blueThis study utilises the XGBoost and the SGB for hierarchical time series forecasting, benchmarked with
the traditional Exponential Smoothing. The XGBoost and SGB are powerful machine learning algorithms, similar
to LightGBM and CatGBM, or other deep learning approaches for hierarchical forecasting, due to several factors
that include high predictive accuracy and the ability to capture complex, nonlinear patterns [13]. The regularisation
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techniques (L1 (Lasso) and L2 (Ridge)) for the XGBoost model help prevent overfitting [14], handle missing data
internally, and result in a more robust model. Although LightGBM is generally faster in terms of computational
efficiency and scalability, XGBoost offers a balance of speed and performance, particularly with optimised
implementations and parallel processing capabilities [15]. The XGBoost and the SGBM algorithms are tree-based,
thus offering better interpretability compared to deep learning models. This allows for feature importance analysis,
giving an understanding of which factors drive energy consumption predictions. While models like LightGBM and
CatBoost offer advantages in specific scenarios (e.g., speed for very large datasets, handling categorical features),
XGBoost and SGB often provide a compelling combination of accuracy, robustness, interpretability, and ease of
use for many energy forecasting problems with structured data.

1.3. Contributions and research highlights

This study investigates whether the XGBoost approach outperforms the Stochastic Gradient Boosting (SGB)
framework in predicting electricity blueconsumption generated from from non-renewable and renewable energy
sources. It includes a comprehensive comparison of various prediction measures across several energy sources.
The study also examines the prediction interval estimation using two regression models: linear regression and
linear quantile regression.

The key findings of the study are:

• Among all the non-renewable energy sources, the XGBoost technique demonstrated higher capability in
forecasting electricity blueconsumption generated from coal and diesel energy sources. In contrast, the SGB
technique was more capable of forecasting electricty consumption generated from nuclear energy source.

• The research also contrasted the forecasts produced by ETS models and established that the optimal
combination reconciliation method performed better than the bottom-up method for overall and non-
renewable energy sources. However, the XGBoost method outperformed these two traditional methods.

• Linear quantile regression outperforms linear regression in accuracy (coverage probability) and precision
(interval score and average width), although linear regression achieves a higher coverage probability.

• The linear quantile regression technique preserves reasonable coverage probabilities, but provides smaller
interval scores and narrower mean widths, enhancing its performance for intentional predictions.

• Total non-renewable energy prediction intervals are much wider than total renewable energy prediction
intervals because they have a higher interval score, average width, and prediction interval normalised average
width (PINAW), indicating lower predictability in forecasts for non-renewable energy sources.

The rest of the paper is organised as follows: Section 2 presents the models, and the empirical results are
presented and discussed in Section 3. Lastly, Section 4 concludes.

2. Models

The modelling framework is given in Figure 1. This flowchart explains a detailed four-step forecasting process. In
phase 1, historical data is gathered, cleaned, and separated for model training and testing. In Phase 2, the XGBoost
and Stochastic Gradient Boosting machine learning models are utilised for the first contribution modelling. In Phase
3, forecasting reconciliation and hierarchy level forecasting consistency address the combination of the bottom-up
approaches. In Phase 4, the finalisation of forecasting assesses performance using the MAE, MAPE, and MRAE
metrics, and includes the quantification of associated uncertainty.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



4 HIERARCHICAL TIME SERIES TO ENHANCE SHORT-TERM ELECTRICITY CONSUMPTION FORECASTS

Historical Data
Collection

Data Preprocessing
& Feature
Engineering

Train-Test Split
Machine Learn-

ing Models

XGBoost
Stochastic Gra-
dient Boosting

Base Forecasts

Forecast Rec-
onciliation

Combination
Approach

Bottom-Up

Performance
Evaluation

Point Fore-
cast Metrics
MAE, MAPE,

MRAE

Final Forecasts
& Uncertainty
Quantification

Phase 1:
Data Preparation

Phase 2:
Modelling

Phase 3:
Reconciliation

Phase 4:
Evaluation

Figure 1. Forecasting modelling flowchart.
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2.1. Hierarchical structure

A hierarchical time series is an n-dimensional multivariate series arranged to satisfy certain linear constraints. Let
Yt ∈ Rn be the vector of observations of all time series in the hierarchy at time t, and let bt ∈ Rnb be the vector of
observations of the most disaggregated time series at time t. The entire hierarchy at time t is represented by:

Yt = Sbt, for t = 1, 2, ..., T,

where T is the length of the time series and S is the summing matrix that defines the aggregation constraints.

Yt =



Yt

YR,t

YN,t

YRW,t

YRP,t

YRC,t

YRO,t

YNG,t

YNT,t

YNN,t


=



1 1 1 1 1 1 1
1 1 1 1 0 0 0
0 0 0 0 1 1 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





YRW,t

YRP,t

YRC,t

YRO,t

YNG,t

YNT,t

YNN,t


= Sbt,

where Yt is the total electricity blueconsumption, YR,t total electricity blueconsumption generated from
renewable sources, YN,t total electricity blueconsumption generated from non-renewable sources, YRW,t electricity
blueconsumption generated from wind, YRP,t electricity blueconsumption generated from photovoltaic (PV), YRC,t

electricity blueconsumption generated from concentrated solar power (CSP), YRO,t electricity blueconsumption
generated from other renewable energy sources, YNG,t electricity blueconsumptiongenerated from diesel, YNT,t

electricity blueconsumption generated from coal and YNN,t is electricity blueconsumption generated from nuclear.
The hierarchical structure of the electricity blueconsumption generated from different energy sources is shown

in Figure 2.

