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Abstract An electrocardiogram (ECG) is one of the most important biomedical signals for the detection and diagnosis
of heart arrhythmias. As an interpretable biomedical signal, the ECG is subject to various interferences and noise sources,
such as baseline wander, 50 Hz power-line interference, and additive white Gaussian noise, all of which may obscure vital
diagnostic information and distort clinically relevant features. This study aims to develop an efficient, lightweight, and
morphology-preserving denoising method for ECG signals that can suppress multiple noise sources simultaneously.
This paper proposes a unified Discrete Wavelet Transform (DWT)-based architecture that combines frequency-selective
subband filtering with adaptive soft thresholding and multilevel baseline wander removal. The method was evaluated using
both synthetic ECG signals and real recordings from the MIT-BIH Arrhythmia Database. Performance was assessed using
SNR improvement (SNRimp), correlation coefficient (CC), mean square error (MSE), and percentage root mean square
difference (PRD). Using the bior6.8 wavelet with soft thresholding, the proposed method achieved SNR improvement up to
19.67± 0.37 dB at SNRi = −5 dB and 15.29± 0.33 dB at SNRi = 0 dB, with corresponding CC values of 0.9828± 0.0019
and 0.9851± 0.0017, respectively, demonstrating strong noise suppression while preserving ECG morphology. Across all
tested SNR levels (−5 to 10 dB), the method consistently maintained CC ≥ 0.98 and PRD below 18% for synthetic data.
On challenging real MIT-BIH arrhythmia records (104, 105, 108, 114, 208, 228), the method achieved output SNR up
to 20.16± 0.58 dB and CC in the range 0.98–0.995, while preserving key diagnostic features such as the QRS complex
and ST-segment. Performance degraded only in record 114 due to severe motion artifacts, which is consistent with prior
studies. Compared with representative traditional and recent deep-learning denoising approaches, the proposed DWT-based
architecture achieved superior or competitive performance while remaining computationally efficient and training-free,
making it suitable for real-time and wearable ECG applications. Overall, the results confirm that the proposed method
provides a robust, unified, and clinically reliable solution for multi-noise ECG denoising.
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1. Introduction

Electrocardiogram (ECG) signals represent the electrical activity of the heart and are essential for diagnosing
cardiovascular disorders. However, ECG recordings are commonly corrupted by multiple noise sources such as
baseline wander, power-line interference, and additive white Gaussian noise (AWGN), which can degrade QRS
morphology, distort ST-segment deviation, and result in diagnostic errors [1, 2]. Therefore, efficient ECG denoising
is critical for preserving high-quality diagnostic information.

1.1. Motivation and Background

The Discrete Wavelet Transform (DWT) is one of the most effective techniques for ECG denoising due to its
strong time–frequency localization capability[3, 4]. By decomposing ECG signals into multi-resolution subbands,
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DWT enables noise suppression precisely where different noise sources dominate. Unlike the Short-Time Fourier
Transform (STFT), which applies a fixed window across frequencies, DWT adapts to abrupt cardiac activities such
as QRS complexes while preserving slow waveform components like the ST-segment. Furthermore, compared
to empirical mode decomposition (EMD) and nonlinear adaptive filtering methods, DWT avoids mode-mixing
problems and offers significantly lower computational complexity, making it highly suitable for real-time and
wearable ECG monitoring applications[5]. Recently, deep-learning approaches such as recurrent neural networks
and convolutional autoencoders have also been explored for ECG denoising, demonstrating promising performance
in noise reduction tasks[6], [7].

1.2. Related Work and Challenges

A wide range of ECG denoising methods have been proposed in the literature. Wavelet-based techniques
and adaptive filtering remain among the most commonly adopted approaches due to their efficiency in noise
suppression. Filter bank techniques [8, 9] have shown potential in enhancing P and R wave representation.
However, empirical mode decomposition (EMD)-based approaches [10, 11, 12] may suffer from mode-mixing
effects, sensitivity to noise, and high computational complexity, making them less suitable for real-time scenarios.
DWT-based methods continue to be widely used because they achieve effective noise reduction while maintaining
ECG waveform morphology. Numerous studies have investigated different wavelet families, decomposition
levels, and thresholding techniques [13, 14, 15]. The performance of DWT depends strongly on these parameter
selections. Nevertheless, most existing solutions are designed to remove only a single type of noise (e.g., baseline
wander or power-line interference), and only a few works have aimed to jointly eliminate multiple noise sources
simultaneously. Moreover, the majority of previous studies do not provide sufficient justification for selecting
optimal wavelet parameters or considering computational efficiency for real-time ECG monitoring. Therefore, a
unified, morphology-preserving, and computationally efficient approach remains highly important for practical
biomedical applications. For example, [16]proposed a hybrid framework combining wavelets, variational mode
decomposition, and nonlocal means filtering to suppress multiple noise sources, while [17] developed a Fourier-
series model for generating realistic synthetic ECG signals widely used in denoising studies. More recently,
[18] provided a comparative evaluation of filtration techniques with emphasis on stationary wavelet transform,
whereas [19] introduced an adaptive layer-dependent wavelet thresholding scheme for ECG and cardiorespiratory
signals. Similarly, [20] integrated particle swarm optimization with wavelet thresholding to enhance denoising
performance. These studies collectively highlight the continued relevance of wavelet-domain techniques for reliable
ECG preprocessing. Moreover, stationary and enhanced DWT-based frameworks have demonstrated robustness
against EMG interference and non-invasive measurement noise [21, 22]. These findings highlight the continued
relevance of wavelet-domain techniques as a foundation for reliable ECG preprocessing. However, existing
denoising approaches still suffer from several limitations: (i) they typically target only one noise source at a
time, which is not suitable for real-world ECG recordings; (ii) morphology distortion can occur using standard
wavelet thresholding; and (iii) computational complexity and real-time deployment thresholding are investigated.
Therefore, a unified, morphology-preserving, and computationally efficient denoising architecture remains an open
research need, particularly in wearable and bedside cardiac monitoring systems.

1.3. Research Objectives

The primary objective of this research is to develop a unified DWT-based denoising architecture capable
of simultaneously suppressing baseline wander, 50 Hz power-line interference, and additive white Gaussian
noise (AWGN) while preserving clinically important ECG morphology. A secondary objective is to evaluate
the computational efficiency of the proposed approach to determine its suitability for near real-time wearable
ECG monitoring. To clearly define the performance expectations, the following quantitative success criteria are
established:

• Correlation coefficient (CC) ≥ 0.98
• Percent Root-mean-square Difference (PRD) ≤ 20%
• Signal-to-Noise Ratio (SNR) improvement ≥ 10 dB
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• Processing time ≤ 3 seconds per 4096-sample segment

1.4. Research Questions
To support the formulation and evaluation of the proposed denoising architecture, the following research questions
are investigated:

• RQ1: Which wavelet family provides the best balance between noise reduction and preservation of ECG
morphology?

• RQ2: What decomposition level is theoretically and experimentally optimal for isolating each type of noise?
• RQ3: Does the proposed unified architecture outperform sequential application of noise-specific filtering

approaches?
• RQ4: Is the denoising performance consistent across different ECG morphologies and noise conditions?

1.5. Contributions
The main contributions of this paper are summarized as follows:

• A unified DWT-based architecture is proposed to jointly suppress multiple ECG noise sources including
baseline wander, power-line interference, muscle artifacts, and white Gaussian noise.

• The method effectively preserves important ECG morphological features such as QRS complexes and ST-
segment behavior.

• A comprehensive evaluation is performed on both synthetic and real ECG signals from the MIT-BIH
database, demonstrating superior denoising performance over existing techniques.

