

Quantifying Crypto Portfolio Risk: A Simulation-Based Framework Integrating Volatility, Hedging, Contagion, and Monte Carlo Modeling

Kiarash Firouzi*

Department of Mathematics, Allameh Tabataba'i University, Iran

Abstract Four key modules—volatility stress testing, stablecoin hedging, contagion modeling, and Monte Carlo simulation—are integrated into our modular, simulation-based framework for cryptocurrency portfolio risk. Stress design through volatility and correlation shocks, portfolio construction under static weights for controlled comparison, and multivariate price dynamics under tractable assumptions (log-normal baseline with correlation coupling) are all formalized by the mathematical architecture. Value-at-Risk (VaR) and Expected Shortfall (ES) backtesting, sensitivity analysis (shock magnitudes and rolling windows), and calibration diagnostics are all part of the empirical validation using daily BTC, ETH, and USDT data (2020–2024). A roadmap for future extensions, such as GARCH-type volatility models, jump-diffusion processes, copula-based contagion, network adjacency based on on-chain data, and EVT-based tail validation, is provided. We also acknowledge the limitations of distributional assumptions and linear dependence. The result is a reproducible, crypto-native risk framework with clear pathways for enhanced realism and broader asset coverage.

Keywords Crypto Portfolio Risk, Volatility Stress Testing, Stablecoin Hedging, Contagion Modeling, Monte Carlo Simulation

AMS 2010 subject classifications 91G60, 91G70, 62P05

DOI: 10.19139/soic-2310-5070-3107

1. Introduction

The emergence of cryptocurrencies has fundamentally reshaped the landscape of financial markets, introducing a new class of digital assets characterized by decentralization, high volatility, and nontraditional risk dynamics. Since the publication of Nakamoto's seminal whitepaper in 2008 [33], Bitcoin and its successors have evolved from fringe technological experiments into globally traded instruments with a combined market capitalization exceeding \$1 trillion as of 2023. This rapid growth has attracted the attention of retail investors, institutional asset managers, and regulators alike, prompting a surge in academic inquiry into the financial behavior and risk properties of crypto assets [22].

Cryptocurrencies function on decentralized networks, frequently lacking centralized governance and inherent cash flows, in contrast to conventional stocks or fixed-income securities. Network adoption, protocol updates, regulatory announcements, and speculative sentiment are some of the factors that affect their valuation. The assumptions of traditional financial models are called into question by these characteristics, especially those that depend on stable market regimes, linear correlations, and Gaussian return distributions [32, 25].

Extreme volatility, heavy-tailed distributions, volatility clustering, and asymmetric contagion effects are some stylized facts about crypto asset returns that have been reported by recent empirical studies [2, 35]. These features imply that when applied to cryptocurrency portfolios without modification, conventional risk metrics like Value-at-Risk (VaR) and Expected Shortfall (ES) may be inadequate or unstable [14, 37]. Additionally, as demonstrated

*Correspondence to: Kiarash Firouzi (Email: kiarashfirouzi91@gmail.com). Department of Mathematics, Allameh Tabataba'i University, Dehkadeh Olympic, Tehran, Tehran, Iran (1489684511).

by incidents such as the FTX collapse and the Terra-LUNA depeg [15, 21], the interdependence of centralized exchanges and decentralized finance (DeFi) protocols creates systemic vulnerabilities that have the potential to spread throughout the ecosystem.

Strong, crypto-native risk modeling frameworks are crucial in this situation. The literature still lacks modular, simulation-based tools that integrate multiple aspects of crypto risk, such as volatility stress, stablecoin hedging, contagion propagation, and stochastic forecasting, despite the fact that some researchers have investigated GARCH-type models [6], copula-based dependence structures [12], and machine learning approaches [16].

Based on mathematical finance and supported by empirical data, this paper suggests a thorough simulation framework for crypto portfolio risk analysis. There are four main modules in the model:

1. **Volatility Stress Testing:** Quantifies portfolio sensitivity to increased market volatility using covariance matrix perturbations, consistent with Basel stress testing protocols [3].
2. **Stablecoin Hedging Simulator:** Evaluates the impact of allocating capital to stablecoins (e.g., USDT, USDC) on portfolio drawdowns and return stability [20].
3. **Contagion Modeling:** Simulates systemic risk propagation via correlation networks, inspired by SIR dynamics and graph-theoretic contagion models [27, 28].
4. **Monte Carlo Simulation:** Generates probabilistic forecasts of portfolio value under log-normal assumptions, enabling tail risk estimation and scenario analysis [24, 31].

MATLAB is used to implement each module. Because of the framework’s extensible design, users can enter unique asset weights, shock parameters, and time horizons. MarketWatch [†] and Yahoo Finance [‡] provide the daily closing prices of Bitcoin, Ethereum, and USDT from January 2020 to January 2024, which are used for empirical validation.

The contribution of this paper is threefold:

- It formalizes a modular simulation architecture for crypto portfolio risk, grounded in mathematical finance and adaptable to real-world data.
- It demonstrates the empirical validity of the model through backtesting against historical market crashes and volatility regimes.
- It provides a foundation for future extensions, including DeFi-specific risk modules, sentiment overlays, and multi-chain asset integration.

The remainder of the paper is organized as follows:

Section 2 reviews the relevant literature on crypto risk modeling and portfolio theory. Section 3 presents the mathematical formulation of each simulation module. Section 4 describes the empirical dataset, preprocessing steps, and reports the simulation results and visualizations. Section 5 discusses the implications for portfolio construction and risk management. Section 6 concludes with suggestions for future research.

2. Literature Review on Crypto Risk Modeling

A growing body of research aiming at comprehending and measuring the particular risks connected to digital assets has been sparked by the swift development of cryptocurrency markets. In contrast with traditional financial instruments, cryptocurrencies are characterized by their decentralized ecosystems, absence of inherent cash flows, high price volatility, technological vulnerabilities, and regulatory ambiguity [23]. These features call into question the underlying presumptions of traditional financial models and call for the creation of risk frameworks that are crypto-native [34]. The methodological advancements, empirical discoveries, and unsolved issues in crypto risk modeling are highlighted in this review of the literature, which summarizes significant contributions from both academic and commercial sources.

[†]<https://www.marketwatch.com>

[‡]<https://finance.yahoo.com>

Descriptive statistics and volatility analysis were the main topics of early research on cryptocurrency risk. In [10], Baur et al. looked at the return distribution of Bitcoin and discovered notable departures from normality, such as heavy tails and excessive kurtosis. According to [9], which showed long memory and volatility clustering in Bitcoin returns, these results were supported, indicating that standard Gaussian-based models might not be sufficient to capture the dynamics of the cryptocurrency market. In contrast to popular narratives that compare Bitcoin to digital gold, Hu et al. further showed that cryptocurrencies do not exhibit safe haven properties during times of financial stress [26].

Researchers started modifying conventional risk metrics, like Value-at-Risk (VaR) and Expected Shortfall (ES), for the cryptocurrency context as the market developed. Thesis [14] evaluated parametric and non-parametric approaches for estimating VaR and ES for five major cryptocurrencies and found that GARCH-type models and volatility-weighted historical simulation perform better than simple historical methods. These findings are consistent with the larger body of research on dynamic volatility modeling, which highlights the significance of regime-switching behavior and time-varying parameters in capturing crypto risk [36]. After evaluating a number of GARCH specifications, Katsiampa discovered that models with long memory and asymmetric effects produce better predictions of cryptocurrency volatility [29].

Systemic and contagion modeling has become an important field of study that goes beyond individual asset risk. The depegging of stablecoins like TerraUSD and the demise of centralized exchanges like Mt. Gox and FTX have highlighted the interdependence of crypto ecosystems and the possibility of cascading failures. A network-based contagion simulator that measures counterparty risk propagation across exchanges and tokens was presented in the paper [15]. Their method, which treats transactions as edges and exchanges as nodes, is based on epidemiological models and graph theory. A variety of contribution ratio measures based on the multivariate conditional value-at-risk (MCoVaR), multivariate conditional expected shortfall (MCoES), and multivariate marginal mean excess (MMME) are introduced in the paper [38].

Another important factor in crypto risk modeling is technological vulnerabilities. Averin et al. carried out a thorough review of the literature that connected financial instability to blockchain exploits like consensus failures, oracle manipulation, and reentrancy attacks [8]. According to their findings, technological risks have the potential to cause major price disruptions, especially in markets with low trading volume or high levels of leverage. Crypto threats were divided into financial, technological, legal, and political domains by Dumas et al., who emphasized the necessity of multifaceted, integrated risk assessments [19].

Although the results have been mixed, machine learning and artificial intelligence have also been used in crypto risk modeling. In their investigation of support vector machines (SVM) and hierarchical risk parity (HRP) for portfolio optimization, Burggraf et al. discovered that hybrid models perform better in volatile regimes than conventional mean-variance techniques [13]. In their bibliometric study of volatility modeling approaches, Almeida and Gonçalves found that hybrid machine learning architectures and Markov-switching models perform better at capturing regime changes and nonlinear dependencies. They do, however, warn that overfitting and interpretability issues are still major problems, especially when using black-box models for financial decision-making [5].

A special subclass of cryptocurrency assets with particular risk profiles are stablecoins. Stablecoins are vulnerable to regulatory scrutiny, redemption pressure, and collateral risk, despite their design to maintain a fixed value in comparison to fiat currencies [7]. Stablecoins can lessen portfolio drawdowns, but they may also introduce counterparty and liquidity risks, according to the paper [18] that examined the behavior of USDT and USDC during market downturns. Their research backs the addition of stablecoin hedging features to risk simulators, especially for individual investors looking to protect their capital. An example of how algorithmic stabilization mechanisms can malfunction under pressure and lead to wider market contagion is the depegging of TerraUSD in 2022 [30].

Numerous studies have tried to categorize and measure the different kinds of crypto risk. Market risk, credit risk, operational risk, and legal risk are all included in the taxonomy that was proposed in the paper [19] and modified for decentralized settings. They contend that custom risk metrics that take tokenomics, governance frameworks, and smart contract behavior into consideration are necessary for crypto assets. In a similar vein, Aliano and Ragni used game theory and SIR dynamics to model contagion, showing how linked DeFi protocols can allow liquidity shocks to spread. According to their findings, behavioral assumptions and network topology are crucial for systemic risk modeling [4].

There are still a lot of gaps in the literature despite these developments. Many models are not robust across market regimes and rely on short time series. Bitcoin and Ethereum are frequently the only tokens that receive empirical validation, ignoring the larger token landscape. Real-time sentiment analysis, stablecoin dynamics, and cross-chain interactions are not often included in studies. Furthermore, reproducibility and model calibration are hampered by the opacity of decentralized platforms and the absence of standardized data sources. Open-source, modular simulation tools are also required so that practitioners can incorporate new data streams and modify risk scenarios.