 

 Wind OtherRE 

Total Energy Sources 

Renewables Non-Renewables 

Diesel             Coal  Nuclear Photovoltaic Concentrated 

Solar Power  

Figure 2. Hierarchical structure of the different energy sources. Data source: https://www.eskom.co.za/
dataportal/.
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blueIn Figure 2 the total energy sources are made up of renewables and non-renewable energy sources utilised
in SA. Then the renewables consists of a mixture of energy sources (wind and otherRE) and technologies
(photovoltaic and concentrated solar power). However, in this study both the renewable energy sources and
technologies are loosely referred to as renewable energy sources. The non-renewables consists of coal, nuclear
and diesel.

2.2. Machine learning algorithms for forecasting

2.2.1. Extreme Gradient Boosting (XGBoost) The XGBoost is a powerful machine learning algorithm known
for its high performance in various predictive tasks [19], and as discussed briefly in section 1.2. XGBoost is an
implementation of gradient-boosted decision trees designed for speed and performance. The core objective of
XGBoost is to minimise a regularised objective function that combines a convex loss function and a penalty term
to prevent overfitting. The XGBoost is formulated as shown in Equation (1):

ŷi =

K∑
k=1

fk(xi), fk ∈ F , (1)

where ŷi is the predicted value for instance i, K is the number of trees, fk is a function in the set of regression trees
F , xi represents the feature vector for instance i.

The objective function to be minimised is in Equation (2):

L =

n∑
i=1

l(ŷi, yi) +

K∑
k=1

Ω(fk), (2)

where l is a differentiable convex loss function that measures the difference between the prediction ŷi and the target
yi, Ω is a regularisation term that penalises the complexity of the model.

The regularisation term Ω(fk) is defined in Equation (3):

Ω(fk) = γT +
1

2
λ

T∑
j=1

w2
j , (3)

where T is the number of leaves in the tree, wj is the weight of leaf j, γ and λ are regularisation parameters.

2.2.2. Stochastic gradient boosting The GB can be identified as a machine learning technique generally applied
to classification and regression problems [21]. One of the main disadvantages of the GB is its greedy nature, which
leads to overfitting on training data [22, 23]. One of the most popular variants, stochastic gradient boosting (SGB),
alleviates this problem by randomly selecting, without replacement, a subset of the training data at each iteration
[20, 22]. The general formulation of the SGB is given by Equation (4):

F (x) =

M∑
m=1

βmh(x; γm), (4)

where h(x; γm) ∈ R are functions of x with parameters γm and βm that limit over fitting [22, 23].

2.3. Forecast Reconciliation Methods

This section discusses the forecast reconciliation methods used in this study.

2.3.1. Combination approach According to [24], the optimal combination produces forecasts for all series across
all hierarchical levels. Then it combines these forecasts with a linear model to obtain reconciled forecasts. The
procedure is outlined as follows [8]: Suppose that the h-step-ahead reconciled forecasts are depicted by equation
(5).
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Table 2. Model comparisons.

Models Strengths Weaknesses
M1 (XGBoost)
[19]

1. Is known for its high predictive accuracy.
2. Manages missing data effectively.
3. Provides insight into feature importance.
4. Includes L1 and L2 regularization to prevent
overfitting.

1. Computationally expensive.
2. Requires careful tuning of hyperparameters.
3. Less interpretable than simpler models.

M2 (SGB) [22, 20,
23]

1. Can model temporal dependencies by feature
engineering with lags.
2. Reduces overfitting risk using ensemble
methods.
3. Provides measures for feature importance.

1. Sensitive to hyperparameters like learning rate
and number of estimators.
2. Training is time-consuming due to hyperpa-
rameter exploration.
3. Handles missing values poorly in most imple-
mentations.

Ŷn(h) = SGŶn(h), (5)

Then, the covariance of the errors of these forecasts is given by equation (6).

Vh = V ar
[
yn+h − Ŷn(h)

]
= SGWhG′S′, (6)

where Wh is the variance-covariance matrix of the h-step-ahead base forecast errors [26]. The matrix G
minimises the trace of Vh such that it generates unbiased reconciled forecasts, that is, SGS=S given by equation
(7).

G = (S′W∗
hS)−1S′W∗

h, (7)

where W∗
h is the generalised inverse of Wh.

2.3.2. Bottom Up The Bottom-up (BU) forecasts model is given in equation (8).

Ŷn(h) = SGŶn(h) (8)

The BU forecasts are obtained using G = [O|I], where O is a null matrix and I is the identity matrix. The matrix
G extracts only bottom-level forecasts from Ŷn(h) and S adds up to give the BU forecasts.

blueIn essence, a Bottom-Up method creates trust from the ground up, demanding flawless item-by-item
alignment before the ultimate totals can be believed. By using the overall numbers as inputs and employing
sophisticated techniques to determine the most effective set of modifications to make those totals match, the
Optimal Combination methodology operates top-down without requiring going over each transaction in detail.
The primary practical differences between the BU and OC are summarised in Table 3 below:

2.4. Performance evaluation metrics

To assess the precision of the model, the Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE),
and Mean Relative Absolute Error (MRAE) are utilised since they are widely recommended in the statistics field.
However, it is worth noting that the proposed algorithm does not depend on the metrics; in other words, the
algorithm can use either MAE, MAPE, Mean Absolute Scaled Error (MASE) or any other performance metric
to choose the best ML forecasting technique and then move forward to the next phase. This is the beauty of the
proposed framework, in that it can run with different ML methods and metrics.