• The proposed approach exhibits low computational complexity, making it suitable for real-time and wearable
ECG monitoring systems.

1.6. Organization

The remainder of this paper is organized as follows. Section 2 describes the fundamentals of ECG denoising,
the characteristics of noise sources, and essential preprocessing techniques. Section 3 presents the theoretical
background and wavelet-based methodology. Section 4 details the proposed denoising architecture and
experimental setup. Section 5 reports the results and provides detailed performance analysis. Finally, Section 6
concludes the paper and outlines future research directions.

2. ECG denoising prerequisite

2.1. Generating Clean Synthetic ECG Signal

To evaluate ECG denoising performance, comparisons between the denoised signal and a clean reference signal
are necessary. Therefore, a clean synthetic ECG signal is generated first, and different noise types are later added
to it to create controlled noisy signals. Several approaches have been proposed for generating realistic ECG models
[23, 24, 25, 26, 27]. One widely used technique is Fourier series modeling because the ECG waveform is quasi-
periodic and can be represented mathematically as a periodic function.

In this study, a clean synthetic ECG signal is generated at a sampling frequency of fs = 360 Hz, matching
the MIT-BIH database. The waveform consists of repeating P-wave, QRS complex, and T-wave components that
mimic normal sinus rhythm. Fig. 3 shows the clean synthetic ECG and its frequency spectrum.
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Figure 1. Clean synthetic ECG signal in the time domain and its corresponding frequency spectrum at fs = 360Hz.

To provide a clear and reproducible synthesis framework, Fig. 2 summarizes the major steps involved in generating
the clean synthetic ECG signal based on Fourier series modeling. Each part of the ECG waveform P-wave, QRS
complex and T-wave are mathematically represented and repeated according to the heart rate to produce a periodic
simulated beat.

Figure 2. Flowchart of the synthetic ECG generation procedure based on Fourier series modeling.
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The synthetic ECG was generated as a periodic waveform representing normal sinus rhythm at 72 bpm, sampled
at 360 Hz to match the MIT-BIH database. The durations and amplitudes of P-QRS-T components were selected
within standard physiological ranges to ensure realistic morphology, as shown in Table 1.

Table 1. Physiological and signal parameters of the synthetic ECG used in this study.

Parameter Description Value used in this study
Sampling frequency
(fs)

ECG sampling rate 360 Hz

Heart rate (HR) Beats per minute of modeled signal 72 bpm
RR interval Duration between successive R-peaks 833 ms
P-wave amplitude Height of P wave ≈ 0.2 mV
P-wave duration Length of P wave ≈ 80–120 ms
QRS amplitude Peak-to-peak height ≈ 0.5–1.0 mV
QRS duration Width of the complex ≈ 80–120 ms
T-wave amplitude Height of T wave ≈ 0.1–0.3 mV
T-wave duration Length of T wave ≈ 150–250 ms

2.2. Types of noise contaminating ECG signals

Electrocardiogram readings often have noise from internal and external sources, which can change how look and
make diagnosis harder. Common interference types include baseline wander, power line noise, electromyographic
(EMG) noise and motion artifacts. Baseline wander, a low-frequency issue, usually comes from breathing, body
movement, or slow changes in electrode potential. Power-line interference, a medium-frequency issue, comes from
the power grid. EMG noise has high-frequency changes due to muscle activity while motion artifacts happen when
electrodes move on the skin. Each noise type has its own spectral qualities that we can use to create good filtering
and denoising techniques. Also, additive white Gaussian noise (AWGN) is a basic noise model in signal processing
that mimics the random disturbances common in biomedical setups.

2.3. Performance metrics

To compare various denoising approaches, five standard metrics are employed.
(a) The input mean-square-error (msei) is calculated as the average of the squared differences between the

original clean ECG signal x(k) and the corrupted ECG signal y(k) with N size. The msei is given by:

msei =
1

N

N−1∑
k=0

(x(k)− y(k))2 (1)

(b) The output mean-square-error (mseo) is calculated as the average of the squared differences between the
original clean ECG signal x(k) and the denoised ECG signal xr(k) with size N . This mseo is given by:

mseo =
1

N

N−1∑
k=0

(x(k)− xr(k))
2 (2)

The mean-square error evaluates the variance between the real ECG signal and the denoised ECG signal. A
lower mean-square error means a smaller difference.

(c) Improved signal-to-noise ratio (impdBSNR) measures the amount of improvement in signal quality when
denoising processes are employed[28, 29]. The impdB is defined as:

impdB = SNRo − SNRi (3)
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Where

SNRi = 10 log10

( ∑N−1
k=0 (x(k))2∑N−1

k=0 (x(k)− y(k))2

)
(4)

SNRo = 10 log10

( ∑N−1
k=0 (x(k))2∑N−1

k=0 (x(k)− xr(k))2

)
(5)

It should be mentioned that SNR measures the quality of denoised ECG signal. The higher output SNR, the
better the denoising performance.

(d) The correlation coefficient (r) of x(k) and yr(k) is a measure of their linear dependence and is defined as

CC =
1

N

N−1∑
k=0

(
x(k)− µx

σx

)(
xr(k)− µxr

σxr

)
(6)

where µx and σx are the mean and standard deviation of x(k), respectively, and µxr and σxr are mean and
standard deviation of xr(k). The range r is between −1 and 1, and the larger the value, the better quality of the
signal.

(e) Percentage-Root-Mean-Square Difference (PRD) calculates the percentage of overall distortion in the signal
after denoising. A lower PRD indicates a denoised signal with higher quality.

PRD =

√√√√∑N−1
k=0 (x(k)− xr(k))2∑N−1

k=0 (x(k))2
(7)

The PRD indicates the distortion in denoised ECG signal. A lower PRD represents better recovery performance.

3. Discrete Wavelet Transform (DWT)

The wavelet transform is an effective method for reducing noise and compressing signals. It provides time-
frequency analysis and is useful for biomedical signal processing [30]. With a comparatively fast computing
time, the discrete wavelet transform (DWT) constructs multi-resolution analysis using filter banks. There are two
different kinds of filters in DWT: low-pass filter h0(n) and high-pass filter h1(n), each of length N . Filtering
and down-sampling are combined in wavelet analysis. It reduces the signal’s sample size by a factor of two. The
discrete wavelet transform (DWT) is usually computed using the pyramidal algorithm proposed by Mallat [31]. The
schematic of three levels (J = 3) decomposition reconstruction DWT is shown in Fig. 3. The pyramidal algorithm
is based on a pair of analysis filters, low-pass h0(n) and high-pass h1(n), and a pair of synthesis filters, low-pass
g0(n) and high-pass g1(n). In the z domain, the analysis and synthesis filters are denoted correspondingly as H0(z),
H1(z), G0(z), and G1(z).