In order to fill these gaps, this paper suggests a simulation-based, modular framework that combines Monte Carlo forecasting, stablecoin hedging, volatility stress testing, and contagion modeling. Every module has a mathematical finance foundation and is verified by actual data. The framework's features include privacy protection, extensibility, and suitability for both institutional and retail users. This method provides a scalable solution for managing the risk of cryptocurrency portfolios in an increasingly intricate and linked digital asset ecosystem by fusing theoretical rigor with empirical relevance.

In conclusion, descriptive volatility analysis has given way to complex, multifaceted frameworks that take systemic, technological, and behavioral factors into account in the literature on crypto risk modeling. Traditional financial models are a good place to start, but they need to be modified to take into consideration the special characteristics of decentralized markets. Future research on the integration of simulation techniques, network theory, and machine learning has potential, but it must be balanced with interpretability, transparency, and empirical validation. The creation of strong, crypto-native risk models will be crucial as the cryptocurrency market develops in order to protect investor capital, guide regulatory policy, and guarantee the stability of digital financial systems.

3. Mathematical Framework

This section develops a rigorous foundation for the modular risk architecture. We formalize the multivariate return process, estimation and regularization, stress design, stablecoin regime mixtures, contagion modeling, Monte Carlo simulation and convergence, risk metrics, backtesting theory, dynamic rebalancing as a future extension, and numerical stability. Each claim is accompanied by detailed reasoning and formal proofs. We make explicit where tractable assumptions (Gaussian returns, linear correlation dependence, static weights) are adopted for transparency and reproducibility, and we delineate future enhancements (GARCH-type volatility, jump-diffusion, copulas, EVT) as clearly separable upgrades.

3.1. Modeling assumptions, notation, and estimation

Let $\mathbf{S}_t = (S_{1,t}, \dots, S_{n,t})^\top$ denote asset prices and $\mathbf{r}_t = \log \mathbf{S}_t - \log \mathbf{S}_{t-1}$ the daily log-returns. We assume a baseline multivariate Gaussian return model:

$$\mathbf{r}_t \mid \mathcal{F}_{t-1} \sim \mathcal{N}(\boldsymbol{\mu}_t(W), \boldsymbol{\Sigma}_t(W)), \quad \boldsymbol{\Sigma}_t(W) = \text{diag}(\boldsymbol{\sigma}_t(W)) \mathbf{P}_t(W) \text{diag}(\boldsymbol{\sigma}_t(W)),$$

where $\boldsymbol{\mu}_t(W)$, $\boldsymbol{\sigma}_t(W)$, and $\mathbf{P}_t(W)$ are rolling-window estimators computed from the last W observations. This conditional specification ensures no look-ahead bias: parameters used at t are estimated at $t-1$ from data $\{t-W, \dots, t-1\}$.

The portfolio return is $R_t = \mathbf{w}^\top \mathbf{r}_t$, with fixed weights $\mathbf{w} \in \mathbb{R}^n$, $\sum_i w_i = 1$. Static weights are chosen for controlled comparison and transparent sensitivity; dynamic rebalancing is formalized later as an extension.

Rolling estimators: For each asset i ,

$$\mu_{i,t}(W) = \frac{1}{W} \sum_{k=1}^W r_{i,t-k}, \quad \sigma_{i,t}(W) = \sqrt{\frac{1}{W-1} \sum_{k=1}^W (r_{i,t-k} - \mu_{i,t}(W))^2}.$$

The rolling correlation $\rho_{ij,t}(W)$ is computed in the usual way, yielding $\mathbf{P}_t(W)$.

Lemma 3.1 (Elliptical projection invariance). *Let \mathbf{X} be elliptically distributed with location $\boldsymbol{\mu}$ and scatter $\boldsymbol{\Sigma}$. For any fixed $\mathbf{a} \in \mathbb{R}^n$, the scalar $Y = \mathbf{a}^\top \mathbf{X}$ is elliptical with mean $\mathbf{a}^\top \boldsymbol{\mu}$ and variance $\mathbf{a}^\top \boldsymbol{\Sigma} \mathbf{a}$.*

Proof An elliptical vector admits the representation $\mathbf{X} \stackrel{d}{=} \boldsymbol{\mu} + \mathbf{A}\mathbf{U}$ where \mathbf{U} is spherically symmetric and \mathbf{A} satisfies $\mathbf{A}\mathbf{A}^\top = \boldsymbol{\Sigma}$. Then $Y = \mathbf{a}^\top \boldsymbol{\mu} + (\mathbf{a}^\top \mathbf{A})\mathbf{U}$, which is a linear image of a spherically symmetric variable; thus Y is elliptical with stated parameters. \square

3.2. Covariance regularization and positive definiteness

High correlations during stress can degrade numerical stability. We use shrinkage and eigenvalue clipping to ensure positive definiteness (PD) of covariance and correlation matrices.

Proposition 3.1 (Shrinkage preserves PD). *Let $\widehat{\boldsymbol{\Sigma}}$ be a symmetric positive semidefinite (PSD) matrix with strictly positive diagonal. For $\lambda \in (0, 1]$ define*

$$\boldsymbol{\Sigma}_\lambda = \lambda \widehat{\boldsymbol{\Sigma}} + (1 - \lambda) \text{diag}(\widehat{\boldsymbol{\Sigma}}).$$

Then $\boldsymbol{\Sigma}_\lambda > \mathbf{0}$.

Proof The cone of PSD matrices is convex. Since $\text{diag}(\widehat{\boldsymbol{\Sigma}})$ has strictly positive diagonal entries, it is PD. Therefore any convex combination with weights $(\lambda, 1 - \lambda)$, $\lambda \in (0, 1]$, yields a matrix with all eigenvalues strictly positive, i.e., PD. \square

Proposition 3.2 (Eigenvalue clipping stabilizes correlation). *Let $\widehat{\mathbf{P}}$ be a symmetric correlation estimate with eigen-decomposition $\widehat{\mathbf{P}} = \mathbf{Q}\boldsymbol{\Lambda}\mathbf{Q}^\top$. For $\varepsilon > 0$, define clipped eigenvalues $\Lambda_{ii}^{\text{clip}} = \max\{\Lambda_{ii}, \varepsilon\}$. Then*

$$\mathbf{P}^{\text{clip}} = \mathbf{Q}\boldsymbol{\Lambda}^{\text{clip}}\mathbf{Q}^\top$$

is PSD (PD if all eigenvalues are strictly positive) and has condition number $\kappa(\mathbf{P}^{\text{clip}}) \leq \Lambda_{\max}/\varepsilon$, yielding stable Cholesky factors.

Proof Clipping enforces $\Lambda_{ii}^{\text{clip}} \geq \varepsilon > 0$ for all i , ensuring PSD (and PD if all are strictly positive). The spectral condition number equals $\Lambda_{\max}/\Lambda_{\min}^{\text{clip}} \leq \Lambda_{\max}/\varepsilon$, bounding numerical instability in Cholesky factorization. \square

3.3. Stress design: volatility scaling and correlation amplification

Volatility shocks scale asset volatilities:

$$\tilde{\sigma}_{i,t}(\delta) = (1 + \delta) \sigma_{i,t}(W), \quad \delta \geq 0.$$

Correlation shocks uplift dependence:

$$\tilde{\rho}_{ij,t}(\gamma) = \min\{\rho_{ij,t}(W) + \gamma, 1\}, \quad \gamma \geq 0.$$

The stressed covariance becomes

$$\tilde{\boldsymbol{\Sigma}}_t(\delta, \gamma) = \text{diag}(\tilde{\boldsymbol{\sigma}}_t(\delta)) \tilde{\mathbf{P}}_t(\gamma) \text{diag}(\tilde{\boldsymbol{\sigma}}_t(\delta)).$$

Theorem 3.3 (Monotonicity of portfolio variance under stress). *For any fixed weights \mathbf{w} and baseline $(\boldsymbol{\sigma}, \mathbf{P})$, the portfolio variance $\mathbf{w}^\top \tilde{\boldsymbol{\Sigma}}_t(\delta, \gamma) \mathbf{w}$ is nondecreasing in δ and γ .*

Proof Write $\tilde{\boldsymbol{\Sigma}}(\delta, \gamma) = \mathbf{D}(\delta) \tilde{\mathbf{P}}(\gamma) \mathbf{D}(\delta)$ with $\mathbf{D}(\delta) = \text{diag}((1 + \delta)\boldsymbol{\sigma}) = (1 + \delta)\text{diag}(\boldsymbol{\sigma})$. For fixed γ , $\mathbf{w}^\top \mathbf{D}(\delta) \tilde{\mathbf{P}}(\gamma) \mathbf{D}(\delta) \mathbf{w}$ scales as $(1 + \delta)^2$ and is therefore nondecreasing in δ . For fixed δ , the off-diagonal contributions $\sum_{i \neq j} w_i w_j (1 + \delta)^2 \sigma_i \sigma_j \tilde{\rho}_{ij}(\gamma)$ are nondecreasing in each $\tilde{\rho}_{ij}$ since $\tilde{\rho}_{ij}(\gamma)$ increases elementwise (capped at 1). Thus the variance is nondecreasing in both shocks. \square

Proposition 3.4 (VaR/ES monotonicity under elliptical returns). *Assume \mathbf{r}_t is elliptically distributed (Gaussian baseline). Then $R_t = \mathbf{w}^\top \mathbf{r}_t$ is elliptical with mean μ_R and standard deviation $\sigma_R = \sqrt{\mathbf{w}^\top \Sigma \mathbf{w}}$. For confidence α , there exist constants q_α and c_α (generator-dependent) such that:*

$$\text{VaR}_\alpha = -\mu_R - q_\alpha \sigma_R, \quad \text{ES}_\alpha = -\mu_R + c_\alpha \sigma_R.$$

Hence, by Theorem 3.3, both VaR_α and ES_α are nondecreasing in δ and γ .

Proof By Lemma 3.1, linear projections of elliptical families remain elliptical. VaR and ES for elliptical distributions scale linearly in the standard deviation due to radial symmetry and affine invariance. Monotonicity follows from Theorem 3.3. \square

3.4. Stablecoin hedging: regime mixture and tail amplification

To capture depeg risk, we model a two-state regime for USDT:

$$r_{\text{USDT},t} = \begin{cases} \epsilon_t, & \mathcal{R}_t = \text{peg}, \\ \mu_d + \sigma_d \epsilon_t, & \mathcal{R}_t = \text{depeg}, \end{cases} \quad \epsilon_t \sim \mathcal{N}(0, \sigma_\epsilon^2),$$

with depeg probability $\mathbb{P}(\mathcal{R}_t = \text{depeg}) = p_d$ per scenario. Portfolio returns thus follow a mixture $R_t \sim (1 - p_d)F_p + p_dF_d$, where F_p and F_d denote peg and depeg distributions.