2.4.1. Prediction interval evaluation metrics Prediction intervals (PIs) are the key instruments utilised in
probabilistic prediction, and these are a set of potential values within which the predicted result exists based on a
specified degree of confidence [25]. The PIs convey the intrinsic uncertainty inherent in the prediction model due

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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Table 3. blueComparison of Bottom-Up Reconciliation and Optimal Combination Reconciliation Methods

Feature Bottom-Up Reconciliation Optimal Combination Reconcil-
iation Method

Starts with Individual, detailed transactions. Overall, aggregated balances.
Focus Matching every single line item. Finding the single best combina-

tion of high-level adjustments.
Goal Achieve balance by proving every

granular piece matches.
Achieve balance by adjusting top-
level figures until they align opti-
mally.

Complexity High detail required, can be time-
consuming.

Less detail needed initially, often
faster.

Best For High-volume operational systems
(e.g., bank statements, inventory
counts).

Strategic financial consolidation or
large-scale reporting.

to variability in data and the complexity of the systems being investigated. The PIs can measure the uncertainty for
better decision and risk management systems.

In this study the following measures are used: coverage probability (CP), interval score (IS), average width (AW)
and prediction interval normalised average width (PINAW).

Coverage probability The CP is the proportion of observed values that fall within the prediction intervals. CP is
calculated using equation (9).

Coverage =
1

n

n∑
i=1

I(yi ∈ [Li, Ui]), (9)

where yi is the observed value, Li and Ui are the lower and upper bounds of the prediction interval, and I is the
indicator function.

Interval score The IS is a scoring rule that evaluates both the coverage and the width of the prediction intervals
and is given by equation (10)

IS =
1

n

n∑
i=1

(
(Ui − Li) +

2

α
(Li − yi) I(yi < Li)

+
2

α
(yi − Ui) I(yi > Ui)

)
.

(10)

where α is the level of significance, e.g., 0.01 for the 99% intervals, smaller score values indicate more desirable
prediction intervals. The scoring method penalises extremely wide intervals and those not covering the observed
values.

Average width The average width of the prediction intervals across all forecasts is given by equation (11).

Average Width =
1

n

n∑
i=1

(Ui − Li) (11)

Narrower intervals are preferred, but should not be so narrow that they fail to achieve the desired coverage
probability.
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Algorithm 1 Energy Forecasting with XGBoost and Bottom-Up Reconciliation.

1: Input: Time series data D = {PV,CSP,Wind,OtherRE, Thermal,Nuclear,OCGT}
2: Output: Reconciled forecasts R
3: procedure MAIN(D)
4: data← DataFrame(PV,CSP,Wind,OtherRE, Thermal,Nuclear,OCGT )

5: data.Total energy←
∑7

i=1 datai ▷ Calculate top-level total
6: Split data into training and test sets:
7: train data← data[1 : 39456]
8: test data← data[39457 : 40872]
9: base forecasts← train data[:, 1 : 7] ▷ Base forecasts

10: model← TrainXGBoostModel(train data, base forecasts)
11: reconciled forecasts← ReconcileForecasts(model, test data)
12: Evaluate forecasts using MASE, MAE, RMSE, Bias metrics
13: Visualize results
14: return reconciled forecasts
15: end procedure
16: procedure TRAINXGBOOSTMODEL(train data, base forecasts)
17: X ← matrix(base forecasts)
18: y ← train data.Total energy
19: dtrain← xgb.DMatrix(X, label = y)
20: Set XGBoost parameters:
21: booster← ”gbtree”
22: eta← 0.1
23: max depth← 10
24: subsample← 0.8
25: colsample bytree← 0.85
26: lambda← 1
27: alpha← 0
28: objective← ”reg:squarederror”
29: model← xgb.train(params, dtrain, nrounds = 100)
30: return model
31: end procedure
32: procedure RECONCILEFORECASTS(model, test data)
33: X test← matrix(test data[:, 1 : 7])
34: Predict top level using XGBoost:
35: top level pred← predict(model,X test)

36: bottom level total←
∑7

i=1 X testi
37: adjustment factor ← top level pred/bottom level total
38: Apply bottom-up reconciliation:
39: reconciled← X test× adjustment factor ▷ Element-wise multiplication
40: return reconciled
41: end procedure
42: procedure EVALUATEFORECASTS(actual, forecast)
43: MASE← 1

n

∑n
t=1

|forecastt−actualt|
1

n−1

∑n
i=2 |actuali−actuali−1|

44: MAE← 1
n

∑n
t=1 |forecastt − actualt|

45: RMSE←
√

1
n

∑n
t=1(forecastt − actualt)2

46: Bias← 1
n

∑n
t=1(forecastt − actualt)

47: return {MASE,MAE,RMSE,Bias}
48: end procedure
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Prediction interval normalised average width The average width of the prediction intervals normalised by the
range of the observed data is given by equation (12).

PINAW =
1
n

∑n
i=1(Ui − Li)

max(y)−min(y)
(12)

PINAW provides a normalised measure of the prediction intervals’ width relative to the observed data’s variability.

2.5. Implementation Details

blueAll the analyses was done using the R programming language version 4.4.1. Package xgboost version 1.7.8.1
was used for the Extreme Gradient Boosting model, whereas package ‘gbm version 2.2.2’ was used for the SGB
method. The hierarchical time series analysis was done using package ‘hts’ version 6.0.3 with the help of package
‘thief’ version 0.3 for reconciling temporal hierarchical forecasting. Algorithm 1 shows a detailed outline of energy
forecasting with XGBoost and Bottom-Up reconciliation. A similar algorithm using the SGB method is given in
algorithm 2 in the appendix.

3. Empirical results and Discussions

3.1. Data

The data used in this study is a sample from both Eskom, South Africa’s power utility company and
Independent Power Producers (IPPs) energy sources and can be accessed from https://www.eskom.co.
za/dataportal/ (accessed on 25 April 2024) upon submission of a request form to Eskom. The data energy
sources utilised are coal, nuclear and diesel, solar, wind, and other renewables. All the data is measured hourly
from 1 April 2019 to 28 November 2023. When the power plants are off, the data consumed by the power plants
are excluded.