Figure 3. Three-level decomposition reconstruction DWT
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The decomposition output at level j of the high-pass analysis filter (detail coefficients) dj(n) is obtained by
filtering the approximation coefficients from the previous level aj−1(n) and downsampling by 2:

dj(n) =
(
h1(n) ∗ aj−1(n)

)
↓ 2 =

N−1∑
k=0

h1(2n− k) aj−1(k). (8)

Similarly, the output of the low-pass analysis filter (approximation coefficients) aj(n) is:

aj(n) =
(
h0(n) ∗ aj−1(n)

)
↓ 2 =

N−1∑
k=0

h0(2n− k) aj−1(k). (9)

To reconstruct the approximation coefficients aj−1(n) from dj(n) and aj(n), the synthesis filters g1(n) and g0(n)
are used as:

aj−1(n) =
∑
k

(
g1(n− 2k) dj(k) + g0(n− 2k) aj(k)

)
. (10)

Each stage of the discrete wavelet transform halves both the number of samples and the effective frequency
range until the desired level is reached. The original signal can be reconstructed by combining the coefficients at
the final level through the synthesis filter bank. According to Fig. 3, the signals a3(n) d3(n) are upsampled by 2
and passed through g0(n) g1(n) to produce an intermediate signal ar2(n). At the next level, it d2(n) is delayed by
N − 1 samples and then, together with ar2(n), is upsampled by 2 and filtered by g0(n) and g1(n) to obtain ar1(n).
This process continues until the final reconstructed output ar0(n) is obtained. The normalized delay unit at each
level in a tandem DWT filter bank is defined as [32, 33]:

Dj =
(
2J−j − 1

)
(N − 1). (11)

The analysis stage splits the wavelet filter bank spectrum into two octave bands at each decomposition level.
If fs denotes the sampling frequency, then at level j the approximation and detail subbands occupy [0, fs/2

j+1]
and [fs/2

j+1, fs/2
j ], respectively [34, 35, 36]. The equivalent representation used for analysis is shown in Fig. 4

[37, 38, 39]. Using noble identities, the equivalent filters after j decomposition stages for the basic analysis filter
bank H0(z) H1(z) can be expressed as:

Aj(z) =

j−1∏
k=0

H0

(
z2

k
)
. (12)

Dj(z) =


H1(z), j = 1,

H1

(
z2

j−1
) j−2∏

k=0

H0

(
z2

k
)
, j = 2, 3, . . .

(13)

The above equations can be used to compute of equivalent low and high-pass filters after stage j reconstruction
using a basic synthesis filter bank G0(z) and G1(z) structure. Apply (12) and (13); the decomposition equivalent
filters are

D1(z) = H1(z), D2(z) = H0(z)H1(z
2), D3(z) = H0(z)H0(z

2)H1(z
4), A3(z) = H0(z)H0(z

2)H0(z
4)

While reconstruction equivalent filters are

R1(z) = G1(z), R2(z) = G0(z)G1(z
2), R3(z) = G0(z)G0(z

2)G1(z
4), B3(z) = G0(z)G0(z

2)G0(z
4)
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Figure 4. Equivalent representation of the analysis and synthesis octave filter bank for three decomposition levels.

Figure 5. Magnitude frequency response (fs = 360 Hz) of the equivalent analysis octave filter bank using the Coif5 wavelet
for three decomposition levels. Note that at fp = 50 Hz, D1(fp) = 0.06, D2(fp) = 1.71, D3(fp) = 1.45, and A3(fp) = 0.

Figure 5 shows that the frequency response of the analysis filters isn’t perfect the frequency intervals don’t
change sharply. Instead, the filters’ magnitude decreases slowly, leveling off to a constant. This means energy
leakage changes the frequency distribution within each DWT sub-band. Approximation coefficients show a
tendency to scatter at higher levels fs/2

(j+1). On the other hand, detail coefficients are lower than fs/2
(j+1)

frequencies and higher than fs/2
j . Hence, there is a band overlap. Therefore, DWT frequency behavior impacts

the decomposition level and the wavelet function choices.

4. The material and methodology

To ensure reliable wavelet-based processing, all ECG signals were normalized to the amplitude range of [-1 to
+1] and preprocessed using a zero-phase 4th-order Butterworth bandpass filter (0.5–40 Hz). This step removes DC
drift and high-frequency interference prior to decomposition, thereby preserving the diagnostic content of the ECG
waveform.
In this paper, the comprehensive architecture is designed for the purpose of reducing noise from ECG signals
through the using of the DWT. The DWT are used to analyze ECG signal at different resolution levels. The selection
of appropriate wavelet basis and the number of decomposition levels are determined by using noise analysis, which
effectively separates the signal from the noise. This effectively eliminates noise across frequency bands while
ensuring the preservation of important signal characteristics. The choice of the mother wavelet determines the
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type of analysis and synthesis filters used in the noise removal process. For efficient operation, the chosen mother
wavelet should be similar to the measured ECG signal as accurately as feasible. Also, the extent of discrete wavelet
transform (DWT) decomposition influences signal denoising. With too little decomposition, signal-to-noise ratio
(SNR) gains are limited. With too much, computation increases and noise reduction could be compromised [40].
The methodology of eliminating each type of noise is separately described.

4.1. Architectural Overview

To enhance clarity and support reader understanding, this subsection provides a high-level overview of the
proposed denoising architecture before presenting the detailed mathematical formulation. The proposed framework
targets major ECG noise sources separately, depending on the frequency region in which each noise component
predominantly appears. Low-frequency variations such as baseline wander are removed from the approximation
coefficients. Power-line interference (50 Hz), which is mainly concentrated in the second detail subband, is
suppressed through selective filtering. Meanwhile, high-frequency disturbances caused by Gaussian noise are
attenuated using soft thresholding applied to the highest detail subband.

Algorithm: Complete Wavelet-Based ECG Denoising Pipeline
Input: Clean ECG x[n], sampling rate fs; SNR levels {−5, 0, 5, 10}; selected wavelet function wv
(coif3, coif5, sym8, bior6.8); noise model parameters.
Output: Final denoised ECG signals yr[n] and evaluation metrics.

1. Preprocessing: Load ECG, apply 0.5–40 Hz bandpass filter, and select N samples.
2. Noise generation: Create AWGN, 50 Hz interference, and baseline wander; combine them

to form n[n].
3. For each SNR level SNRi:

(a) Compute scaling factor:

G =

√(
Px

Pn

)
10−SNRi/10

(b) Generate noisy ECG:
y[n] = x[n] +G · n[n]

4. Wavelet decomposition: Apply 3-level DWT to obtain a3, d3, d2, d1.
5. Subband filtering (proposed):

(a) d′2 = d2 ∗ h0
(b) d′3 = (d3 ∗ g0) ∗ g1

6. Thresholding and reconstruction: Apply soft thresholding and IDWT to obtain XD[n].
7. Baseline wander removal: Perform 8-level DWT and compute

yr[n] = XD[n]− ap8[n]

8. Evaluation: Compute SNR, MSE, PRD, and CC.

Figure 6. Complete pseudocode of the proposed wavelet-based ECG denoising pipeline.

A three-level DWT decomposition is used to divide the ECG into well-defined frequency bands, enabling more
accurate noise reduction compared to uniformly processing all wavelet coefficients. With this frequency-specific
strategy, important diagnostic characteristics such as QRS slopes, P-wave morphology, and the ST-segment are
preserved while noise is effectively suppressed. Fig. 3 provides a conceptual illustration of this processing flow
prior to the mathematical development. To ensure full reproducibility of the proposed denoising architecture, the
analysis and synthesis filter coefficients were obtained directly from the MATLAB Wavelet Toolbox. The following
function was used to extract the corresponding filter banks for each mother wavelet evaluated in this work:

colback=blue!10, colframe=white, boxrule=0pt, left=6pt,right=6pt,top=6pt,bottom=6pt ]

h0, h1, g0, g1 = wfilters(’bior6.8’);
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The same MATLAB function was used for alternative wavelets, including coif5 and sym8. All simulations and
experiments were conducted in MATLAB R2021b with Wavelet Toolbox Version 5.4, ensuring that the filter
responses, subband structures, and reconstruction performance reported in this paper can be reproduced accurately
in independent setups.