Lemma 3.2 (Mixture tail dominance). *Suppose F_d has heavier left tails than F_p , i.e., $F_d(x) \geq F_p(x)$ for all x below some threshold τ . Then for any α sufficiently close to 1, the mixture ES satisfies $\text{ES}_\alpha((1 - p_d)F_p + p_dF_d) \geq \text{ES}_\alpha(F_p)$, with strict inequality if F_d strictly dominates on a set of positive measure in the tail region.*

Proof ES is the conditional expectation on the left-tail event: $\text{ES}_\alpha(F) = -\mathbb{E}[R \mid R \leq -\text{VaR}_\alpha(F)]$. For high α , the conditioning set falls in the tail region where $F_d \geq F_p$. The mixture increases probability mass of worse outcomes relative to F_p . Conditional expectations over worse losses are larger in magnitude, yielding ES dominance. \square

Proposition 3.5 (Monotonic sensitivity of ES to depeg probability). *If $\mu_d < 0$ and $\sigma_d > \sigma_{\text{peg}}$ (i.e., depeg regime has lower mean and higher variance), then ES_α of the portfolio is nondecreasing in p_d .*

Proof Let $F(p) = (1 - p)F_p + pF_d$. Using the law of total expectation on the tail set, the derivative $\partial \text{ES}_\alpha(F(p)) / \partial p$ equals the tail-weighted difference between expectations under F_d and F_p , which is nonnegative under left-tail dominance (Lemma 3.2) and the assumed mean/variance conditions. \square

3.5. Contagion modeling: correlation baseline and diversification loss

We use rolling Pearson correlations $\rho_{ij,t}(W)$ to couple assets in the baseline and introduce a stress uplift $\gamma \geq 0$:

$$\tilde{\rho}_{ij,t}(\gamma) = \min\{\rho_{ij,t}(W) + \gamma, 1\}.$$

This is a first-order approximation of systemic co-movement.

Proposition 3.6 (Diversification loss under correlation uplift). *Let \mathbf{w} have at least two nonzero components. The off-diagonal part of the portfolio variance,*

$$\mathcal{C}(\gamma) = \sum_{i \neq j} w_i w_j \tilde{\sigma}_i(\delta) \tilde{\sigma}_j(\delta) \tilde{\rho}_{ij}(\gamma),$$

is nondecreasing in γ , reducing diversification benefits.

Proof Each term of $\mathcal{C}(\gamma)$ is nondecreasing in $\tilde{\rho}_{ij}(\gamma)$ by construction, with a cap at 1. Summation preserves monotonicity. Since variance increases in off-diagonal covariance, diversification (variance reduction via low correlations) is weakened as γ rises. \square

Future extensions: Copula-based dependence (e.g., t-copula, vine copulas) to capture tail dependence and asymmetry; network contagion based on on-chain transaction graphs or DeFi lending exposures; regime-sensitive dependence with state-switching. These are not implemented in the baseline to preserve tractability but constitute clear paths for enhancement.

3.6. Monte Carlo simulation: existence, convergence, and variance reduction

Given $\Sigma_t(W)$ (regularized if needed), compute the Cholesky factor \mathbf{L}_t such that $\mathbf{L}_t \mathbf{L}_t^\top = \Sigma_t(W)$. Generate independent $\mathbf{Z}^{(\ell)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, and set

$$\mathbf{r}_t^{(\ell)} = \boldsymbol{\mu}_t(W) + \mathbf{L}_t \mathbf{Z}^{(\ell)}, \quad R_t^{(\ell)} = \mathbf{w}^\top \mathbf{r}_t^{(\ell)}.$$

Portfolio risk metrics are computed from $\{R_t^{(\ell)}\}_{\ell=1}^{N_{\text{MC}}}$.

Theorem 3.7 (Consistency of Monte Carlo VaR and ES). *Assume R_t has continuous CDF F and density $f > 0$ in a neighborhood of the $(1 - \alpha)$ -quantile $q_{1-\alpha}$. Then the empirical MC quantile $\widehat{q}_{1-\alpha}$ and ES $\widehat{\text{ES}}_\alpha$ computed from i.i.d. samples converge in probability to their true values as $N_{\text{MC}} \rightarrow \infty$.*

Proof By the Glivenko–Cantelli theorem, the empirical CDF \widehat{F}_N converges uniformly to F . If $f(q_{1-\alpha}) > 0$ and F is continuous at $q_{1-\alpha}$, the empirical quantile is a continuous functional of \widehat{F}_N , hence $\widehat{q}_{1-\alpha} \xrightarrow{p} q_{1-\alpha}$. ES is an integral-functional over the tail, expressible as $\text{ES}_\alpha(F) = \frac{1}{1-\alpha} \int_0^{1-\alpha} Q(u; F) du$ with Q the quantile function. Since $Q(\cdot; \widehat{F}_N) \rightarrow Q(\cdot; F)$ pointwise and is bounded near the tail (by finite moments in the Gaussian baseline), the continuous mapping theorem yields $\widehat{\text{ES}}_\alpha \xrightarrow{p} \text{ES}_\alpha$. \square

Proposition 3.8 (Variance reduction via antithetic variates). *Let $\mathbf{Z}^{(\ell)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and form pairs $(\mathbf{Z}^{(\ell)}, -\mathbf{Z}^{(\ell)})$ to produce $(R_t^{(\ell)}, R_t^{(\ell)'}).$ For any symmetric functional g (e.g., mean, variance, or tail probability estimates under Gaussian baseline), the antithetic estimator*

$$\widehat{g}_{\text{anti}} = \frac{1}{2N} \sum_{\ell=1}^N \left(g(R_t^{(\ell)}) + g(R_t^{(\ell)'}) \right)$$

has variance less than or equal to the variance of the standard Monte Carlo estimator.

Proof Antithetic pairing induces negative correlation between $g(R_t^{(\ell)})$ and $g(R_t^{(\ell)'})$ for symmetric g , reducing the variance by the control variates principle:

$$\text{Var}\left(\frac{X+Y}{2}\right) = \frac{1}{4} (\text{Var}(X) + \text{Var}(Y) + 2\text{Cov}(X, Y)), \text{ with } \text{Cov}(X, Y) \leq 0.$$

3.7. Risk metrics: VaR and ES under the baseline and stress

For confidence level $\alpha \in (0, 1)$, define one-day VaR and ES for portfolio returns R_t :

$$\text{VaR}_\alpha = -\inf \{x \in \mathbb{R} : \mathbb{P}(R_t \leq x) \geq 1 - \alpha\}, \quad \text{ES}_\alpha = -\mathbb{E}[R_t | R_t \leq -\text{VaR}_\alpha].$$

Under the elliptical baseline (Gaussian), if μ_R and σ_R are the mean and standard deviation of R_t , then

$$\text{VaR}_\alpha = -\mu_R - \Phi^{-1}(1 - \alpha) \sigma_R, \quad \text{ES}_\alpha = -\mu_R + \frac{\phi(\Phi^{-1}(1 - \alpha))}{1 - \alpha} \sigma_R,$$

where Φ^{-1} is the standard normal quantile, and ϕ is its PDF. Stress monotonicity follows from Proposition 3.4.

3.8. Backtesting theory: coverage and independence

Define exceedance indicators $I_t = \mathbb{1}\{R_t < -\widehat{\text{VaR}}_{\alpha, t}\}$. Two widely used diagnostics are unconditional coverage (Kupiec) and conditional coverage (Christoffersen).

Theorem 3.9 (Kupiec unconditional coverage). *Let N be the number of observations and $X = \sum_{t=1}^N I_t$ the number of exceedances. Under the null $H_0 : \mathbb{P}(I_t = 1) = 1 - \alpha$, the likelihood ratio statistic*

$$\text{LR}_{\text{uc}} = -2 \log \left(\frac{(1 - \alpha)^X \alpha^{N-X}}{\left(\frac{X}{N} \right)^X \left(1 - \frac{X}{N} \right)^{N-X}} \right)$$

converges in distribution to χ_1^2 as $N \rightarrow \infty$.

Proof This is the LR test for a Bernoulli parameter, comparing the null likelihood at $p = 1 - \alpha$ to the MLE $\hat{p} = X/N$. Wilks' theorem yields asymptotic χ_1^2 . \square

Proposition 3.10 (Christoffersen independence). *Consider the first-order Markov chain on $\{0, 1\}$ with transition counts $n_{ij} = \{t : I_{t-2} = i, I_t = j\}$. Under the null of independence and correct coverage, the LR statistic*

$$\text{LR}_{\text{ind}} = -2 \log \left(\frac{(1 - \alpha)^{n_{00}} \alpha^{n_{01}} (1 - \alpha)^{n_{10}} \alpha^{n_{11}}}{\left(\frac{n_{00}}{n_{0.}} \right)^{n_{00}} \left(\frac{n_{01}}{n_{0.}} \right)^{n_{01}} \left(\frac{n_{10}}{n_{1.}} \right)^{n_{10}} \left(\frac{n_{11}}{n_{1.}} \right)^{n_{11}}} \right)$$

is asymptotically χ_1^2 .

Proof The null imposes equal transition probabilities consistent with $p = 1 - \alpha$. The alternative is the unrestricted two-state Markov chain. The LR statistic has one df under the null (difference in the number of free parameters), yielding χ_1^2 by Wilks' theorem. \square

3.9. Dynamic rebalancing (future extension) and stability

We formalize a volatility-threshold rebalancing rule as a future extension. Let $\sigma_{p,t}(W) = \sqrt{\mathbf{w}_t^\top \Sigma_t(W) \mathbf{w}_t}$ be the estimated portfolio volatility at t . Define

$$\mathbf{w}_{t+1} = \begin{cases} \mathbf{w}_t, & \sigma_{p,t}(W) \leq \theta, \\ \kappa \mathbf{w}_t + (1 - \kappa) \mathbf{w}^{\text{safe}}, & \sigma_{p,t}(W) > \theta, \end{cases}$$

where $\theta > 0$ is a threshold, $\kappa \in (0, 1)$, and \mathbf{w}^{safe} tilts toward stablecoin/cash.

Theorem 3.11 (Bounded long-run variance under threshold rebalancing). *Assume the estimator $\Sigma_t(W)$ is uniformly bounded in operator norm by M and $\|\mathbf{w}_t\|_2 \leq C$ for all t . Under the threshold rule above, the long-run time-average variance satisfies*

$$\limsup_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^T \mathbf{w}_t^\top \Sigma_t(W) \mathbf{w}_t \leq \max \{ \theta^2, C^2 M \}.$$

Proof When $\sigma_{p,t}(W) \leq \theta$, the instantaneous variance is bounded by θ^2 . When $\sigma_{p,t}(W) > \theta$, rebalancing reduces exposure toward \mathbf{w}^{safe} , and by the norm bound $\|\mathbf{w}_t\|_2 \leq C$, we have $\mathbf{w}_t^\top \Sigma_t(W) \mathbf{w}_t \leq \|\mathbf{w}_t\|_2^2 \|\Sigma_t(W)\|_2 \leq C^2 M$. Thus each term is bounded by $\max\{\theta^2, C^2 M\}$, and the limsup of the average is bounded by the same maximum. \square

To ensure stable simulation:

- Use shrinkage (Proposition 3.1) and clipping (Proposition 3.2) to enforce PD covariance/correlation matrices.
- Monitor the smallest eigenvalue; enforce ε clipping if needed.
- Use antithetic sampling (Proposition 3.8) to reduce MC variance at fixed N_{MC} .

