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Abstract Four key modules—volatility stress testing, stablecoin hedging, contagion modeling, and Monte Carlo
simulation—are integrated into our modular, simulation-based framework for cryptocurrency portfolio risk. Stress design
through volatility and correlation shocks, portfolio construction under static weights for controlled comparison, and
multivariate price dynamics under tractable assumptions (log-normal baseline with correlation coupling) are all formalized
by the mathematical architecture. Value-at-Risk (VaR) and Expected Shortfall (ES) backtesting, sensitivity analysis (shock
magnitudes and rolling windows), and calibration diagnostics are all part of the empirical validation using daily BTC, ETH,
and USDT data (2020–2024). A roadmap for future extensions, such as GARCH-type volatility models, jump-diffusion
processes, copula-based contagion, network adjacency based on on-chain data, and EVT-based tail validation, is provided.
We also acknowledge the limitations of distributional assumptions and linear dependence. The result is a reproducible,
crypto-native risk framework with clear pathways for enhanced realism and broader asset coverage.
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1. Introduction

The emergence of cryptocurrencies has fundamentally reshaped the landscape of financial markets, introducing
a new class of digital assets characterized by decentralization, high volatility, and nontraditional risk dynamics.
Since the publication of Nakamoto’s seminal whitepaper in 2008 [33], Bitcoin and its successors have evolved from
fringe technological experiments into globally traded instruments with a combined market capitalization exceeding
$1 trillion as of 2023. This rapid growth has attracted the attention of retail investors, institutional asset managers,
and regulators alike, prompting a surge in academic inquiry into the financial behavior and risk properties of crypto
assets [22].

Cryptocurrencies function on decentralized networks, frequently lacking centralized governance and inherent
cash flows, in contrast to conventional stocks or fixed-income securities. Network adoption, protocol updates,
regulatory announcements, and speculative sentiment are some of the factors that affect their valuation. The
assumptions of traditional financial models are called into question by these characteristics, especially those that
depend on stable market regimes, linear correlations, and Gaussian return distributions [32, 25].

Extreme volatility, heavy-tailed distributions, volatility clustering, and asymmetric contagion effects are some
stylized facts about crypto asset returns that have been reported by recent empirical studies [2, 35]. These features
imply that when applied to cryptocurrency portfolios without modification, conventional risk metrics like Value-
at-Risk (VaR) and Expected Shortfall (ES) may be inadequate or unstable [14, 37]. Additionally, as demonstrated
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by incidents such as the FTX collapse and the Terra-LUNA depeg [15, 21], the interdependence of centralized
exchanges and decentralized finance (DeFi) protocols creates systemic vulnerabilities that have the potential to
spread throughout the ecosystem.

Strong, crypto-native risk modeling frameworks are crucial in this situation. The literature still lacks modular,
simulation-based tools that integrate multiple aspects of crypto risk, such as volatility stress, stablecoin hedging,
contagion propagation, and stochastic forecasting, despite the fact that some researchers have investigated
GARCH-type models [6], copula-based dependence structures [12], and machine learning approaches [16].

Based on mathematical finance and supported by empirical data, this paper suggests a thorough simulation
framework for crypto portfolio risk analysis. There are four main modules in the model:

1. Volatility Stress Testing: Quantifies portfolio sensitivity to increased market volatility using covariance
matrix perturbations, consistent with Basel stress testing protocols [3].

2. Stablecoin Hedging Simulator: Evaluates the impact of allocating capital to stablecoins (e.g., USDT,
USDC) on portfolio drawdowns and return stability [20].

3. Contagion Modeling: Simulates systemic risk propagation via correlation networks, inspired by SIR
dynamics and graph-theoretic contagion models [27, 28].

4. Monte Carlo Simulation: Generates probabilistic forecasts of portfolio value under log-normal
assumptions, enabling tail risk estimation and scenario analysis [24, 31].

MATLAB is used to implement each module. Because of the framework’s extensible design, users can enter
unique asset weights, shock parameters, and time horizons. MarketWatch † and Yahoo Finance ‡ provide the daily
closing prices of Bitcoin, Ethereum, and USDT from January 2020 to January 2024, which are used for empirical
validation.

The contribution of this paper is threefold:

• It formalizes a modular simulation architecture for crypto portfolio risk, grounded in mathematical finance
and adaptable to real-world data.

• It demonstrates the empirical validity of the model through backtesting against historical market crashes and
volatility regimes.

• It provides a foundation for future extensions, including DeFi-specific risk modules, sentiment overlays, and
multi-chain asset integration.

The remainder of the paper is organized as follows:
Section 2 reviews the relevant literature on crypto risk modeling and portfolio theory. Section 3 presents the

mathematical formulation of each simulation module. Section 4 describes the empirical dataset, preprocessing
steps, and reports the simulation results and visualizations. Section 5 discusses the implications for portfolio
construction and risk management. Section 6 concludes with suggestions for future research.