The covariates used are hours of the day (hour), days of the week (day), nonlinear trend variable (no trend),
which was produced by fitting the cubic regression spline model, and four differenced lagged data for each of the
energy sources at lags 1, 2, 12 and 24, respectively. blueThe data is split as follows: 95% of the data is used for
training the models, and 5% is reserved for testing. For each training instance, the lagged features were computed
only from prior data within the training set. The covariates were used in the XGBoost and SGB models.

Mathematical definition of lag features

A lag feature Lk(yt) is mathematically defined as:

Lk(yt) = yt−k,

where:

• yt is the value of the time series at time t
• k is the lag order (the number of time steps to look back)
• For the hourly data used in the study:

– Lag1 is the value from 1 hour ago.
– Lag2 is the value from 2 hours ago.
– Lag12 is the value from 12 hours ago.
– Lag24 is the value from 24 hours ago (previous day same hour).

These chosen lags (1, 2, 12, and 24) for hourly energy are both physically and statistically valid. Lags 1 to
2 represent short-term inertia in the weather and other influential meteorological factors. The 24-hour lag is
fundamental for the daily cycles of solar generation and human activity. Lag 12 reflects half-day patterns such
as solar’s 12-hour symmetry or dual load peaks. Statistically, these lags consistently reflect the placement of
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significant peaks within both the autocorrelation and spectral analyses, confirming that they capture the main
cyclical behaviour within the data and are not arbitrarily selected.

Figure 3 shows the time series graphs for electricity blueconsumption generated from the seven energy sources,
including a graph of the total electricity blueconsumption for the sampling period April 2019 to November
2023. Figure 3 (a), (c) and (d) show an increase in electricity blueconsumption generated from PV, Wind and
other renewable energy sources, respectively. However, over the sampling period, there is a decrease in the total
electricity blueconsumption generated from the coal energy sources.
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Figure 3. Time series graphs of energy blueconsumption from the seven energy sources, with Total blueelectricity
representing the total blueenergy consumption of all the seven energy sources.
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3.2. Exploratory data analysis

In order to summarise and give a meaningful description of the key characteristics of the data, Table 4 presents
the five-number summary statistics together with the mean for the disaggregated data that represents the bottom
level of the hierarchy. We present the Box and Whiskers plots and histograms for each bottom-level variable. The
Box and Whiskers plots help to understand the underlying distribution, whether normally distributed or not. This
is presented in Figure 4.

Table 4. Descriptive Statistics of electricity blueconsumption generated from different energy sources.

Statistic PV CSP Wind OtherRE Coal Nuclear Diesel Total
Min. 0.00 0.0 19.8 0.849 13774 64 0.0 15769
1st Qu. 0.00 0.0 568.6 9.591 19216 911 0.0 22363
Median 20.67 123.5 903.3 13.627 20698 923 0.0 23905
Mean 512.81 172.8 982.5 17.544 20693 1238 252.6 23869
3rd Qu. 1098.88 326.8 1306.5 20.210 22230 1828 356.8 25515
Max. 2099.49 506.2 3102.2 46.153 27807 1854 2120.0 31297
Key: OtherRE:electricity blueconsumption generated from other renewable energy sources.
Total: represents the total electricity blueconsumption bluegenerated from all the renewable and non-renewable energy sources.

Results from Table 4 for all renewables, PV, CSP, Wind and OtherRE, the median value is less than the
mean value. This means that the electricity blueconsumption generated from renewables is positively skewed.
Similarly, electricity blueconsumption generated from nuclear and diesel is positively skewed. However, for the
electricity blueconsumption from coal, the mean and median are slightly the same, which means that this electricity
blueconsumption is somewhat normally distributed. However, overall, the total electricity blueconsumption is
approximately normal, with a median slightly higher than the mean.

The results of Figure 4 show the box and whiskers plot which confirm the findings from Table 4.
Figure 5 shows the distribution of electricity blueconsumption generated from different energy sources. blueThe

coal and total electricity distributions are approximately symmetric, suggesting that most of the total consumption
is met by coal energy source. blueThe rest show a departure from the Gaussian distribution except the distribution
from other renewables, suggesting a tendency towards unusually high or low electricity consumption periods.
The distribution from other renewables is bimodal, signifying the presence of distinct blueconsumption regimes or
periods of transition. The histograms can help identify outliers, representing exceptional events that warrant further
investigation.

Figure 6 shows box and whiskers plot of the hourly distribution for electricity blueconsumption from different
energy sources from 2019 to 2023. The electricity consumption from most energy sources during the daytime
hours is characterised by high median values, with a decline observed during the 16th hour. The electricity
blueconsumption generated from nuclear and other renewable energy sources is constant throughout. Extremely
high values characterise electricity blueconsumption generated from wind and diesel. This is shown by the
outliers that are captured on these datasets. Most hourly box plots of electricity blueconsumption generated
from the different energy sources have long whiskers and boxes, indicating high variability in the distribution
of hourly energy sources. Electricity blueconsumption generated from PV shows high variability during the day,
the one from CSP shows high variability from the 7th to the 21st hour, whilst the one from wind has high
variability throughout. Electricity consumption from other renewable has high variability throughout, and so does
blueelectricity consumption from coal and nuclear energy.

blueBefore training and validation of the models, we created lag variables for each disaggregated time series to
improve the performance of our models. In addition to the lag variables, a smoothed time series was also fitted for
each energy source. The smoothing parameter, λ, for each energy source, is presented in Table 5. The lag variables
and the smoothed time series were incorporated in each of the fitted models as features.