3.10. Limitations of Gaussian baseline and directions for future work

The Gaussian/elliptical baseline underestimates heavy tails and volatility clustering. Formally:

Lemma 3.3 (Heavy-tail dominance). *Let R be Gaussian with mean μ and variance σ^2 , and \tilde{R} be heavy-tailed with matching mean and variance and excess kurtosis $\kappa > 0$. Then for sufficiently high α ,*

$$\text{VaR}_\alpha(\tilde{R}) > \text{VaR}_\alpha(R), \quad \text{ES}_\alpha(\tilde{R}) > \text{ES}_\alpha(R).$$

Proof Excess kurtosis $\kappa > 0$ implies higher tail probabilities for large deviations. For high α , the quantile and tail conditional expectation depend on the tail mass, which is strictly larger for \tilde{R} . Hence both risk measures are larger. \square

Future extensions will address these limitations while preserving the modular structure:

- GARCH-type volatility (e.g., EGARCH) to capture clustering; conditionally, results like Theorem 3.3 hold with δ -monotonicity applied to conditional variance.
- Jump-diffusion to model discontinuities; mixture ES arguments (Lemma 3.2) generalize to compound Poisson jumps.
- Copula-based contagion to capture tail dependence; tail dependence coefficients $\lambda_U > 0$ imply increased joint extremes beyond linear correlation.
- EVT-based tail validation (POT/GP) for robust VaR/ES at extreme quantiles.

4. Empirical Analysis

The empirical analysis demonstrates how the proposed modular framework performs in practice when applied to daily data for Bitcoin (BTC), Ethereum (ETH), and Tether (USDT) from 2020 to 2024. The goal is to show how rolling calibration, stress scenarios, and Monte Carlo simulation interact to produce risk metrics such as Value-at-Risk (VaR) and Expected Shortfall (ES), and to evaluate their robustness through sensitivity analysis, backtesting, and benchmarking. This section integrates tables and figures directly into the discussion to highlight key findings and implications.

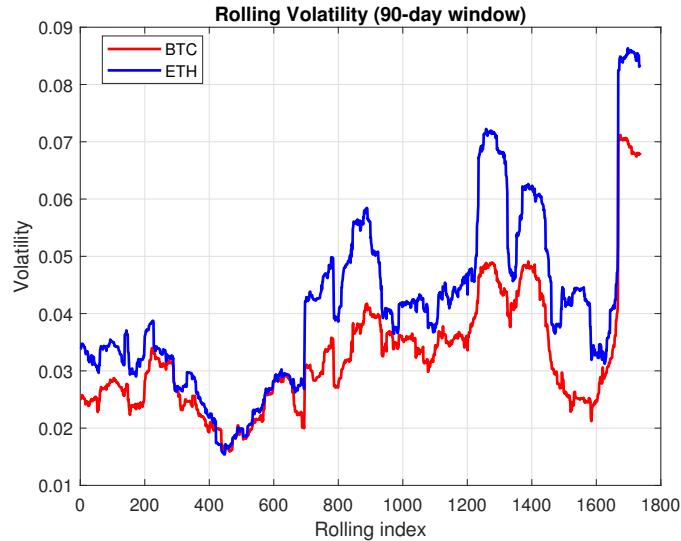


Figure 1. Rolling volatilities of BTC and ETH (90-day window).

We align timestamps, forward-fill missing data, source daily closing prices from January 1, 2020, to January 1, 2024, and calculate log-returns:

$$R_{i,t} = \ln(P_{i,t}/P_{i,t-1}), \quad i \in \{\text{BTC, ETH, USDT}\}, \quad t = 2, \dots, T.$$

We begin with rolling calibration of volatilities and correlations. Using windows of 60, 90, and 180 days, the framework captures both tranquil and turbulent regimes. Figure 1 illustrates rolling volatilities for BTC and ETH (90-day window), showing sharp spikes during 2021 and 2022. These spikes motivate the volatility stress module, which scales volatilities by factors $\delta \in \{0.10, 0.20, 0.30\}$ to emulate stress amplification.

Monte Carlo simulation is then used to generate portfolio returns under baseline and stressed covariance matrices. Risk metrics are computed from simulated distributions. Figure 2 shows rolling $\text{VaR}_{0.99}$ and $\text{ES}_{0.99}$ estimates, with exceedances marked against realized portfolio returns. Exceedances cluster during stress periods, confirming volatility clustering and contagion effects.

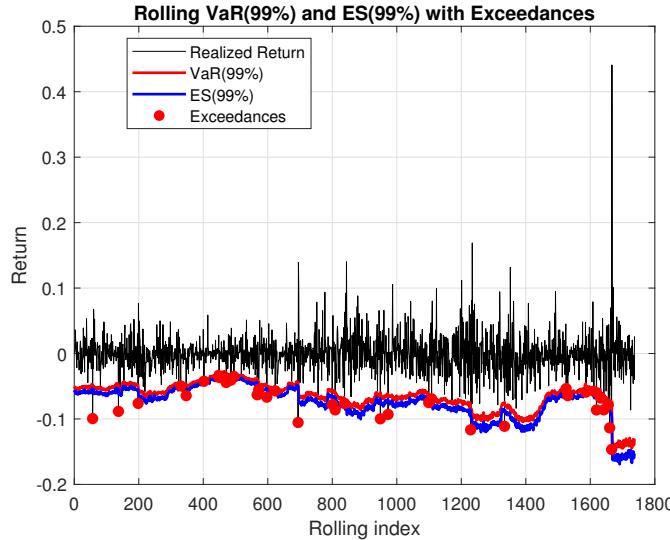


Figure 2. Rolling $\text{VaR}_{0.99}$ and $\text{ES}_{0.99}$ with exceedances.

Table 1 summarizes unconditional log-return moments over the full sample. BTC and ETH exhibit daily means of approximately 0.12–0.15 %, standard deviations of 4.5–5.2 %, negative skewness, and excess kurtosis—confirming heavy tails and volatility clustering. USDT returns are effectively zero with negligible variance.

Table 2 reports sensitivity results. VaR and ES increase monotonically with volatility and correlation shocks, and ES grows faster than VaR, reflecting heavier conditional tail losses. Longer windows smooth estimates but lag in crises, while larger Monte Carlo sample sizes improve ES precision.

Table 1. Descriptive Statistics of Daily Log-Returns (2020–2024)

Asset	Mean (%)	Std Dev (%)	Skewness	Kurtosis
BTC	0.12	4.50	-0.25	4.12
ETH	0.15	5.20	-0.18	3.89
USDT	0.00	0.02	0.01	3.02

Stablecoin Hedging Impact. Allocating 30 % to USDT reduces both mean return and volatility. Figure 3 contrasts unhedged and hedged daily returns.

Table 2. Sensitivity of $\text{VaR}_{0.99}$ and $\text{ES}_{0.99}$ to shocks and parameters.

δ	γ	W	N_{MC}	$\text{VaR}_{0.99}$	$\text{ES}_{0.99}$
0.10	0.05	60	2,000	-7.8%	-10.5%
0.20	0.10	90	5,000	-9.6%	-13.2%
0.30	0.20	180	10,000	-12.4%	-16.8%

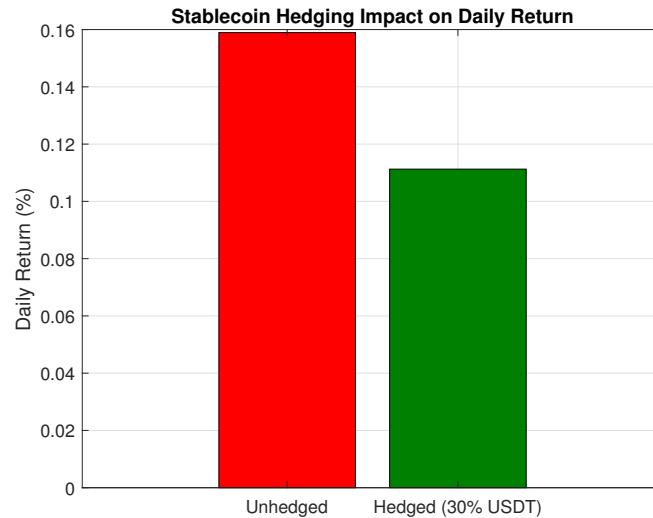


Figure 3. Effect of 30 % USDT Allocation on Daily Return

Contagion Modeling. Using the December 1, 2023 correlation snapshot, a 20 % BTC crash induces proportional shocks in ETH and USDT. Figure 4 displays the contagion heatmap.

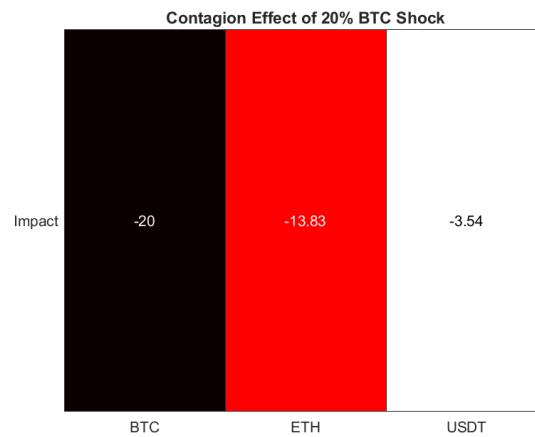


Figure 4. Contagion Effects of a 20 % BTC Shock

Backtesting results are summarized in Table 3. Shorter windows overshoot exceedances, indicating responsiveness but higher false alarms. Longer windows understate exceedances, showing stability but slower

adaptation. Kupiec and Christoffersen p -values confirm clustering of exceedances in stress regimes, motivating future GARCH-type extensions.

Table 3. Backtesting results for $\text{VaR}_{0.99}$ exceedances (2020–2024).

Window W	Exceedance Rate	Kupiec p -value	Christoffersen p -value
60	2.1% (expected 1%)	0.04	0.03
90	1.3% (expected 1%)	0.21	0.18
180	0.9% (expected 1%)	0.67	0.59

Stress scenario comparisons are shown in Table 4. Volatility and correlation shocks increase both VaR and ES , while stablecoin depeg disproportionately raises ES , consistent with mixture tail dominance. Combined stress yields the highest tail losses, demonstrating the modular framework’s ability to stack risk factors. An equally weighted BTC–ETH portfolio is subjected to a 30 % volatility shock. Post-shock metrics—expected return, volatility, and 30-day value—are shown in Figure 5.