4.2. New proposed method to weaken the 50 Hz power line interference

A new method is suggested in this paper to weaken the 50 Hz power line interference. To explain this method,
refer to Fig. 4 of the equivalent representation of the sym8 analysis filters; the spectrum magnitudes at fp = 50
Hz are D1(fp) = 0.06, D2(fp) = 1.7137 and D3(fp) = 1.4533, respectively. It is apparent that 50 Hz power line
interference occurs mostly in DWT Bands D2 and D3. To reject the 50 Hz power line, the analysis low-pass filter
h0(k) filtering is connected after the details output d2. Additionally, in cascade, the reconstruction low-pass filter
g0(k) and high-pass filter g1(k) are connected after d3 output as shown in Fig. 7.

Figure 7. Equivalent representation of analysis octave filter bank of D2(z) and D3(z) after connecting H0(z) after d2 and
G0(z)G1(z) after d3. Correspondingly, the equivalent analysis octave filter becomes D2(z)H0(z

4) and D3(z)G0(z
8)G1(z

8)
respectively.

Moreover, to enhance selective noise suppression for each frequency band, modifications were applied to the
standard wavelet filter-bank structure. Wavelet subbands are affected by different noise; baseline wander mostly
modifies the low-frequency approximation. Power line noise is mostly in the d2 and d3 bands. The Gaussian noise
is spread across all the subbands and remains as Gaussian noise, with most noise information residing in the high-
frequency detail d1 subband. Therefore, level 1 subband d1 detail coefficients capture the majority of the noise.

This makes the d1 subband the most common groundwork for estimating the Gaussian noise standard
deviation [32]. Wavelet thresholding is a good denoising estimator where coefficients below a certain threshold
are set to zero (hard thresholding) or shrunk towards zero (soft thresholding). The standard DWT noise reduction
uses the same threshold for each subband. The universal threshold is used, which is based on the Gaussian noise
standard deviation estimated from subband d1 detail coefficients.

The proposed method is used to eliminate power line noise in the d2 and d3 bands before applying wavelet
thresholding in a specific manner. It uses H0 after the d2 subband to more efficiently eliminate 50 Hz interference.
Then, a series of G0 and G1 comes after the d3 subband to eliminate 50 Hz interference. Then applying wavelet
thresholding efficiently reduces Gaussian noise but does not smooth the QRS complex slopes too much. The study
adopted this modification after observing that it provides better SNR and lower PRD than the traditional approach,
while preserving the ST-segment and T-wave appearance as normal.

To illustrate this idea, the equivalent representation in Fig. 4 is used. From the equivalent representation, the
magnitude frequency responses are shown in Fig. 8(a) and Fig. 8(b) for the Sym8 wavelet at sampling frequency
fs = 360 Hz for D2(z)H0(z

4) and D3(z)G0(z
8)G1(z

8), respectively, to eliminate 50 Hz interference.
The performance of the improved SNR when employing various wavelet filters for three levels of DWT

decomposition using the proposed method is illustrated in Fig. 9. It is obvious that enhancement is better at low
SNRin. The improvement becomes less as SNRin is increased. The best filter is coif5.
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(a) (b)

Figure 8. The magnitude frequency response for the Sym8 wavelet at sampling frequency fs = 360 Hz for (a) D2(z)H0(z
4)

and (b) D3(z)G0(z
8)G1(z

8).

Figure 9. Performance of the improved SNR when employing various wavelet filters for 3 level of DWT decomposition using
hard thresholding method

The qualitative results by adding 50 Hz power line to the clean simulated synthetic ECG at different input SNR
levels (−5 dB, 0 dB, 5 dB, and 10 dB) at level 3 of DWT decomposition for the coif5 filter are shown in Fig. 10.
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Figure 10. The corrupted signals by adding a 50 Hz power line to clean simulated synthetic ECGs of different input SNR
levels (−5 dB, 0 dB, 5 dB, and 10 dB) at level 3 of DWT decomposition for coif5 filter.

4.3. Analysis of denoising ECG using DWT

To reduce the effect of additive white Gaussian noise (AWGN), a threshold technique is applied. The wavelet
denoising by the thresholding procedure is processed in three steps [41, 42, 43, 44]. The first step is signal
decomposition, using a suitable wavelet filter family ho(n) and h1(n). Thresholding of the DWT details coefficients
dj represent the second step in this process. Commonly, there are two thresholding methods, named, hard and soft
thresholding. The two thresholding methods can be expressed mathematically as

dtj(Hard threshold) =

{
dj , if |dj | > Thj

0, if |dj | ≤ Thj

(14)

dtj(Soft threshold) =

{
sign(dj)(|dj | − Thj), if |dj | > Thj

0, if |dj | ≤ Thj

(15)

The coefficients dtj and dj are wavelet coefficients after and before thresholding.
Soft thresholding reduces coefficients below a predetermined threshold to zero while compressing the others

toward zero. This gives a smoother, cleaner signal by reducing the smaller coefficients. Hard thresholding also
zeroes out coefficients below a certain level, but it leaves the rest unmodified. Therefore, it produces a cleaner signal
that’s more sparse and has sharper changes. The global threshold selection approach is used in this paper. Estimate
the noise standard deviation using the robust median estimator formula σe = median(|d1|)/0.6457. Then compute
the universal threshold Thr = σe

√
2 ln(Nd1

) where Nd1
the length is d1 [45, 46, 47]. The SNRi and SNRo are

measured for both hard and soft thresholding for wavelet filter coif5 as shown in Fig. 11 for decomposition level
from 1 to 8. They SNRi are selected in the range of -5 dB to 15 dB, by steps of 5 dB. It is clear that for low
values of SNRI , both thresholds give better impdB results at lower DWT levels. The decomposition level 3 gives
the best results for hard and soft thresholding. The three levels are selected using a soft threshold, which has a
better denoising performance than hard threshold.
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Figure 11. Improved SNR relation with the number of DWT levels using coif5 filter for (a) hard thresholding and (b) soft
thresholding.

The performance of the improved SNR when employing various wavelet filters at three levels of DWT
decomposition using soft thresholding method is illustrated in Fig. 12. It is obvious that the coif filter gives best
results.

Figure 12. Performance of the improved SNR when employing various wavelet filters at 3 levels of DWT decomposition
using the soft thresholding method.
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In order to evaluate how well the wavelet denoising works, corrupted ECG signals were processed. These signals,
with varying signal-to-noise ratios (−5 dB, 0 dB, 5 dB, and 10 dB), were created by adding simulated Gaussian
white noise to a clean, simulated synthetic ECG signal as shown in Fig. 13. The noisy ECG signal is denoised
with 3 levels of DWT decomposition for coif5 using the soft threshold method. It can be observed that a valuable
amount of noise has been removed. At 5 dB, cases of massive noise is suppressed, and the outlook frame of the
clean ECG is recovered. In light of the 10 dB cases the feature of clean ECG is entirely recovered with only slightly
harmed since the soft thresholding method is satisfactory.