3.3. Phase I: Forecasting results

In Phase I the analysis compares the forecasts from the XGBoost method with those from the SGB approach. The
data is divided into two sets: the training and test sets. The training set constitutes about 97% of the entire dataset
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Figure 4. Box and whiskers of electricity blueconsumption generated from different energy sources.

Table 5. blueSmoothing parameters for each of the energy sources.

Energy PV CSP Wind Other RE blueCoal Nuclear blueDiesel Totalnon TotalALL
λ 0.6726 0.0523 -0.1188 -0.0856 -0.0332 -0.1970 -0.1970 -0.0190 2.09e-08

(i.e from 2019/04/01 00:00 to 2023/10/04 21:00), and the test set constitutes 3% (i.e. from 2023/10/04 22:00 to
2023/11/28 23:00). Each model is trained, and then sample forecasting is performed using the test set. To assess
the ability of each model to predict future values from the test set, different metrics that include the MAE, root
mean square error (RMSE), MASE and Bias are used. This analysis is done at all levels: level 2 (disaggregated
electricity blueconsumption), level 1 (electricity blueconsumption generated from total renewable and total non-
renewable energy sources), and level 0 (total electricity blueconsumption generated from different energy sources).

blueTable 6 displays response variables as column headers (PV, CSP, Wind, Other RE, Coal, Nuclear, Diesel),
and covariates are listed in order of importance for each response variable. Table 6 illustrates how a successful
model for a complex system, like a power grid, needs to be multivariate and source-specific. One cannot use the
same set of prioritised predictors to forecast solar output and schedule a nuclear plant. The differences in ranking
are the key insight, revealing the ”fingerprint” of each energy source’s behaviour on the grid.

blueThe hyperparameters were selected from the search ranges provided in Table 7.
blueThe final parameters for the XGBoost were tuned using booster = ”gbtree”, eta = 0.1, maximum depth = 10,

subsample = 0.8, colsample bytree = 0.85, lambda = 1, alpha = 0, objective = ”reg:squarederror”.
Table 8 and Table 9 show the performance of the fitted models in forecasting each of the disaggregated energy

sources in level 2 (renewable and non-renewable energy sources, respectively). MASE, MAE, RMSE and Bias are
reported for each forecasting method (after performing k-fold cross-validation). The forecasting method with the
minimum performance metrics was selected for phase II.

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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Figure 5. Histograms of different energy sources.

Table 6. Covariate importance ranking for different response variables.

Number PV CSP Wind OtherRE Coal Nuclear Diesel

1 Lag12 Lag12 dpdfits dpdfits dpdfits dpdfits Lag12
2 Lag2 Lag2 Lag24 Lag24 hour Lag24 Lag24
3 hour dpdfits Lag12 Lag12 Lag12 day Lag2
4 Lag1 Lag24 hour Lag2 day Lag12 dpdfits
5 dpdfits Lag1 Lag2 day Lag24 Lag1 Lag1
6 Lag24 hour Lag1 Lag1 Lag2 hour hour
7 day day day hour Lag1 Lag2 day

The results presented in Table 8 show the XGBoost model records lower values of the MASE, MAE, RMSE,
and Bias for the electricity blueconsumption generated from PV and CSP energy sources than the SGB approach.
This means that XGBoost is more accurate in forecasting PV and CSP than the SGB model. On the other hand, the
SGB model performs better in predicting electricity blueconsumption generated from wind and other renewable
energy sources than the XGBoost approach.

The results of electricity blueconsumption generated from non-renewable energy sources show that the XGBoost
approach performs better in predicting electricity blueconsumption generated from coal and diesel than the SGB
method. The SGB is better at predicting electricity blueconsumption generated from nuclear. Thus, the above

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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Figure 6. Distribution of hourly electricity blueconsumption generated from different energy sources data.

Table 7. blueHyperparameter search space and final values.

Hyperparameter Search Range / Values Description Final Value

nrounds {50, 100, 150} Number of boosting iterations From bestTune
max depth {1, 2, 3, 4, 5, 6, 7,8,9,10 } Maximum tree depth From bestTune
eta {0.01, 0.05, 0.1, 0.2, 0.3} Learning rate From bestTune
lambda {0, 0.1, 0.5, 1, 5} Minimum loss reduction for split From bestTune
colsample bytree {0.4, 0.6, 0.8, 1.0} Column sampling ratio From bestTune
min child weight {1, 2, 3, 5, 10} Minimum sum of instance weight From bestTune
subsample {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} Row sampling ratio From bestTune

results show that XGBoost gives better forecasts for the electricity blueconsumption generated from the four energy
sources (PV, CSP, coal, and diesel) out of seven. Based on Figure 4, the electricity blueconsumption generated
from these four energy sources varies with the hours of the day. Most electricity blueconsumption is met by coal.
This is the case because most electricity in SA is generated from coal [2]. On the other hand, the electricity
blueconsumption generated from nuclear and wind do not show any variations in the hour distribution. Table 10
presents the metrics for the XGBoost and the SGB on level 1, total electricity blueconsumption generated from
renewable and total non-renewables and level 0, total electricity blueconsumption generated from different energy
sources.
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Table 8. Forecast evaluation metrics of electricity blueconsumption generated from renewable energy sources.

(a) Photovoltaic
Model MASE MAE RMSE Bias

XGBoost 0.0951 14.25 63.100 -0.552
SGB 0.105 15.811 93.704 -2.427

(b) Concentrated solar power
Model MASE MAE RMSE Bias

XGBoost 0.666 19.652 32.571 4.746
SGB 1.007 29.704 46.025 9.407

(c) Wind energy
Model MASE MAE RMSE Bias

XGBoost 2.779 326.522 413.829 -29.669
SGB 2.604 306.038 389.389 -24.975

(d) Other renewable energy sources
Model MASE MAE RMSE Bias

XGBoost 4.185 2.0816 2.892 0.149
SGB 3.382 1.682 2.158 -0.264

Table 9. Forecast evaluation metrics of electricity blueconsumption generated from non-renewable energy sources.