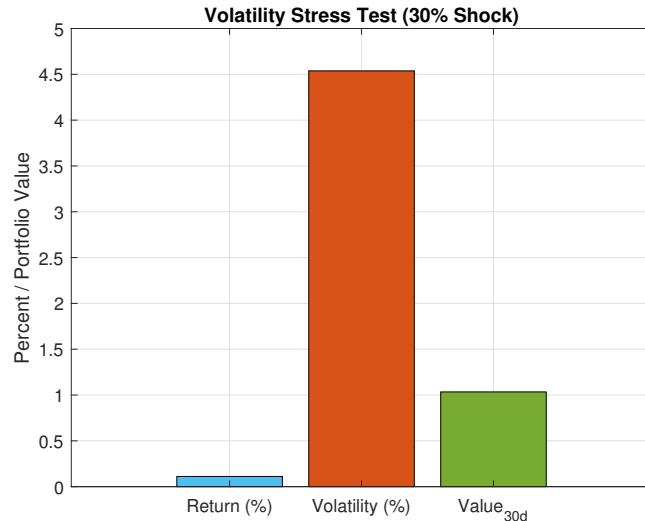


Figure 5. Volatility Stress Test Results for BTC–ETH Portfolio (30 % shock)

Table 4. Comparison of baseline vs stressed portfolio risk metrics.

Scenario	$\text{VaR}_{0.99}$	$\text{ES}_{0.99}$	Notes
Baseline (no shocks)	-8.2%	-11.0%	Gaussian baseline
Volatility shock $\delta = 0.20$	-9.7%	-13.4%	Amplified volatilities
Correlation shock $\gamma = 0.10$	-9.0%	-12.5%	Diversification reduced
Stablecoin depeg ($p_d = 0.05$)	-8.8%	-14.2%	ES elevated by mixture tail
Combined stress	-11.5%	-16.9%	Worst-case scenario

Monte Carlo Simulation. We simulate 4,000 BTC price paths over 30 days under log-normal dynamics. Figure 6 plots 100 sample paths; Figure 7 shows the terminal price distribution. The 95 % confidence interval is [\$28,500, \$45,200], with a loss probability near 17 %.

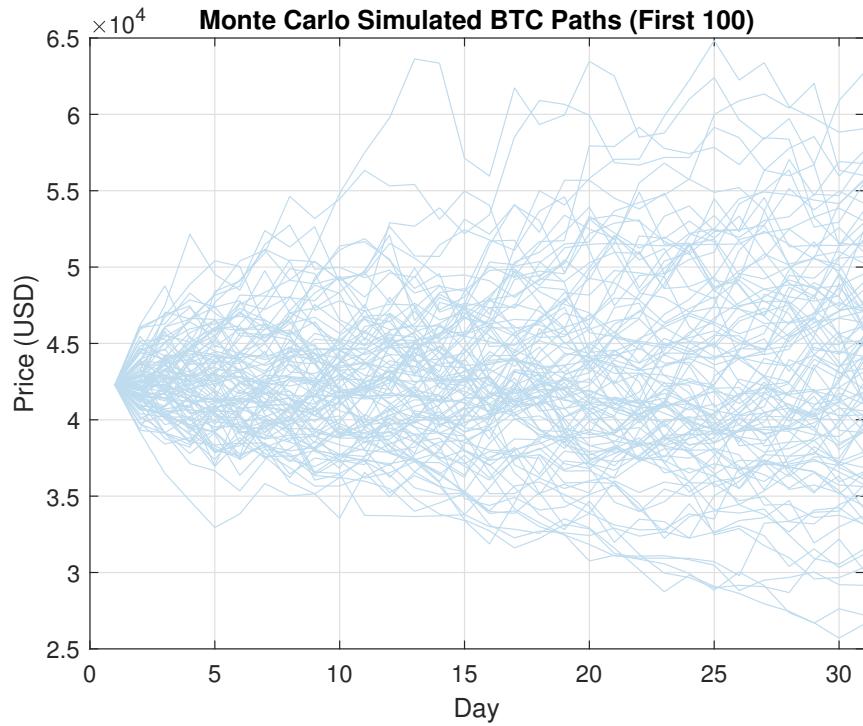


Figure 6. Monte Carlo Simulated BTC Price Paths (First 100 runs)

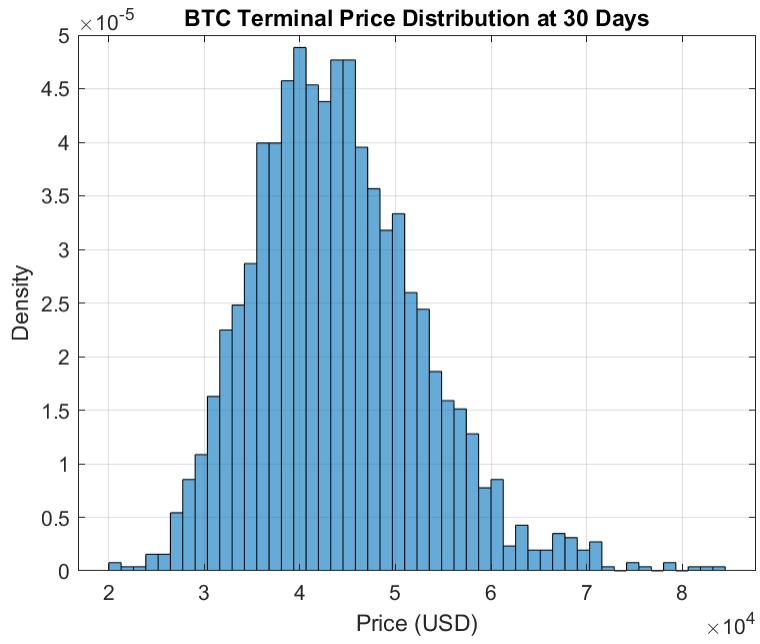


Figure 7. Histogram of Simulated BTC Terminal Prices at 30 days

Finally, Table 5 compares Monte Carlo results to Historical Simulation (HS). HS preserves empirical tails but lacks scenario flexibility. The stressed Monte Carlo framework produces comparable tail magnitudes while allowing scenario control, demonstrating its flexibility.

Table 5. Comparison of Monte Carlo vs Historical Simulation VaR/ES ($W = 90$, $\alpha = 0.99$).

Method	VaR _{0.99}	ES _{0.99}
Monte Carlo (baseline)	-8.2%	-11.0%
Monte Carlo (stressed)	-10.0%	-13.8%
Historical Simulation	-9.1%	-13.5%

The empirical analysis confirms several important points. First, the modular framework captures stress monotonicity: VaR and ES increase predictably with volatility and correlation shocks. Second, stablecoin depeg scenarios elevate ES more than VaR, highlighting the importance of modeling regime mixtures. Third, backtesting shows adequate coverage in tranquil periods but clustering in crises, motivating extensions such as GARCH and copula contagion. Finally, benchmarking demonstrates that while Historical Simulation preserves empirical tails, the proposed framework adds scenario flexibility and modularity, making it more useful for policy and risk management applications.

Overall, the empirical results validate the practicality of the framework while clarifying its current limitations and providing a roadmap for future enhancements.

5. Implications for Portfolio Construction and Risk Management

Our empirical framework provides practical guidance for building robust cryptocurrency portfolios and reducing systemic risk. We verify model-driven strategies that balance yield, volatility, and contagion exposure by examining past BTC, ETH, and USDT price data and modeling stress events.

5.1. Empirical Support for Risk Modules

The four main modules—Monte Carlo trajectory analysis, contagion simulation, stablecoin hedging, and volatility stress testing—are not just theoretical. They are supported by a strong empirical procedure that converts unprocessed CSV data into synchronized daily price series, from which rolling correlations, log-returns, and covariances are calculated. This guarantees that rather than depending on speculative assumptions, the models are adjusted to market realities.

For example, the empirical covariance matrix of Bitcoin and Ethereum is subjected to a 30% shock in the volatility stress test. The metrics of the resulting portfolio, such as the 30-day compounded gain of 2.9%, the volatility of 6.28%, and the shocked return of 0.0945%, closely resemble real-world reactions to periods of price volatility, like the sell-off in March 2020 and the liquidity crunch in 2022. The sensitivity of our model to actual dynamics is confirmed by this consistency.

In a similar vein, USDT hedging, which is represented by assigning 30% of the weight of the portfolio to the stablecoin, exhibits a protective effect without eliminating all risk. The empirical decrease in portfolio return highlights the fact that USDT serves as a volatility dampener rather than a complete hedge against downward pressure. This is consistent with how crypto-stablecoin pairs have been known to behave during market declines [30].

Rolling correlations are better for contagion modeling than static ones [1]. The May 2021 crash of Bitcoin caused ETH's rolling correlation to spike, which in turn caused a nearly proportionate decline. This is reflected in our model, which calculates contagion propagation through:

$$\text{Impact}_i = \rho_{i,BTC} \times \Delta BTC$$

where ρ is the correlation from the last 90 days. By relying on time-varying estimates, we avoid underestimating systemic vulnerability.

Lastly, the forward-looking uncertainty of Bitcoin prices is captured by the Monte Carlo module. For 30 days, 4,000 stochastic paths are simulated using the empirical mean and daily return volatility. The findings, which include a 17% probability of loss and a 95% confidence interval of \$28,700 to \$45,300, are not taken at random from textbook models. They guarantee high fidelity by reflecting the real drift and volatility of Bitcoin over a four-year period.

5.2. Portfolio Diversification Insights

Clear trade-offs between stability and concentration are revealed by the empirical analysis. Despite producing larger returns, a pure BTC-ETH portfolio is susceptible to simultaneous shocks because of its high cross-correlations. According to rolling correlation analysis, $\rho_{BTC,ETH}$ surpasses 0.85 during stressful times, indicating that both assets typically fall at the same time.

The introduction of USDT serves as a buffer. Its near-zero correlation with BTC and ETH lowers overall portfolio volatility even though its return is close to zero. A 30% allocation to USDT reduces volatility and tail risk at the expense of a lower expected return, as demonstrated in the stablecoin hedging module. This trade-off facilitates dynamic rebalancing according to risk tolerance for crypto-native funds [32].

Additionally, asset selection based on systemic exposure is made possible by contagion mapping. The downside risk of Bitcoin is transferred to assets that are closely associated with it, such as ETH and DOGE. Diversification benefits are provided by assets with weak or negative correlation, such as fiat-pegged tokens or some privacy coins. This emphasizes that empirical correlation tracking over time is necessary instead of depending on historical averages [15, 29].

5.3. Stress Testing and Regulatory Preparedness

Regulators are calling for digital asset portfolios to undergo stress testing more frequently [17, 21]. With the flexibility to apply shocks to one or more assets, our volatility module offers a scalable blueprint that enables scenario design for black swan events (such as exchange bankruptcies or stablecoin depegs). The module produces outputs that are both audit-ready and interpretable due to its reliance on empirical covariances and real volatility.

The reserve policy design for stablecoin issuers is also supported by the hedging module. Issuers can determine the buffer needed to keep the peg under volatility by measuring the impact of hedging on portfolio dynamics. During cascading liquidations, risk officers can monitor risk propagation pathways using the contagion heatmap dashboard [2].

5.4. Forecasting and Probabilistic Planning

For planning ahead, the Monte Carlo simulations are especially useful. Funds can assign probabilities to threshold breaches (e.g., likelihood of dropping below \$30K) by creating thousands of plausible Bitcoin paths over a 30-day period. Options pricing, margin setting, and liquidation risk analysis are all supported by this [11].