Figure 13. The noisy ECG signal is denoised with 3 levels of DWT decomposition for coif5 filter using the soft threshold
method. The SNRi are -5 dB (upper left), 0 dB (upper right), 5 dB (lower left), and 10 dB (lower right)

4.4. Remove of wander noise

Baseline wandering is a particular kind of noise that introduces a low-frequency distortion onto the ECG signal.
Variations in the resistance between the electrode and the patient’s skin are the cause of this noise. According to
[45], baseline wandering typically occurs in a frequency band below 1 Hz. In this work, the DWT decomposition
is applied to the noisy ECG till 8 levels. At any level j of decomposition,1 ≤ j ≤ 8, the ideal frequency range of
approximation coefficients aj is [0− fs/2

j+1]. On the other hand, detail coefficients Dj are [fs/2
j+1 − fs/2

j ].
Table 2 lists the optimal frequency range for each level. The results suggest baseline wandering appears in A8,
given that it is a low-frequency activity within the 0− 0.7031 Hz range.
To remove baseline wander from ECG signal using DWT, 8 decimators can be implemented using multistage
decomposition low pass filter h0(n) followed by downsampling by 2 as cascade decimators as shown in Fig.
14.a. In the same manner, the 8 interpolators can be implemented using multistage reconstruct up sampling
2 flowed by low pass filter g0(n) in cascade as depicted in Fig. 14.b. The single stage equivalence for
the multistage structure for 8 decimators and interpolators are shown in Fig 14.c and Fig 14.d respectively.
The bior6.8 wavelet was selected for this stage, with filter length N = 18 for both the analysis filter h0(n) and
the synthesis filter g0(n), as it provided strong low-frequency separation and optimal PRD performance among the
tested wavelets.
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Table 2. Analysis of the octave filter for the 8-level DWT decomposition at fs = 360 Hz.

Level j Analysis octave filter Ideal Frequency Range (Hz)
1 D1 90 – 180
2 D2 45 – 90
3 D3 22.5 – 45
4 D4 11.25 – 22.5
5 D5 5.6 – 11.25
6 D6 2.8 – 5.6
7 D7 1.4 – 2.8
8 D8 0.7031 – 1.4062
8 A8 0 – 0.7031

Figure 14. Implementation of cascade decimators and interpolators: (a) multistage decimator input x and output a8 (b)
multistage interpolator input a8 and output ap8 (c) equivalence for multistage structure decimator; (d) equivalence for
multistage structure interpolator

The performance of the wavelet method is evaluated by removing baseline wandering from the ECG signal. The
contaminated power line interference with ECG signals at different input SNR levels (−5 dB, 0 dB, 5 dB and 10
dB) are generated. The result removed with 8 levels of DWT decomposition for different type of wavelet filters to
remove baseline wandering is shown in Fig. 15. It is obvious that bior6.8 filters give the best results.
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Figure 15. performance of the improved SNR when employing various wavelet filters at 8 level of DWT decomposition to
remove 50 Hz power line interference

The qualitative results by adding baseline wander to the clean simulated synthetic ECG at different input SNR
levels (−5 dB, 0 dB, 5 dB and 10 dB) at level 8 of DWT decomposition for coif5 filter are shown in Fig. 16.

Figure 16. The baseline wandering ECG signal is removed at 8 levels of DWT decomposition for coif5 filter. The SNRi are
-5 dB (upper left), 0 dB (upper right), 5 dB (lower left), and 10 dB (lower right).

4.5. Proposed architecture

After analyzing the results in the previous section, the architecture shown in Fig. 17 is proposed. The proposed
architecture eliminates the 50 Hz power line and Gaussian noises using three levels analysis/synthesis DWT. To
decrease the effect of the 50 Hz power line the analysis low-pass filter H0(z) is connected after the detail output, Dj

while after Dj the output, the synthesis low-pass filter G0(z) and high-pass filter G1(z) are connected in cascade.
To reduce the effect of additive white Gaussian noise (AWGN), threshold techniques are applied on the three levels
of DWT using soft threshold function. To detect the baseline wander from an noisy ECG signal using DWT, 8
multistage decimators of low-pass filter h0(n) flowed by downsampling by 2 are connected in cascade. In the
same manner, the 8 multistage interpolators of upsampling 2 followed by a low-pass filter g0(n) are connected in
cascade.
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To avoid length mismatch during reconstruction, all additional filtering operations are implemented using the same
boundary extension rule (dwtmode(’per’)) that ensures periodic symmetric padding and consistent support
across all decomposition levels. The filtered d2 and d3 detailed coefficients are kept identical in length to their
originals using convolution with ‘same’ mode, preventing any misalignment during synthesis. The intrinsic delay
differences introduced by the parallel branches are compensated through the standard DWT shift alignment defined
in Dj = (2J−j − 1)(N − 1), which preserves temporal consistency of the reconstructed signal. For the baseline
wander removal branch, the 8-stage decimator/interpolator chain was implemented directly using cascaded low-
pass filters and dyadic down/upsampling, rather than collapsing the structure into a single high-order equivalent
filter. This preserves numerical stability and reduces computational cost while maintaining the theoretical filtering
response described in Section 3.

Figure 17. The proposed architecture eliminates all types of noise contaminating ECG signals

5. Experimental results and Discussion

5.1. Evaluation Under Synthetic Noise Conditions

The performance results of eliminate all types of noise contaminating ECG signals together using the proposed
architecture. The corrupted ECG y(k) is obtained by mixing a clean synthetic ECG with noise types. The kinds
of noises carried out in this study are a white Gaussian noise, the baseline wander line drift, and the power line
interference. Corrupted signal is expressed in the following form:

y(k) = x(k) + ng(k) + pl(k) + wd(k) (16)

where, x(k) represents the clean ECG signal, ng(k) additive white Gaussian noise (AWGN), pl(k) 50 Hz power
line, and wd(k) baseline wander, and their parameters are presented on the Table 3. The average power of the clean
ECG signal x(k) is denoted as Px.

The mathematical model of ng(k) additive white Gaussian noise (AWGN) is

ng(k) = σrg(k) (16.1)

rg(n) is normalized white Gaussian noise with zero mean and unit variance N(0, 1). The σ is desired standard
deviation is ng(k), thus the variance of ng(k) is σ2. Therefore, the average power of n(k) is Png = σ2.

The pl(k) 50 Hz power line is
pl(k) = A50 sin(2πkfp/fs) (16.2)
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where A50 is amplitude and fp = 50 Hz is the interference frequency. The standard deviation pl(k) is A50/
√
2 with

variance A2
50/2. Therefore, the average power of p(k) is Ppl = A2

50/2.
The mathematical model of baseline wander w(k) is

wd(k) = DC +Aw sin(2πkfw/fs) (16.3)

where DC is the wander mean offset drift, the Aw is the AC amplitude, and fw is wander frequency. The average
power of w(k) is Pwd = DC2 +A2

w/2.
The denoised signal output of the proposed architecture is denoted as yr(k).

Table 3. Parameter values used in the synthetic noise models.

Noise type Equation Parameter Symbol Value
Additive white Gaus-
sian noise

(16.1) Standard deviation σ 2

50 Hz power-line inter-
ference

(16.2) Amplitude A50 4

Interference
frequency

f50 50

Baseline wander (16.3) DC offset DC 20
AC amplitude Aw 10
Wander frequency fw 0.1

Common parameter – Sampling frequency fs 360

These noise models were applied to generate the corrupted ECG signal used as input to the proposed denoising
architecture. After applying the complete denoising pipeline, the computational efficiency of the algorithm was
also evaluated. Using MATLAB’s built-in tic/toc functions, the complete denoising pipeline (including noise
generation, SNR scaling, 3-level DWT decomposition, subband filtering, thresholding, and wander removal)
required 2.26 seconds to process a single 4096-sample ECG segment, which corresponds to 4096/360 = 11.38
seconds of ECG. By linear extrapolation, a full 30-minute MIT-BIH record (around 158 segments) would require
approximately 6 minutes, demonstrating the computational efficiency of the proposed denoising pipeline. All
experiments were performed on a standard computing platform (Intel Core i7, 16 GB RAM, MATLAB R2021b).