(e) Coal
Model MASE MAE RMSE Bias

XGBoost 1.992 369.483 468.095 -40.918
SGB 2.054 380.887 477.683 -12.788

(f) Nuclear
Model MASE MAE RMSE Bias

XGBoost 19.026 44.883 82.141 4.337
SGB 10.905 25.725 50.237 1.616

(g) Diesel
Model MASE MAE RMSE Bias

XGBoost 1.210 132.791 221.064 27.404
SGB 1.577 172.966 266.903 55.539

Table 10. Forecast evaluation metrics for total renewable and non-renewable energy sources.

(h) Total Renewable (Level 1)
Model MASE MAE RMSE Bias

XGBoost 1.579 335.844 431.610 2.931
SGB 1.537 326.968 420.327 -1.178

(i) Total Non-renewable (Level 1)
Model MASE MAE RMSE Bias

XGBoost 1.412 355.613 449.934 28.758
SGB 1.363 343.339 438.851 20.469

(h) Grand Total (Level 0)
Model MASE MAE RMSE Bias

XGBoost 1.217 363.516 475.350 -5.552
SGB 1.271 379.718 492.167 -23.517

The results from Table 10 show that the SGB model performs better than the XGBoost model in predicting the
total electricity blueconsumption generated from renewables and non-renewable energy sources. However, when
all the electricity blueconsumption is aggregated (Total), the XGBoost model is a better forecasting approach than
the SGB model.
To visualise the performances of these models at various levels, the graph of actual values versus forecasted values
for each of the fitted models for level 0, level 1 and level 2 is created. The results are presented in Figure 7(a)
(forecasts from the XGBoost), Figure 7(b) (forecasts from the SGB model).
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The graphs for the predicted PV, CSP, coal, and diesel are closer to the observed actual electricity
blueconsumption, for the test period 2023/10/01 00:00:00 to 2023/11/28 23:00:00, when the XGBoost approach
is used in Figure 7 compared to when the SGB method is used (Figure 7(b)). This confirms the findings from the
performance metrics in Table 8 and 10.

Figure 8 presents graphs of the forecasts from the Total renewable, Total non-renewable and Total energy sources
superimposed on the observed Total renewable, Total non-renewable and Total energy sources, respectively. These
graphs are from the fitted XGBoost model and the SGB model. Results from these graphs show that the XGBoost
model perfectly predicts the observed total energy.

Figure 9 presents the distribution of the residuals from the XGBoost model. This gives further insight into the
relative accuracy of the hierarchical forecast models, the XGBoostMost, for the aggregated and disaggregated
electricity blueconsumption. The Box plots for each electricity blueconsumption generated from the energy source
show normal distributions, although the fitted model failed to capture the outlier in most cases. Overall, the
XGBoost model is better than the SGB model. These findings are used in the next phase of hierarchical time
series forecasting.

3.4. Phase II: Reconciliation results

To ensure more accurate, coherent forecasts, in this section, the forecasts from the exponential time series (ETS)
model and the XGBoost model are compared and also the performances from different reconciliation methods.
These reconciliation methods include the BU and the combination approach. Figure10 presents graphs of time
series for each hierarchical level. As shown in Figure 10, level 0 has one dataset, which is the aggregated data
from all the electricity blueconsumption, level 1 has electricity blueconsumption generated from renewable energy
sources category A and non-renewable energy sources category B, and level 2 has electricity blueconsumption
generated from seven disaggregated energy sources. From all the level 2 energy sources, coal energy has the highest
frequencies throughout the period, meaning that it is the most commonly used energy source because it generates
more electricity when compared to other energy sources in SA. Hence, the time series graphs for total electricity
blueconsumption generated from non-renewable in level 1 and the total electricity blueconsumption generated in
level 0 depict the same trend as that of the coal energy source.

3.5. Reconciliation using the bottom-up method (XGBoost)

Initially the bottom series are forecasted using the XGBoost model. The reconciliation was then performed through
an adjustment factor (combination weight) as shown in equation (13).

adjustment.factor = top.level.pred/bottom.level.total, (13)

where top.level.pred is the predictions of the total electricity blueconsumption at level 0 and bottom.level.total is
the total of the predictions of the disaggregated electricity blueconsumption at level 2 of the hierarchical structure
given in Figure 2. In forecast reconciliation, the adjustment factor is important in aligning bottom-level forecasts
with the aggregated top-level forecast derived from the XGBoost model. This ensures consistency and accuracy
across the hierarchical forecasting structure. This ensures that forecasts on various granularities are consistent and
could be used economically for decision-making.

Table 11 presents the performance of the XGBoost, ETS BU and ETS OC reconciliation approaches based on
three evaluation metrics: RMSE, MAE and MASE.