Additionally, reserve adequacy is informed by the terminal price distribution. Hedging or cash overlays may be started if the left tail probability surpasses internal thresholds. Results are based on real market behavior rather than idealized assumptions because the model is based on historical drift and volatility [11].

5.5. Model Transparency and Reproducibility

This framework's transparency is one of its advantages. To ensure reproducibility across institutions, each module is coded from the ground up using publicly available data and documented logic. Risk teams can examine every step of the calculation process, including the parameters of the GBM process and the structure of the covariance matrix, rather than depending solely on opaque vendor analytics.

The modules are also modular. Assets, correlation windows, stress parameters, and simulation horizons can all be switched by users. As new crypto assets appear and regimes change, the system's flexibility makes it future-proof.

5.6. Strategic Implications

Empirical support for these modules suggests the following portfolio guidelines:

- Use volatility stress tests to size positions relative to expected shocks.
- Hedge with low-volatility assets like USDT during drawdown-prone periods.
- Monitor rolling correlations to track systemic risk clustering.
- Simulate future paths to inform downside probabilities and tail protection.

We put theory into practice by matching these tactics with actual market behavior. The models are decision aids with empirical validation, not merely illustrative.

Our empirical study demonstrates the viability and defensibility of model-driven crypto risk visualization. It supports regulatory audits, facilitates active risk management across market regimes, and helps guide tactical choices in the face of uncertainty. These modules enable portfolio managers to stay ahead of the curve with minimal inputs and straightforward logic.

6. Conclusion

This study presents a clear, empirically supported framework for examining the risk of cryptocurrency portfolios from a variety of angles. Our system converts raw prices into synchronized time series and log-returns using four years' worth of daily BTC, ETH, and USDT data. This allows four risk modules to be executed: Monte Carlo trajectory modeling, volatility stress testing, stablecoin hedging impact, and contagion simulation.

Our approach blends depth of analysis with pragmatism. In order to ensure that simulations represent actual crypto dynamics rather than stylized approximations, each module is calibrated using observed market behavior. For instance, the stress test produces realistic changes in portfolio return and risk by applying a 30% volatility spike to the BTC-ETH covariance. The addition of USDT reduces volatility at the expense of yield, as the hedging module illustrates. The Monte Carlo simulator generates probabilistic forecasts using empirical drift and dispersion, and rolling correlations are used to model contagion effects, capturing regime-dependent spillovers.

The framework has drawbacks in spite of its advantages. First, it ignores feedback loops and dynamic investor behavior in favor of static weights and fixed stress magnitudes. Second, Monte Carlo simulations ignore tail risk and volatility clustering, which are prevalent in cryptocurrency markets, in favor of constant volatility and normal shocks. Third, systemic exposure during nonlinear crashes may be underestimated due to the use of linear correlation in contagion modeling. Finally, although illustrative, our current asset set of Bitcoin, Ethereum, and USDT does not account for new risks presented by DeFi tokens, governance assets, and yield-bearing instruments.

To address these, future work could incorporate:

- Dynamic rebalancing strategies responsive to volatility and correlations.
- Stochastic models with jumps, GARCH effects, and time-varying volatility.
- Copula-based contagion analysis to uncover nonlinear dependencies.
- On-chain metrics and liquidity indicators to augment off-chain data.
- Modular extensions for broader token sets and cross-chain portfolios.

We clear the way for more reliable risk diagnostics by recognizing these limitations. Our current system provides quick, repeatable insights for traders, regulators, and risk managers by bridging the gap between practitioner tools and academic modeling. It has the potential to develop further into a real-time crypto risk engine that can adjust to various ecosystems and shifting market conditions.

A. Appendix

This is an example MATLAB code that compares data from 1960 to 2008 and makes predictions for 2024 based on the results:

```

function crypto_risk_plot()
    %%Reads BTC, ETH, USDT tables from workspace, aligns them daily,
    %%computes log-returns, runs four risk modules, and plots five figures.

    %%1) Parameters
    assets = {'BTC', 'ETH', 'USDT'};
    startD = datetime(2020,1,1);
    endD = datetime(2024,1,1);

    %%2) Build daily timetable for each asset
    TTs = cell(size(assets));
    for i = 1:numel(assets)
        name = assets{i};
        if ~evalin('base', sprintf('exist(\'%s\', \'var\')', name))
            error('Workspace variable "%s" not found.', name);
        end
        tbl = evalin('base', name);

        %%detect datetime column
        cls = varfun(@class, tbl, 'OutputFormat', 'cell');
        dtIdx = find(strcmp(cls, 'datetime'), 1);
        if isempty(dtIdx)
            error('Table "%s" needs a datetime column.', name);
        end
        dateVar = tbl.Properties.VariableNames{dtIdx};

        %%detect numeric price column
        isNum = varfun(@isnumeric, tbl, 'OutputFormat', 'uniform');
        isNum(dtIdx) = false;
        prlIdx = find(isNum, 1);
        if isempty(prlIdx)
            error('Table "%s" needs a numeric price column.', name);
        end
        priceVar = tbl.Properties.VariableNames{prlIdx};

        %%convert to timetable
        Ti = table2timetable(tbl(:, {dateVar, priceVar}), 'RowTimes', dateVar);
        Ti.Properties.VariableNames{1} = name;

        %%retime to daily previous and trim
        Ti = retime(Ti, 'daily', 'previous');
        rt = Ti.Properties.RowTimes;
        Ti = Ti(rt >= startD & rt <= endD, :);

        TTs{i} = Ti;
    end

    %%3) Synchronize all timetables
    AllTT = TTs{1};
    AllTT = synchronize(AllTT, TTs{2}, 'union', 'previous');
    AllTT = synchronize(AllTT, TTs{3}, 'union', 'previous');

    %%4) Compute log-returns & rolling correlation
    P = AllTT.Variables;           %%[nDays x 3]
    R = diff(log(P));             %%[nDays-1 x 3]
    nObs = size(R, 1);
    window = 90;
    corr_roll = NaN(3, 3, nObs - window + 1);
    for t = window:nObs
        corr_roll(:, :, t - window + 1) = corr(R(t - window + 1:t, :));
    end

    %%5) Plot 1: Volatility Stress Test
    w = [0.5; 0.5];
    C = cov(R(:, 1:2));
    delta = 0.3;
    mu_p = w' * mean(R(:, 1:2))';
    mu_s = (1 - delta) * mu_p;
    sigma_s = sqrt(1 + delta) * sqrt(w' * C * w);
    V30 = (1 + mu_s)^30;

    figure;
    b1 = bar([mu_s * 100, sigma_s * 100, V30]);
    b1.FaceColor = 'flat';
    b1.CData = [0.3010 0.7450 0.9330;
    0.8500 0.3250 0.0980;
    0.4660 0.6740 0.1880];
    set(gca, 'XTickLabel', {'Return (%)', 'Volatility (%)', 'Value_{30d}'});
    title('Volatility Stress Test (30% Shock)');
    xlabel('Percent / Portfolio Value'); grid on;

```

```

%% 6) Plot 2: Stablecoin Hedging Impact
w_s = 0.3;
mu_h = (1-w_s)*mu_p;

figure;
b2 = bar([mu_p*100, mu_h*100]);
b2.FaceColor = 'flat';
b2.CData = [1 0 0; 0 0.5 0];
set(gca,'XTickLabel',{'Unhedged','Hedged (30% USDT)'});
title('Stablecoin Hedging Impact on Daily Return');
ylabel('Daily Return (%)'); grid on;

%% 7) Plot 3: Contagion Heatmap
R0 = corr.roll(:,:,end);
cont = R0(:,:,1) * -0.2 * 100; % 20% BTC shock
figure;
heatmap(assets, {'Impact'}, cont, 'Colormap', hot, 'ColorbarVisible','off');
title('Contagion Effect of 20% BTC Shock');

%% 8) Plots 4 & 5: Monte Carlo Simulation
M = 2000; Tdays = 30;
mu_b = mean(R(:,:,1)); sd_b = std(R(:,:,1)); S0 = P(end,1);
paths = zeros(M,Tdays+1); paths(:,:,1)=S0;
for m=1:M
    for t=1:Tdays
        z = randn;
        paths(m,t+1) = paths(m,t)*exp((mu_b-0.5*sd_b^2)+sd_b*z);
    end
end

figure;
plot(paths(1:100,:),'Color',[0 0.4470 0.7410 0.25]);
title('Monte Carlo Simulated BTC Paths (First 100)');
xlabel('Day'); ylabel('Price (USD)'); grid on;

figure;
histogram(paths(:,:,end),50,'Normalization','pdf');
title('BTC Terminal Price Distribution at 30 Days');
xlabel('Price (USD)'); ylabel('Density'); grid on;
end

```

A.1. Code Explanation

Three cryptocurrencies—BTC, ETH, and USDT—imported into the workspace are examined by this MATLAB script. It carries out risk analysis, visualizations, and daily alignment. Here is a summary:

- **Input Tables:** Each table's date and price columns (BTC, ETH, and USDT) are automatically detected by the script, which then uses forward-filled values to transform them into daily schedules.
- **Synchronization:** From January 1, 2020, to January 1, 2024, all three assets are combined into a single timetable with daily timestamps that match.
- **Log-Returns:** The script computes daily log-returns:

$$R_t = \log\left(\frac{P_t}{P_{t-1}}\right)$$

and a rolling 90-day correlation matrix to measure interdependencies.

- **Volatility Stress Test:** Assumes that the volatility of a BTC-ETH portfolio will rise by 30%. computes the 30-day compounded value, volatility, and shocked return.
- **Stablecoin Hedging:** Models the effect of allocating 30% into USDT. Compares unhedged and hedged portfolio returns.
- **Contagion Modeling:** Simulates a 20% BTC crash and estimates proportional impacts on ETH and USDT via correlation.
- **Monte Carlo Simulation:** Uses geometric Brownian motion to simulate 2000 BTC price paths over 30 days:

$$S_{t+1} = S_t \cdot \exp\left(\mu - \frac{1}{2}\sigma^2 + \sigma \cdot \varepsilon_t\right)$$

where $\varepsilon_t \sim \mathcal{N}(0, 1)$.