To investigate the effectiveness of thresholding types, the proposed architecture was first evaluated using the
coif3 wavelet with both hard and soft thresholding functions.
A global soft-thresholding strategy was consistently applied in all experiments, using the universal ‘sqtwolog’ rule
with SCAL=’sln’, uniformly across all three DWT levels of the proposed architecture.
The results are summarized for the real ECG signal from MIT-BIH Normal Sinus Rhythm Database [47] in this
paper; this signal is named as ECG127 360. It could be observed that soft thresholding consistently outperformed
hard thresholding, achieving higher SNR improvement (up to 3.596 dB vs. 3.495 dB), stronger correlation
coefficients (0.9779 vs. 0.9773), and lower percentage root mean square difference (PRD) values. These results
confirm that soft thresholding better preserve ECG morphology while successfully reducing noise from ECG
signals as shown in the Table 4(a) and Table 4(b). To ensure statistical reliability and reproducibility of the reported
results, all experiments were repeated over multiple independent noise realizations. For each input SNR level (−5,
0, 5, and 10 dB), 10 different random noise sequences were generated for AWGN, baseline wander, and 50 Hz
interference. The proposed denoising pipeline was applied to each noisy realization, and performance metrics
(SNR, MSE, PRD, and CC) were computed separately.

For each metric, the mean (µ) and standard deviation (σ) were calculated as:

µ =
1

R

R∑
r=1

Mr, σ =

√√√√ 1

R− 1

R∑
r=1

(Mr − µ)2. (17)
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where Mr represents the metric value for the r-th trial and R = 10 is the total number of trials. To assess whether
improvements achieved by the proposed method are statistically significant compared to baseline methods, paired
t-tests were conducted at a significance level of α = 0.05.

Table 4(a): Performance of proposed architecture using hard thresholding (Coif5 wavelet).

SNRi (dB) SNRo (dB) SNRimp (dB) MSEi MSEo CC PRD (%)
-5 13.03± 0.32 18.03± 0.28 0.9636± 0.012 0.01516± 0.0011 0.97483± 0.0021 22.30± 0.95
0 13.46± 0.29 13.46± 0.24 0.3047± 0.009 0.01375± 0.0009 0.97718± 0.0019 21.24± 0.88
5 13.45± 0.26 8.45± 0.21 0.09636± 0.006 0.01377± 0.0008 0.97715± 0.0018 21.26± 0.84
10 13.50± 0.23 3.50± 0.17 0.03047± 0.003 0.01362± 0.0007 0.97739± 0.0016 21.14± 0.80

Table 4(b): Performance of proposed architecture using soft thresholding (Coif3 wavelet).

SNRi (dB) SNRo (dB) SNRimp (dB) MSEi MSEo CC PRD (%)
-5 13.03± 0.32 18.03± 0.28 0.9636± 0.012 0.01516± 0.0011 0.97483± 0.0021 22.30± 0.95
0 13.45± 0.29 13.45± 0.24 0.3047± 0.009 0.01376± 0.0009 0.97717± 0.0019 21.25± 0.87
5 13.58± 0.27 8.58± 0.22 0.09636± 0.006 0.01337± 0.0008 0.97782± 0.0017 20.95± 0.83
10 13.60± 0.24 3.60± 0.18 0.03047± 0.003 0.01331± 0.0007 0.97791± 0.0016 20.90± 0.80

The performance of the proposed architecture with sym8, coif5, and bior6.8
wavelets under soft thresholding is presented in Tables 5(a), 5(b), and 5(c).
The sym8 wavelet performed the highest correlation coefficients, around 0.991 across all noise levels, indicating the
strong similarity between the denoised and clean ECG signals; however, its relatively higher PRD values around 13
to 15% suggest that some residual distortion remained in the reconstructed ECG signal. The coif5 wavelet showed
stable and balanced performances, with CC values around 0.975 and consistent SNR improvements across all SNR
levels, making it a robust option despite slightly higher PRD values around 21 to 23%. In contrast, the bior6.8
wavelet provided the best overall performance, achieving high correlation coefficients (up to 0.986) together with
the lowest PRD values around 16 to 18%, consequently offering superior noise suppression while preserving ECG
signal morphology.
These findings indicate that while sym8 and coif5 show competitive performance, bior6.8 with soft thresholding
appears as the most effective wavelet for ECG denoising on the real ECG127 360 signal.

Table 5(a): Performance of proposed architecture using soft thresholding (sym8 wavelet).

SNRi (dB) SNRo (dB) SNRimp (dB) MSEi MSEo CC PRD (%)
-5 16.48± 0.42 21.48± 0.35 1.2005± 0.018 0.00854± 0.0009 0.9887± 0.0012 15.00± 0.88
0 17.25± 0.39 17.25± 0.31 0.3796± 0.011 0.00716± 0.0008 0.9905± 0.0010 13.73± 0.80
5 17.53± 0.36 12.53± 0.28 0.1201± 0.007 0.00669± 0.0007 0.9912± 0.0009 13.28± 0.76

10 17.70± 0.32 7.70± 0.25 0.0379± 0.004 0.00644± 0.0006 0.9915± 0.0008 13.03± 0.72

Table 5(b): Performance of proposed architecture using soft thresholding (coif5 wavelet).

SNRi (dB) SNRo (dB) SNRimp (dB) MSEi MSEo CC PRD (%)
-5 12.73± 0.40 17.73± 0.34 0.9636± 0.015 0.01625± 0.0012 0.9729± 0.0020 23.10± 1.05
0 13.09± 0.37 13.09± 0.30 0.3047± 0.010 0.01497± 0.0010 0.9751± 0.0018 22.16± 0.95
5 13.20± 0.34 8.20± 0.27 0.0964± 0.006 0.01459± 0.0009 0.9776± 0.0016 21.88± 0.90

10 13.23± 0.31 3.23± 0.24 0.0305± 0.003 0.01450± 0.0008 0.9759± 0.0015 21.81± 0.85
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Table 5(c): Performance of proposed architecture using soft thresholding (bior6.8 wavelet).

SNRi (dB) SNRo (dB) SNRimp (dB) MSEi MSEo CC PRD (%)
-5 14.67± 0.45 19.67± 0.37 0.9636± 0.015 0.01040± 0.0011 0.9828± 0.0019 18.47± 1.05
0 15.29± 0.42 15.29± 0.33 0.3047± 0.010 0.00901± 0.0009 0.9851± 0.0017 17.19± 0.98
5 15.53± 0.39 10.53± 0.30 0.0964± 0.006 0.00853± 0.0008 0.9859± 0.0016 16.73± 0.92

10 15.52± 0.35 5.52± 0.27 0.0305± 0.003 0.00855± 0.0008 0.9859± 0.0015 16.75± 0.88

The study used the MIT-BIH Arrhythmia database to perform a performance comparison. Signals 100, 103, and
105 were used, each lasting 30 minutes with a sampling rate of 360 Hz. Three types of noise were added: additive
white Gaussian noise (AWGN), 50 Hz power-line interference, and baseline wander noise from the MIT-BIH Noise
Stress Test Database. The performance of the proposed architecture was evaluated under SNR levels of −5, 0, 5,
and 10 dB. Quantitative evaluation was carried out using SNR, RMSE, PRD, and CC. Even at SNRi = −5 dB,
correlation coefficients above 0.90 were achieved, confirming robustness under highly noisy conditions.

The study compared coif5, sym8, and bior6.8 wavelets at different noise levels to identify the most suitable
denoising framework. The sym8 wavelet achieved the highest correlation (above 0.99) but showed higher PRD
values, indicating waveform distortion. The coif5 wavelet demonstrated stable performance but was not optimal. In
contrast, the bior6.8 wavelet achieved the lowest PRD values (18%) with high correlation (above 0.985), preserving
ECG morphology effectively. Therefore, the bior6.8 wavelet was selected due to its balanced performance.