From Table 11, the XGBoost reconciliation approach outperforms the ETS BU and ETS OC methods in all
evaluation measures considered (RMSE, MAE, and MASE) except for one category in most instances. To be
specific, RMSE and MAE values of XGBoost are considerably lower for Total, A (Total renewable energy sources),
B (Total non-renewable energy sources), PV, Wind, OtherRE, coal, and OCG, reflecting XGBoost as more accurate
with better predictive abilities. However, it is noted that for CSP and Nuclear, the ETS approaches (Bottom-Up
and Optimal Combination) are slightly better in RMSE and MAE. This suggests that the XGBoost approach
may have problems with forecasting electricity blueconsumption generated from these specific energy sources.
MASE also shows that XGBoost is generally better, as it tends to do better than the ETS approaches predicting

Stat., Optim. Inf. Comput. Vol. x, Month 202x



18 HIERARCHICAL TIME SERIES TO ENHANCE SHORT-TERM ELECTRICITY CONSUMPTION FORECASTS

(a) Forecasts from the XGBoost model
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(b) Forecasts from the SGB model
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Figure 7. (a) Time series graphs with forecasts from the XGBoost model for level 2. (b) Time series graph with forecasts
from the SGB model for level 2.
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Figure 8. Time series graph with forecasts from the XGBoost model for level 0 (Grand Total) and level 1 (Total renewable
and Total non-renewable).
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Figure 9. Residuals from the fitted XGBoost and SGB models.
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Figure 10. Hierarchical time series graphs using the exponential time series model.
NB: A represents total renewable energy sources, and B represents total non-renewable energy sources and the lower part of
level 2 is PV, CSP, Wind, Other renewables, Coal, Nuclear and Diesel energy sources.

Table 11. Hierarchical forecast reconciliation evaluation metrics.

Method Total A B PV CSP Wind OtherRE Coal Nuclear Diesel

(a) ETS BU
RMSE 671.67 137.14 590.89 273.48 1.64 163.17 3.23 626.66 0.997 51.15
MAE 636.54 126.83 584.37 199.85 1.555 152.14 2.907 613.23 0.997 41.54

MASE 0.36 0.24 0.31 1.50 0.02 0.31 0.36 0.34 0.002 0.13

(b) ETS OC
RMSE 603.08 138.26 521.14 274.41 1.83 162.65 3.23 567.82 0.93 60.46
MAE 570.49 127.35 516.66 200.84 1.73 151.64 2.91 556.49 0.93 44.65

MASE 0.32 0.24 0.28 1.51 0.02 0.31 0.36 0.31 0.002 0.14

(c) XGBoost
RMSE 270.40 32.07 240.68 13.56 3.17 18.51 0.28 222.72 11.04 9.85
MAE 204.78 21.10 183.67 6.84 1.85 12.22 0.19 170.17 8.34 5.17

MASE 0.69 0.10 0.73 0.05 0.06 0.10 0.38 0.92 3.53 0.05

Key: A: Total renewable energy sources; B: Total non-renewable energy sources.

electricity blueconsumption generated from most energy sources. The only exception is nuclear, where the MASE
of XGBoost is far higher. Hence, in conclusion, the overall top performer is XGBoost. However, method choice
depends on whether one is modelling electricity blueconsumption from a certain type of energy source. The ETS-
based methods remain valid for certain energy sources, such as CSP and nuclear.

Figure 11 presents the reconciled forecasts generated by the XGBoost model, representing the final, adjusted
predictions for the test period. These forecasts reflect the total reconciled output from the XGBoost model, offering
a consolidated view of the predictions following reconciliation.
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(a) Reconciled forecasts from the XGBoost model
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Figure 11. Forecasts from XGBoost reconciliation for the test period.
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3.5.1. Results on the evaluation of prediction intervals Table 12 presents evaluation metrics that compare
prediction intervals based on two different regression methods: linear and quantile regression. The prediction
intervals are evaluated on the reconciliation forecasts obtained from the XGBoost method.

It can be observed in Table12 that the linear quantile regression method performs better than the linear regression
method based on accuracy (coverage probability) and precision (interval score and average width). It offers a good
compromise with moderate coverage probabilities, yielding lower interval scores and narrower average widths.
However, the linear regression has slightly better coverage probability, which is vital to the reliability of the
prediction intervals. Based on these results, linear quantile regression is recommended because it maintains a
competitive coverage probability while demonstrating superior precision with a lower average width and interval
score, providing a more focused range of credible predictions.

Table 12. Evaluation metrics for the prediction intervals.

(a) Prediction intervals based on linear regression
Total energy Total renewable energy sources Total non-renewable energy sources

Coverage probability 0.958 0.946 0.955
Interval score 2117.72 1259.32 2268.57
Average width 1873.99 1065.67 1980.90
PINAW 0.306 0.241 0.362

(b) Prediction intervals based on linear quantile regression
Total energy Total renewable energy sources Total non-renewable energy sources

Coverage probability 0.950 0.951 0.951
Interval score 2112.10 1227.47 2219.49
Average width 1803.41 1063.99 1943.66
PINAW 0.300 0.241 0.356

Figures 12 and 13 show graphs of the prediction intervals for total electricity blueconsumption, electricity
blueconsumption from total renewable and total non-renewable energy sources from the linear quantile approach.
The PIs for the non-renewables are very wide. This is explained by the high scores of their interval score, average
width and PINAW from Table 12.
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Figure 12. Prediction intervals from the linear quantile regression approach: Total energy for the test period.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



M. BASHE, C. SHOKO, T. RAVELE AND C. SIGAUKE 23

0 200 400 600 800 1000 1200 1400

0
10

00
20

00
30

00
40

00
50

00

Observation number

To
ta

l R
E

 (
M

W
h)

Total RE
Lower limit
Upper limit

0 200 400 600 800 1000 1200 1400

18
00

0
19

00
0

20
00

0
21

00
0

22
00

0
23

00
0

24
00

0

Observation number

To
ta

l n
on

 R
E

 (
M

W
h)

Totalnon RE
Lower limit
Upper limit

Figure 13. Prediction intervals from the linear quantile regression approach: Top panel: Renewable energy. Bottom panel:
Non renewable energy for the test period.
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4. Conclusion

This paper presents a robust framework for short-term forecasting of hierarchical time series in electricity
blueconsumption using South African data. Integrating XGBoost and SGB with reconciliation methods has proven
effective in improving forecasting accuracy and coherence. The study confirms that the XGBoost model effectively
predicts electricity blueconsumption generated from all energy sources. However, it can also accurately predict
electricity blueconsumption met by solar (photovoltaic, concentrated solar power), coal, and Diesel energy sources.
The SGB method yielded superior performance for electricity blueconsumption met by wind and nuclear energy
sources. This indicates the importance of selecting prediction models for electricity blueconsumption specific to
certain energy sources rather than using a single model for all sources, thus highlighting the complex nature of
electricity blueconsumption prediction.