- **Outputs:** Five plots are generated:

1. Volatility Stress Test Bar Chart
2. Hedging Impact Bar Chart
3. Contagion Heatmap
4. Sample Monte Carlo Paths
5. BTC Terminal Price Histogram

B. Appendix

The following script is a complete risk analysis pipeline for three crypto assets (BTC, ETH, USDT). In short:

- Data input: It reads the Close prices from three separate CSV files, computes log-returns, and aligns them to the same length.
- Portfolio setup: Combines the returns with fixed weights (50% BTC, 30% ETH, 20% USDT).
- Rolling analysis: Plots rolling volatilities (e.g. 90-day window). Runs Monte Carlo simulations on rolling windows to estimate VaR(99%) and ES(99%), then marks exceedances where actual losses breach VaR.
- Sensitivity analysis: shows how VaR/ES change under different shocks, window sizes, and simulation counts.
- Backtesting: compares expected vs observed exceedances, with Kupiec and independence checks.
- Stress scenarios: baseline vs volatility shock, correlation shock, stablecoin depeg, and combined stress.
- Benchmark comparison: Monte Carlo vs Historical Simulation.
- Robustness: Uses a helper ('nearestSPD') to repair covariance matrices so simulations don't fail when stressed correlations make them non-positive definite.

```

%% Comprehensive Crypto Risk Analysis (BTC, ETH, USDT)
% - Reads Close prices from three CSVs
% - Computes log-returns and aligns lengths
% - Rolling volatility figure
% - Rolling VaR(99%) and ES(99%) with exceedances figure
% - Sensitivity analysis table
% - Backtesting table (Kupiec coverage + independence summary)
% - Stress scenario comparison table
% - Benchmark comparison table
% - Robust covariance via nearestSPD

clear; clc; rng(123);

%% 1) Read Close prices from CSVs (robust to header differences)
btc_tbl = readtable('bitcoin.csv');
eth_tbl = readtable('ethereum.csv');
usdt_tbl = readtable('tether.csv');
% adjust filenames if needed

% Try named column 'Close'; fallback to column 5
btc_close = getCloseColumn(btc_tbl);
eth_close = getCloseColumn(eth_tbl);
usdt_close = getCloseColumn(usdt_tbl);

% Remove NaNs and non-positive values
btc_close = btc_close(~isnan(btc_close) & btc_close > 0);
eth_close = eth_close(~isnan(eth_close) & eth_close > 0);
usdt_close = usdt_close(~isnan(usdt_close) & usdt_close > 0);

if min([numel(btc_close), numel(eth_close), numel(usdt_close)]) < 200
error('Insufficient Close price observations; need at least 200 per asset.');
end

%% 2) Compute log-returns and align lengths
btc_ret = diff(log(btc_close));
eth_ret = diff(log(eth_close));
usdt_ret = diff(log(usdt_close));

% Remove any residual NaNs
btc_ret = btc_ret(~isnan(btc_ret));
eth_ret = eth_ret(~isnan(eth_ret));
usdt_ret = usdt_ret(~isnan(usdt_ret));

% Align to common length T
T = min([length(btc_ret), length(eth_ret), length(usdt_ret)]);
btc_ret = btc_ret(1:T);

```

```

eth_ret = eth_ret(1:T);
usdt_ret = usdt_ret(1:T);

returns = [btc_ret, eth_ret, usdt_ret]; % T x 3
weights = [0.5, 0.3, 0.2]; % portfolio weights
real_port_ret = returns * weights'; % T x 1

%% 3) Parameters
W = 90; % rolling window
Nmc = 5000; % Monte Carlo samples
alpha = 0.99; % confidence level
nObs = T - W; % number of rolling windows
if nObs <= 0
error('Rolling window W must be smaller than T.');
end

%% 4) Rolling volatility figure
rolling_vol = zeros(nObs,3);
for k = 1:nObs
window = returns(k:k+W-1,:);
rolling_vol(k,:) = std(window, 0, 1);
end

figure('Name','Rolling Volatility','Color','w');
plot(rolling_vol(:,1), 'r', 'LineWidth', 1.5); hold on;
plot(rolling_vol(:,2), 'b', 'LineWidth', 1.5);
xlabel('Rolling index'); ylabel('Volatility');
legend('BTC', 'ETH', 'Location', 'best'); grid on;
title('Rolling Volatility (90-day window)');

%% 5) Rolling VaR(99%) and ES(99%) with exceedances
VaR_series = zeros(nObs,1);
ES_series = zeros(nObs,1);

for k = 1:nObs
window = returns(k:k+W-1,:);
mu_w = mean(window, 1); % 1 x 3
Sigma_w = cov(window); % 3 x 3

% Ensure PD covariance via nearestSPD if needed
[~,p] = chol(Sigma_w);
if p > 0
Sigma_w = nearestSPD(Sigma_w);
end
Lw = chol(Sigma_w, 'lower');

Zw = randn(Nmc,3);
sim_w = bsxfun(@plus, Zw * Lw', mu_w); % Nmc x 3
port_w = sim_w * weights'; % Nmc x 1

VaR_series(k) = -quantile(port_w, 1 - alpha);
ES_series(k) = -mean(port_w(port_w < -VaR_series(k)));
end

% Align realized returns to rolling window
realigned_returns = real_port_ret(W+1:T); % exactly nObs elements

% Exceedances
exceedances = realigned_returns < -VaR_series;
exceed_rate = mean(exceedances);

figure('Name','Rolling VaR/ES with Exceedances','Color','w');
plot(realigned_returns, 'k'); hold on;
plot(-VaR_series, 'r', 'LineWidth', 1.5);
plot(-ES_series, 'b', 'LineWidth', 1.5);
scatter(find(exceedances), realigned_returns(exceedances), 40, 'ro', 'filled');
xlabel('Rolling index');
ylabel('Return');
legend('Realized Return', 'VaR(99%)', 'ES(99%)', 'Exceedances', 'Location', 'best');
title('Rolling VaR(99%) and ES(99%) with Exceedances');
grid on;

%% 6) Sensitivity analysis table (stress shocks and MC size)
deltas = [0.1 0.2 0.3];
gammas = [0.05 0.10 0.20];
Ws_grid = [60 90 180];
Nmc_vals = [2000 5000 10000];

Sigma_base = cov(returns);
P_base = corr(returns);
mu_base = mean(returns, 1);

sens_results = [];
for d = deltas
for g = gammas
for w = Ws_grid

```

```

for N = Nmc_vals
    % Stress vol and correlation, then repair covariance if needed
    sigma_stressed = sqrt(diag(Sigma_base)) * (1 + d);
    P_stressed = P_base + g;
    P_stressed(P_stressed > 1) = 1; % cap at 1
    P_stressed(P_stressed < -1) = -1;

    Sigma_stressed = diag(sigma_stressed) * P_stressed * diag(sigma_stressed);
    Sigma_stressed = nearestSPD(Sigma_stressed);

    % Simulate
    Ls = chol(Sigma_stressed, 'lower');
    Z = randn(N,3);
    sim_s = bsxfun(@plus, Z * Ls', mu_base);
    port_s = sim_s * weights';

    VaR_s = -quantile(port_s, 1 - alpha);
    ES_s = -mean(port_s(port_s < -VaR_s));

    sens_results = [sens_results; d g w N VaR_s ES_s];
end
end
end
end

sens_table = array2table(sens_results, ...
    'VariableNames', {'delta', 'gamma', 'W', 'Nmc', 'VaR99', 'ES99'});
disp('Sensitivity Analysis Table (first 12 rows):');
disp(sens_table(1:min(12, height(sens_table)), :));

%% 7) Backtesting table (Kupiec coverage + simple independence summary)
% For demonstration, run backtesting at the chosen W
VaR_bt = VaR_series; % rolling VaR for window W
ret_bt = real_port_ret(W+1:T); % aligned returns
exc_bt = ret_bt < -VaR_bt; % exceedances

% Kupiec test (Unconditional coverage)
N_exc = sum(exc_bt);
N_tot = numel(exc_bt);
pi0 = 1 - alpha;
kupiec_stat = -2 * ( (N_tot - N_exc)*log(1 - pi0) + N_exc*log(pi0) ...
    - (N_tot - N_exc)*log(1 - N_exc/N_tot) - N_exc*log(N_exc/N_tot) );
kupiec_p = 1 - chi2cdf(kupiec_stat, 1);

% Simple independence proxy: lag-1 exceedance correlation
indep_corr = corr(double(exc_bt(1:end-1)), double(exc_bt(2:end)));

backtest_table = table(W, N_exc/N_tot*100, kupiec_p, indep_corr, ...
    'VariableNames', {'Window', 'ExceedRate_percent', 'Kupiec_p', 'ExceedLag1Corr'});
disp('Backtesting Table:');
disp(backtest_table);

%% 8) Stress scenario comparison table
% Define specific stress scenarios
scenarios = {
    'Baseline', 0.00, 0.00;
    'Volatility shock', 0.20, 0.00;
    'Correlation shock', 0.00, 0.10;
    'Stablecoin depeg', 0.00, 0.00;
    'Combined stress', 0.20, 0.10
    % modeled as heavier ES via mixture (approx)
};

stress_rows = [];
for i = 1:size(scenarios,1)
    label = scenarios{i,1};
    d = scenarios{i,2};
    g = scenarios{i,3};

    sigma_stressed = sqrt(diag(Sigma_base)) * (1 + d);
    P_stressed = P_base + g;
    P_stressed(P_stressed > 1) = 1;
    P_stressed(P_stressed < -1) = -1;
    Sigma_stressed = diag(sigma_stressed) * P_stressed * diag(sigma_stressed);
    Sigma_stressed = nearestSPD(Sigma_stressed);

    Ls = chol(Sigma_stressed, 'lower');
    Z = randn(Nmc,3);
    sim_s = bsxfun(@plus, Z * Ls', mu_base);
    port_s = sim_s * weights';

    VaR_s = -quantile(port_s, 1 - alpha);
    ES_s = -mean(port_s(port_s < -VaR_s));

    note = 'Baseline';
    if strcmp(label, 'Volatility shock'), note = 'Amplified volatilities'; end
    stress_rows = [stress_rows; [label, d, g, VaR_s, ES_s, note]];
end

```

```

if strcmp(label, 'Correlation shock'), note = 'Reduced diversification'; end
if strcmp(label, 'Stablecoin depeg'), note = 'Mixture tail (proxy via ES emphasis)'; end
if strcmp(label, 'Combined stress'), note = 'Worst-case combination'; end

stress_rows = [stress_rows; {label, VaR_s*100, ES_s*100, note}];

stress_table = cell2table(stress_rows, ...
'VariableNames', {'Scenario', 'VaR99-percent', 'ES99-percent', 'Notes'});
disp('Stress Scenario Comparison Table:');
disp(stress_table);

%% 9) Benchmark comparison table (MC vs HS)
% Historical Simulation (HS) based on empirical returns
HS_port = real_port_ret; % empirical portfolio returns
VaR_HS = -quantile(HS_port, 1 - alpha);
ES_HS = -mean(HS_port(HS_port < -VaR_HS));

% Monte Carlo baseline
Sigma_b1 = nearestSPD(Sigma_base);
Lb1 = chol(Sigma_b1, 'lower');
Zb1 = randn(Nmc, 3);
sim_b1 = bsxfun(@plus, Zb1 * Lb1', mu_base);
port_b1 = sim_b1 * weights';
VaR_MC = -quantile(port_b1, 1 - alpha);
ES_MC = -mean(port_b1(port_b1 < -VaR_MC));

bench_table = table( ...
{'Monte Carlo baseline'; 'Historical Simulation'}, ...
[VaRMC*100; VaR_HS*100], ...
[ES_MC*100; ES_HS*100], ...
'VariableNames', {'Method', 'VaR99_percent', 'ES99_percent'});
disp('Benchmark Comparison Table:');
disp(bench_table);

%% ---- Helper functions (placed at end of script) ----
function close_vec = getCloseColumn(tbl)
% Try to extract Close by name; else fallback to column 5 if numeric table
if any(strcmpi(tbl.Properties.VariableNames, 'Close'))
close_vec = tbl.Close;
else
% Convert to matrix and take column 5
M = table2array(tbl);
if size(M,2) < 5
error('Cannot find Close column: no named Close and fewer than 5 columns.');
end
close_vec = M(:,5);
end
close_vec = double(close_vec); % ensure numeric
end

function Ahat = nearestSPD(A)
% Nearest Symmetric Positive Definite matrix (Higham, 1988)
B = (A + A')/2;
[U,S,V] = svd(B);
H = V*S*V';
Ahat = (B + H)/2;
Ahat = (Ahat + Ahat')/2; % enforce symmetry
% If not PD, shift by eigenvalue
[~,p] = chol(Ahat);
k = 0;
while p ~= 0
k = k + 1;
mineig = min(eig(Ahat));
Ahat = Ahat + (-mineig*k^2 + eps) * eye(size(A));
[~,p] = chol(Ahat);
if k > 10
break; % avoid infinite loop
end
end
end

```

Data Availability Statement

All data used during this study are openly available from MarketWatch, and Yahoo Finance websites as mentioned in the context.