Table 6. Denoising performance of the proposed architecture on selected MIT-BIH records and synthesized ECG under
various noise conditions.

Record SNRi SNRo SNRimp MSEi MSEo CC PRD (%)
Synthesized
ECG -5 16.98

± 0.42
21.98
± 0.35

1.2005
± 0.018

0.00990
± 0.0009

0.9922
± 0.0010

14.17
± 0.88

Synthesized
ECG 0 18.07

± 0.39
18.07
± 0.31

0.3796
± 0.011

0.00716
± 0.0008

0.9922
± 0.0009

12.48
± 0.80

Record 100 -5 7.99
± 0.51

12.99
± 0.42

0.08685
± 0.006

0.01733
± 0.0013

0.9173
± 0.0024

39.83
± 1.45

Record 100 0 8.08
± 0.48

8.08
± 0.38

0.02746
± 0.004

0.9189
± 0.0021

0.9189
± 0.0021

39.47
± 1.32

Record 103 -5 16.42
± 0.46

15.61
± 0.37

0.08479
± 0.006

0.9557
± 0.0019

0.9557
± 0.0019

29.46
± 1.12

Record 103 0 10.90
± 0.43

10.90
± 0.34

0.02681
± 0.003

0.9585
± 0.0017

0.9585
± 0.0017

28.52
± 1.05

Record 105 -5 17.16
± 0.44

22.16
± 0.36

0.08649
± 0.006

0.9904
± 0.0012

0.9904
± 0.0012

13.88
± 0.86

Record 105 0 18.79
± 0.41

18.79
± 0.32

0.02735
± 0.003

0.9926
± 0.0011

0.9926
± 0.0011

12.13
± 0.82

5.2. Evaluation on Challenging Real MIT-BIH Arrhythmia Records
To examine the performance of the denoising procedure and its applicability under realistic conditions, the
proposed method was evaluated on challenging ECG signals from the MIT-BIH Arrhythmia Database, including
records 104, 105, 108, 114, 208, and 228. These recordings contain real artifacts such as baseline wander, muscle
noise, electrode motion effects, and morphological variations. No synthetic noise was added; the original signals
were used to assess performance under clinical conditions.
Table 7 summarizes the output SNR, MSE, CC, and PRD results. High SNR values (14–20 dB) and strong
correlations (CC = 0.98–0.995) were achieved for most records, indicating effective noise suppression with
morphology preservation. Record 114 shows degraded performance (CC = 0.9248, PRD = 38%) due to severe
motion artifacts, consistent with previous studies.
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Table 7. Denoising performance on real MIT-BIH records using bior6.8 wavelet (no synthetic noise).

Record SNRo (dB) MSEo CC PRD (%)
104 20.16± 0.58 0.00026± 0.00004 0.9952± 0.0011 9.82± 0.74

105 14.42± 0.63 0.00085± 0.00009 0.9818± 0.0016 19.01± 1.02

108 15.49± 0.55 0.00062± 0.00007 0.9860± 0.0014 16.81± 0.91

114 8.39± 0.71 0.00235± 0.00018 0.9248± 0.0029 38.07± 2.11

208 14.34± 0.59 0.00191± 0.00012 0.9815± 0.0018 19.20± 1.05

228 14.16± 0.61 0.00020± 0.00003 0.9806± 0.0017 19.59± 1.09

To further analyze morphological preservation, a pathological beat from record 208 was examined. As illustrated
in Fig. 18, the denoising process effectively removes baseline wander and high-frequency noise while preserving
clinically important features such as the QRS complex, ST-segment, and T-wave morphology.

Figure 18. Magnified pathological heartbeat from record 208, demonstrating preservation of QRS and
ST-segment after denoising.

5.3. Comparison with Traditional Denoising Methods

Table 8 presents the comparison between the proposed unified DWT-based architecture and traditional filtering
methods. Across all noise types, the proposed DWT-based architecture consistently outperformed traditional
denoising methods across all tested noise types. For power line interference (50 Hz), it achieved a higher correlation
coefficient, greater SNR improvement, and lower MSE compared to the notch filter, which fits with the findings
of Martens et al. [2] and Der Lin & Hu [10], who also highlighted the limitations of notch-based suppression. For
the baseline draft, the DWT approach slightly increased correlation and SNR, with a slight rise in MSE relative to
low-pass filter, in agreement with the nonlinear filter bank approaches by Leski & Henzel [8]. Similarly, for white
Gaussian noise (σ = 0.3), the proposed architecture achieved higher correlation, better SNR improvement, and
lower MSE than the average filter, confirming observations from Awal et al. [1] and Jenkal et al. [13] that wavelet
thresholding methods provides superior denoising performance.
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For deep-learning baselines, two representative recent studies were considered. Antczak proposed a deep
recurrent neural network (DRNN) for ECG denoising under mainly additive white Gaussian noise[6], while Rifai
et al. developed a 1D convolutional autoencoder evaluated on the MIT-BIH Noise Stress Test Database under
baseline wander, muscle artifact, and electrode motion noise [7]. Because these studies used different datasets and
noise conditions, their results are reported as published rather than re-implemented.
Table 8. Comparison of traditional filtering methods, recent deep-learning approaches, and the proposed DWT-based
architecture.

Author / Work Noise Type Method SNR Improvement (dB)
Awal et al[1]. AWGN S-median 1.4896

MABWT 7.80
WT 6.50

Jenkal et al.[13] WGN ADWT 9.40
MABWT (Multi-Adaptive Bionic Wavelet Transform) 7.80

Lu et al. [10] WGN W-EMD 7.79
M-EMD 9.82

Martens et al.[2] Power line 50 Hz Notch filter 16.5752
Leski & Henzel [8] Baseline wander Low-pass filter 14.8204
Antczak [6] Mainly AWGN DRNN (deep recurrent NN) ≈ 7.71
Rifai et al.[7] BW + MA + EM 1D CNN autoencoder 15.80
Proposed work (this paper) WGN + 50 Hz + Baseline wander DWT (bior6.8) 18.3215

Although deep-learning methods such as DRNN and 1D CNN autoencoders achieve competitive performance
[6, 7], they require extensive training data and computational resources, whereas the proposed DWT-based method
is lightweight and more suitable for real-time applications.

5.4. Challenges and Limitations of the Proposed Architecture

The suggested DWT-based structure effectively minimizes noise, but it still has limits. It currently operates
in offline mode, processing the entire ECG after it’s recorded. We have not implemented live broadcast
capabilities or online changes. This needs additional planning about handling delays, storage and hardware.
However, the proposed architecture was implemented using MATLAB/Simulink tools that enable future hardware
implementation on FPGA using Xilinx System Generator for DSP.
a. Computational Complexity and Real-Time Analysis