The study recommends the application of more than one method of forecasting so that the accuracy of prediction
for aggregate, non-renewable, and coal energy source is increased. The study further recognises that these hybrid
approaches significantly improve predictions for electricity blueconsumption met by more challenging energy
sources like wind and nuclear. This study explores different forecasting models and identifies a huge gap in the
literature. It presents useful findings for decision-makers in the electricity sector.

The study also examined prediction interval estimation using two regression models: linear regression and
linear quantile regression. The findings indicate that linear quantile regression provides improved accuracy with
narrower interval widths and lower interval scores while maintaining a competitive level of coverage probability.
This approach is therefore recommended as a viable method for reliable predictions.

blueThis work identifies some key directions for future research in hierarchical electricity consumption
forecasting. These include the development of more adaptive, source-specific hybrid models, with an emphasis
on volatile sources, such as wind. Exogenous variables, including weather and economic data, may lead to higher
levels of predictive accuracy. Testing the transferability of the framework to other regions or integrated energy
systems would certainly validate its broader applicability.
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Abbreviations

The following abbreviations are used in this manuscript.

ARIMA Autoregressive Integrated Moving Average
AW Average Width
BU Bottom Up
CP Coverage Probability
CSP Concentrated Solar Power
ETS Exponential Smoothing
IS Interval Score
PI Prediction Interval
PINAW Prediction Interval Normalised Average Width
PV Photovoltaic
OC Optimal Combination
OtherRE Other Renewable
MAE Mean Absolute Error
MASE Mean Absolute Scaled Error
RMSE Root Mean Squared Error
SGB Stochastic Gradient Boosting
XGBoost Extreme Gradient Boosting

Appendix

Algorithm 2 Energy Forecasting with SGB and Bottom-Up Reconciliation

1: Input: Time series data D = {PV,CSP,Wind,OtherRE, Thermal,Nuclear,OCGT}
2: Output: Reconciled forecasts R
3: procedure MAIN(D)
4: data← DataFrame(PV,CSP,Wind,OtherRE, Thermal,Nuclear,OCGT )

5: data.Total energy←
∑7

i=1 datai
6: Split data:
7: train data← data[1 : 39456]
8: test data← data[39457 : 40872]
9: base forecasts← train data[:, 1 : 7]

10: model← TrainSGBModel(train data, base forecasts)
11: reconciled forecasts← ReconcileForecasts(model, test data)
12: metrics← EvaluateForecasts(test data, reconciled forecasts)
13: return (reconciled forecasts,metrics)
14: end procedure
15: procedure TRAINSGBMODEL(train data, base forecasts)
16: X ← matrix(base forecasts)
17: y ← train data.Total energy
18: Initialize: F0(x) = ȳ
19: Set SGB parameters:
20: n trees← 100; learning rate← 0.1; tree depth← 10
21: subsample← 0.8; min obs← 10
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22: for m = 1 to n trees do
23: Compute pseudo-residuals:
24: rim = −

[
∂L(yi,F (xi))

∂F (xi)

]
F=Fm−1

25: Randomly select subset:
26: Im ← random sample of size ⌊subsample · n⌋
27: Fit regression tree to residuals:
28: hm(x)← RegressionTree(X[Im], r[Im], depth,min obs)
29: Update model:
30: Fm(x) = Fm−1(x) + ν · hm(x); ν = learning rate
31: end for
32: return Fn trees(x)
33: end procedure
34: procedure RECONCILEFORECASTS(model, test data)
35: X test← matrix(test data[:, 1 : 7])
36: top level pred← predict(model,X test)

37: bottom level total←
∑7

i=1 X testi
38: Ensure non-negative adjustment:
39: adjustment factor ← max

(
0.1, top level pred

bottom level total

)
40: reconciled← X test× adjustment factor
41: return reconciled
42: end procedure
43: procedure EVALUATEFORECASTS(actual, forecast)
44: n← length(actual)
45: MASE←

1
n

∑n
t=1 |forecastt−actualt|

1
n−1

∑n
i=2 |actuali−actuali−1|

46: MAE← 1
n

∑n
t=1 |forecastt − actualt|

47: RMSE←
√

1
n

∑n
t=1(forecastt − actualt)2

48: Bias← 1
n

∑n
t=1(forecastt − actualt)

49: Additional SGB-specific diagnostics:
50: OOB error← Compute out-of-bag error from SGB
51: Variable importance← Compute feature importance
52: return {MASE,MAE,RMSE,Bias,OOB error,Variable importance}
53: end procedure
54: procedure REGRESSIONTREE(X, r, depth,min obs)
55: if stop condition met then
56: return r̄
57: end if
58: Find best split:
59: (j∗, s∗) = argminj,s

[∑
xi∈R1(j,s)

(ri − r̄1)
2 +

∑
xi∈R2(j,s)

(ri − r̄2)
2
]

60: R1(j
∗, s∗) = {X|Xj ≤ s∗}; R2(j

∗, s∗) = {X|Xj > s∗}
61: left← RegressionTree(R1, r, depth− 1,min obs)
62: right← RegressionTree(R2, r, depth− 1,min obs)
63: return tree with split (j∗, s∗), left, right
64: end procedure
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