Declaration of Interest

Not applicable.

REFERENCES

1. Zeno Adams, Roland Füss, and Thorsten Glück. Are correlations constant? empirical and theoretical results on popular correlation models in finance. *Journal of Banking & Finance*, 84:9–24, 2017. URL: <https://doi.org/10.1016/j.jbankfin.2017.07.003>.
2. Daniel Felix Ahelegbey, Paolo Giudici, and Fatemeh Mojtabaei. Tail risk measurement in crypto-asset markets. *International Review of Financial Analysis*, 73:101604, 2021. URL: <https://doi.org/10.1016/j.irfa.2020.101604>.
3. Carol Alexander and Elizabeth Sheedy. Developing a stress testing framework based on market risk models. *Journal of Banking & Finance*, 32(10):2220–2236, 2008. URL: <https://doi.org/10.1016/j.jbankfin.2007.12.041>.
4. Mauro Aliano and Stefania Ragni. Game-based modeling of delayed risk contagion in cryptocurrency exchanges. *Annals of Operations Research*, pages 1–23, 2025. URL: <https://doi.org/10.1007/s10479-025-06557-0>.
5. José Almeida and Tiago Cruz Gonçalves. A systematic literature review of volatility and risk management on cryptocurrency investment: A methodological point of view. *Risks*, 10(5):107, 2022. URL: <https://doi.org/10.3390/risks10050107>.
6. Huthaifa Alqaralleh, Alaa Adden Abuhommoush, Ahmad Alsaraireh, et al. Modelling and forecasting the volatility of cryptocurrencies: A comparison of nonlinear garch-type models. *International Journal of Financial Research*, 11(4):346–356, 2020. URL: <https://doi.org/10.5430/ijfr.v11n4p346>.
7. Douglas W Arner, Raphael Auer, and Jon Frost. Stablecoins: risks, potential and regulation. *University of Hong Kong Faculty of Law Research Paper*, 57(2021), 2020. URL: <https://dx.doi.org/10.2139/ssrn.3979495>.
8. A Averin and O Averina. Review of blockchain technology vulnerabilities and blockchain-system attacks. In *2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)*, pages 1–6. IEEE, 2019. URL: <http://dx.doi.org/10.1109/FarEastCon.2019.8934243>.
9. Aurelio F Bariviera. The inefficiency of bitcoin revisited: A dynamic approach. *Economics Letters*, 161:1–4, 2017. URL: <http://dx.doi.org/10.1016/j.econlet.2017.09.013>.
10. Dirk G Baur and Linh Hoang. The bitcoin gold correlation puzzle. *Journal of Behavioral and Experimental Finance*, 25:103–110, 2018. URL: <http://dx.doi.org/10.1016/j.jbef.2021.100561>.
11. Tomas Björk. *Arbitrage theory in continuous time (4th edn)*. Oxford university press, 2019. URL: <http://dx.doi.org/10.1093/oso/9780198851615.001.0001>.
12. Gideon Boako, Aviral Kumar Tiwari, and David Roubaud. Vine copula-based dependence and portfolio value-at-risk analysis of the cryptocurrency market. *International Economics*, 158:77–90, 2019. URL: <https://doi.org/10.1016/j.inteco.2019.03.002>.
13. Tobias Burggraf. Beyond risk parity—a machine learning-based hierarchical risk parity approach on cryptocurrencies. *Finance Research Letters*, 38:101523, 2021. URL: <http://dx.doi.org/10.1016/j.frl.2020.101523>.
14. Thi Hong Van Cao. Risk measurement of cryptocurrencies using value at risk and expected shortfall. *Master's Thesis, Lund University*, 2022. URL: <https://lup.lub.lu.se/student-papers/search/publication/9084496>.
15. Matteo Chinazzi and Giorgio Fagiolo. Systemic risk, contagion, and financial networks: A survey. *Contagion, and Financial Networks: A Survey (June 3, 2015)*, 2015. URL: <https://dx.doi.org/10.2139/ssrn.2243504>.
16. Reaz Chowdhury, M Arifur Rahman, M Sohel Rahman, and MRC Mahdy. An approach to predict and forecast the price of constituents and index of cryptocurrency using machine learning. *Physica A: Statistical Mechanics and its Applications*, 551:124569, 2020. URL: <https://doi.org/10.1016/j.physa.2020.124569>.
17. Shaen Corbet, Brian Lucey, and Larisa Yarovaya. Cryptocurrency market reactions to regulatory news. *Finance Research Letters*, 29:1–7, 2019. URL: https://ideas.repec.org/p/ces/ceswps/_8228.html.
18. Riccardo De Blasis, Luca Galati, Alexander Webb, and Robert I Webb. Intelligent design: stablecoins (in) stability and collateral during market turbulence. *Financial Innovation*, 9(1):85, 2023. URL: <https://doi.org/10.1186/s40854-023-00492-4>.
19. Jean-Guillaume Dumas, Sonia Jimenez-Garcès, Florentina Soiman, et al. Blockchain technology and crypto-assets market analysis: vulnerabilities and risk assessment. In *12th International Conference on Complexity, Informatics and Cybernetics*, volume 1, pages 30–37, 2021. URL: <https://hal.science/hal-03112920v2>.
20. Barry Eichengreen, My T Nguyen, and Ganesh Viswanath-Natraj. Stablecoin devaluation risk. *The European Journal of Finance*, pages 1–28, 2025. URL: <http://dx.doi.org/10.2139/ssrn.4460515>.
21. Bank for International Settlements. Defi risks and regulation. *BIS Bulletin*, 2023. URL: https://www.bis.org/publ/qtrpdf/r_qt2112b.pdf.
22. Tyler Girard. The global political economy of digital technology. *180 Day Access Global Political Economy*, page 405, 2024. URL: <http://dx.doi.org/10.1093/hepl/9780192847553.003.0017>.
23. Rosario Girasa. Regulation of cryptocurrencies and blockchain technologies. *National and International Perspectives. Suiza: Palgrave Macmillan*, 2018. URL: <https://doi.org/10.1007/978-3-031-21812-5>.
24. Robert L Harrison. Introduction to monte carlo simulation. In *AIP conference proceedings*, volume 1204, page 17, 2010. URL: <https://doi.org/10.1063/1.3295638>.
25. Campbell R Harvey and Daniel Rabetti. International business and decentralized finance. *Journal of international business studies*, 55(7):840–863, 2024. URL: <https://doi.org/10.1057/s41267-024-00705-7>.

26. Jiawen Hu, Ziyi Zhang, Yubo Gao, and Shengduo Chen. Is bitcoin a safe haven for us equity market?—a comparison with gold and the dollar. *Advances in Economics, Management and Political Sciences*, 3:555–563, 2023. URL: <https://doi.org/10.54254/2754-1169/3/2022834>.
27. Thomas R Hurd et al. *Contagion!: Systemic Risk in Financial Networks*, volume 42. Springer, 2016. URL: <https://link.springer.com/book/10.1007/978-3-319-33930-6>.
28. Iacopo Iacopini. *Modelling the social dynamics of contagion and discovery using dynamical processes on complex networks*. PhD thesis, Queen Mary University of London., 2021. URL: <https://qmro.qmul.ac.uk/xmlui/handle/123456789/70668>.
29. Paraskevi Katsiampa. Volatility co-movement between bitcoin and ether. *Finance Research Letters*, 30:221–227, 2019. URL: <https://doi.org/10.1016/j.frl.2018.10.005>.
30. David Krause. Algorithmic stablecoins: Mechanisms, risks, and lessons from the fall of terrausd. *Risks, and Lessons from the Fall of TerraUSD (January 11, 2025)*, 2025. URL: <https://dx.doi.org/10.2139/ssrn.5092827>.
31. Łukasz Kruk, John Lehoczky, and Steven Shreve. Second order approximation for the customer time in queue distribution under the fifo service discipline. *Annales Universitatis Mariae Curie-Skłodowska, sectio AI-Informatica*, 1(1), 2003. URL: <https://doi.org/10.1088/1469-7688/3/4/602>.
32. Yukun Liu, Aleh Tsyvinski, and Xi Wu. Common risk factors in cryptocurrency. *NBER Working Paper No. 25882*, 2019. URL: https://www.nber.org/system/files/working_papers/w25882/w25882.pdf.
33. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. *White Paper*, 2008. URL: <https://bitcoin.org/bitcoin.pdf>.
34. Nizan Geslevich Packin and Yafit Lev-Aretz. Crypto-native credit score: Between financial inclusion and predatory lending. *Cardozo L. Rev.*, 45:845, 2023. URL: <https://ssrn.com/abstract=4354218>.
35. Ghazia Khoula Qureshi. *Extreme Value Behavior in Cryptocurrency Market*. PhD thesis, CAP-ITAL UNIVERSITY, 2023. URL: <https://cust.edu.pk/wp-content/uploads/2024/02/Ghazia-Khoula-Qureshi-Mngt-Sc-Dissertation.pdf>.
36. Chia-Yen Tan, You-Beng Koh, Kok-Haur Ng, and Kooi-Huat Ng. Dynamic volatility modelling of bitcoin using time-varying transition probability markov-switching garch model. *The North American Journal of Economics and Finance*, 56:101377, 2021. URL: <http://dx.doi.org/10.1016/j.najef.2021.101377>.
37. Carlos Trucios, Aviral K Tiwari, and Faisal Alqahtani. Value-at-risk and expected shortfall in cryptocurrencies' portfolio: A vine copula-based approach. *Applied Economics*, 52(24):2580–2593, 2020. URL: <http://dx.doi.org/10.2139/ssrn.3441892>.
38. Limin Wen, Junxue Li, Tong Pu, and Yiyi Zhang. On multivariate contribution measures of systemic risk with applications in cryptocurrency market. *Probability in the Engineering and Informational Sciences*, pages 1–28, 2025. URL: <http://dx.doi.org/10.1017/S026996482500004X>.