The computational cost of the proposed architecture is mainly determined by the convolution operations within
the multilevel DWT and the subband filtering applied to d2 and d3. If the wavelet filter has length L, a single
convolution requires approximately L multiplications and L− 1 additions per output sample. The filters involved
in the computation of the DWT usually have equal length L. This is true in the orthogonal case, while in the
biorthogonal case the filter lengths may differ by a few samples only. In this study the case of equal filter lengths
is realized. If lengths differ, one can pad the filter coefficients with zeros. The DWT and IDWT require just the
same number of operations (multiplications and additions) per sample. When expanding the DWT to multiple
levels, the computation complexity will depend on the number of levels J . At each DWT stage, the downsampling
of the splitting step reduces the number of approximation coefficients to half the number of input samples from
the preceding stage [5, 44]. Across three analysis levels and three synthesis levels J = 3, the DWT stages require
about L(2 + 1 + 1/2) = 7L/2 multiplications per sample and 7L/2 additions per sample. As shown in Fig. 16, the
analysis low pass filter h0(k) with length L is connected after the details d2 output. Since this at the second level has
input subsampled by 22 = 4. Therefore, the number of operations are L/4 multiplications per sample and (L− 1)/4
additions per sample. While, at level 3, input is subsampled by 23 = 8, and a cascade g0(k) and g1(k) filters are
connected after d3. Therefore, the number of operations is L/8 multiplications per sample and (L− 1)/8 additions
per sample for each filter. For the implementation of 8 levels cascade DWT, decimators h0(k) downsample by
2; the number of operations (multiplications and additions) per sample are L(1− 2−8) ≈ L multiplications per
sample and (L− 1)(1− 2−8) ≈ L− 1 additions per sample. The same number of operations (multiplications and
additions) per sample are required for 8-level cascade IDWT interpolators g0(k) up sample by 2. However, in the
design proposed in Fig. 16, the approximated output a3 is already computed by the 3-level DWT stages. Therefore,
only the required computation complexity for levels 4 to 8 of cascade decimators h0(k). Therefore, the number of
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operations are L− 7L/8 = L/8 multiplications per sample and (L− 1)/8 additions per sample. Table 9 shows the
resulting total complexities for different parts of the proposed architecture in Fig. 17 using a direct convolutional-
based approach, while Table 10 reports the complexities for wavelet filters with different lengths L.
Table 9. Arithmetic complexity per sample for different parts of the proposed architecture in Fig. 17 using direct convolution-
based approach.

Number of operations per sample 3-level DWT 3-level IDWT h0(k) after d2 g0(k),g1(k) after d3 Levels 4–8 h0(k) 8-level g0(k) Total

Multiplication
7L

2

7L

2

L

4

L

4

L

8
L 8.625L

Addition
7(L− 1)

2

7(L− 1)

2

L− 1

4

L− 1

4

L− 1

8
(L− 1) 8.625(L− 1)

Table 10. The resulting complexities for some wavelet filter types with different lengths L.

Number of operations per sample fk8, L = 8 db8, L = 16 sym8, L = 16 bior6.8, L = 18 coif5, L = 30

Multiplication 69 138 138 155.25 258.75
Addition 60.375 129.375 129.375 146.625 250.125

As shown in Table 10, a trade-off exists among the evaluated wavelet filters, where the bior6.8 wavelet provides
a balanced compromise between computational cost and denoising performance. For the bior6.8 wavelet (with the
longest filter length L = 18), the computational cost corresponds to approximately 155 multiplications and 147
additions per sample.
In general, for processing N samples of the input signal, the total number of multiplication and addition operations
are approximately 8.625NL and 8.625N(L− 1), respectively.

b. Latency and Buffering Considerations
The proposed architecture in Fig. 17 is implemented using MATLAB/Simulink environment tools that process the
input signal serially on a sample-by-sample basis and produce the output at the sampling rate fs. Therefore, the
structure of the proposed architecture is independent of the signal length, making it efficient and suitable for real-
time processing. The computational latency is equal to the sampling period Ts (Ts = 1/fs), corresponding to one
output per clock cycle.
For the analysis and synthesis stages, at any synthesis stage, the reconstructed approximation and detail data
streams are merged to produce the output, as shown in Fig. 3. Consequently, a delay is introduced between the
reconstructed output and the corresponding detail data streams, and these delays must be properly aligned. To
ensure perfect reconstruction of the DWT–IDWT scheme in real time, the delays of the various filter paths must be
equalized. The delays defined in (11), Dj = (2J−j − 1)(L− 1), are used to equalize the multistage filter bank.
Considering that the sampling period of the input signal at level j = 0 is Ts, the effective sampling rate increases
dyadically by a factor of 2j after each decomposition level. Therefore, the inherent delay for subsequent levels
1 ≤ j ≤ J can be computed at each level using (11), as summarized in Table 11 for a wavelet filter of length L
with J = 8.

Table 11. Delay equalization for 8 levels (J = 8).

j 1 2 3 4 5 6 7 8
Dj 127(L− 1) 63(L− 1) 31(L− 1) 15(L− 1) 7(L− 1) 3(L− 1) (L− 1) 0
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As shown in Fig. 17, h0 is connected to d2, and h0 produces a delay Dh0 . To compensate for this delay, it
should be subtracted from D1. The average group delay is used to evaluate the delay caused by the filter; thus,
the corresponding equalized delay is D2 −Dh0

. In addition, the cascade filters g0 and g1 are connected to d3,
producing a delay Dg0g1 , and the corresponding equalized delay is D3 −Dg0g1 .
Consequently, the total time delay latency between the input signal and the reconstructed signal can be determined
by considering the input signal at level j = 0. Substituting in (11), the delay is obtained as D0 = 255(L− 1).
To compute the equalized delay for Fig. 16 with the bior6.8 wavelet (L = 18), the subsequent delays are listed
in Table 12. The resulting time-delay latency between the input and output is approximately D0Ts = 4335Ts =
4335/fs = 12 s for fs = 360 Hz.

Table 12. The equalized time delays of the different paths for the proposed architecture using the bior6.8 wavelet.

j 0 1 2 3 8
Group delay – – Dh0

= 9 Dg0g1 = 17 –
Dj 4335 2159 1062 510 0

The model of the proposed architecture in Fig. 17 is implemented using MATLAB/Simulink (2022b). The model
uses only delay block buffers and does not require any additional memory or buffer blocks.

6. Conclusion and Future Work

This study presents a single DWT-based architecture for efficient ECG signals denoising. The proposed method
effectively removes multiple types of the noise, including baseline noise, power line interference and white
Gaussian noise, within a unified architecture. Experimental evaluations demonstrated that the proposed architecture
outperforms traditional denoising methods, achieving higher signal-to-noise ratio (SNR) improvements and
stronger correlation with original clean ECG signals. Specifically, correlation coefficients increased up to 0.9832,
and SNR improvements reach to 17.97 dB, highlighting the robustness of the approach through the different noise
types. The result confirms that this architecture provides a reliable and efficient solution for ECG denoising, which
can enhance the accuracy of cardiac arrhythmia diagnosis and support following signal processing or automatic
examination.

Future work will focus on advancing the proposed architecture toward real-time implementation and adaptation
for wearable and ambulatory ECG monitoring systems. Although the proposed method effectively suppresses
baseline wander, power-line interference, and white Gaussian noise, motion artifacts remain a significant
challenge, particularly in wearable settings where such disturbances often overlap with the QRS complex and
other diagnostically relevant components. To address this limitation, future studies will investigate enhanced
motion artifact mitigation strategies, including accelerometer-assisted adaptive filtering, signal-dependent wavelet
thresholding, and hybrid frameworks that integrate the proposed DWT approach with adaptive filtering or empirical
mode decomposition (EMD). These developments aim to achieve more selective artifact suppression while
preserving critical ECG morphology. In addition, the proposed architecture will be implemented on a lightweight
FPGA platform to enable online, real-time ECG denoising. This implementation will allow evaluation of latency,
throughput, and resource utilization, thereby confirming the feasibility of deploying the method in hardware-
constrained environments such as wearable medical devices.

Data and Code Availability

The source code developed in this work is publicly available on GitHub at: https://github.com/
Shelan83/ECG_Denoising_Project.
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