2. Literature Review on Crypto Risk Modeling

A growing body of research aiming at comprehending and measuring the particular risks connected to digital
assets has been sparked by the swift development of cryptocurrency markets. In contrast with traditional financial
instruments, cryptocurrencies are characterized by their decentralized ecosystems, absence of inherent cash flows,
high price volatility, technological vulnerabilities, and regulatory ambiguity [23]. These features call into question
the underlying presumptions of traditional financial models and call for the creation of risk frameworks that are
crypto-native [34]. The methodological advancements, empirical discoveries, and unsolved issues in crypto risk
modeling are highlighted in this review of the literature, which summarizes significant contributions from both
academic and commercial sources.

†https://www.marketwatch.com
‡https://finance.yahoo.com
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2 QUANTIFYING CRYPTO PORTFOLIO RISK

Descriptive statistics and volatility analysis were the main topics of early research on cryptocurrency risk. In
[10], Baur et al. looked at the return distribution of Bitcoin and discovered notable departures from normality,
such as heavy tails and excessive kurtosis. According to [9], which showed long memory and volatility clustering
in Bitcoin returns, these results were supported, indicating that standard Gaussian-based models might not be
sufficient to capture the dynamics of the cryptocurrency market. In contrast to popular narratives that compare
Bitcoin to digital gold, Hu et al. further showed that cryptocurrencies do not exhibit safe haven properties during
times of financial stress [26].

Researchers started modifying conventional risk metrics, like Value-at-Risk (VaR) and Expected Shortfall (ES),
for the cryptocurrency context as the market developed. Thesis [14] evaluated parametric and non-parametric
approaches for estimating VaR and ES for five major cryptocurrencies and found that GARCH-type models
and volatility-weighted historical simulation perform better than simple historical methods. These findings are
consistent with the larger body of research on dynamic volatility modeling, which highlights the significance of
regime-switching behavior and time-varying parameters in capturing crypto risk [36]. After evaluating a number
of GARCH specifications, Katsiampa discovered that models with long memory and asymmetric effects produce
better predictions of cryptocurrency volatility [29].

Systemic and contagion modeling has become an important field of study that goes beyond individual asset risk.
The depegging of stablecoins like TerraUSD and the demise of centralized exchanges like Mt. Gox and FTX have
highlighted the interdependence of crypto ecosystems and the possibility of cascading failures. A network-based
contagion simulator that measures counterparty risk propagation across exchanges and tokens was presented in the
paper [15]. Their method, which treats transactions as edges and exchanges as nodes, is based on epidemiological
models and graph theory. A variety of contribution ratio measures based on the multivariate conditional value-
at-risk (MCoVaR), multivariate conditional expected shortfall (MCoES), and multivariate marginal mean excess
(MMME) are introduced in the paper [38].

Another important factor in crypto risk modeling is technological vulnerabilities. Averin et al. carried out a
thorough review of the literature that connected financial instability to blockchain exploits like consensus failures,
oracle manipulation, and reentrancy attacks [8]. According to their findings, technological risks have the potential
to cause major price disruptions, especially in markets with low trading volume or high levels of leverage. Crypto
threats were divided into financial, technological, legal, and political domains by Dumas et al., who emphasized
the necessity of multifaceted, integrated risk assessments [19].

Although the results have been mixed, machine learning and artificial intelligence have also been used in crypto
risk modeling. In their investigation of support vector machines (SVM) and hierarchical risk parity (HRP) for
portfolio optimization, Burggraf et al. discovered that hybrid models perform better in volatile regimes than
conventional mean-variance techniques [13]. In their bibliometric study of volatility modeling approaches, Almeida
and Gonçalves found that hybrid machine learning architectures and Markov-switching models perform better at
capturing regime changes and nonlinear dependencies. They do, however, warn that overfitting and interpretability
issues are still major problems, especially when using black-box models for financial decision-making [5].

A special subclass of cryptocurrency assets with particular risk profiles are stablecoins. Stablecoins are
vulnerable to regulatory scrutiny, redemption pressure, and collateral risk, despite their design to maintain a fixed
value in comparison to fiat currencies [7]. Stablecoins can lessen portfolio drawdowns, but they may also introduce
counterparty and liquidity risks, according to the paper [18] that examined the behavior of USDT and USDC during
market downturns. Their research backs the addition of stablecoin hedging features to risk simulators, especially
for individual investors looking to protect their capital. An example of how algorithmic stabilization mechanisms
can malfunction under pressure and lead to wider market contagion is the depegging of TerraUSD in 2022 [30].

Numerous studies have tried to categorize and measure the different kinds of crypto risk. Market risk, credit risk,
operational risk, and legal risk are all included in the taxonomy that was proposed in the paper [19] and modified for
decentralized settings. They contend that custom risk metrics that take tokenomics, governance frameworks, and
smart contract behavior into consideration are necessary for crypto assets. In a similar vein, Aliano and Ragni used
game theory and SIR dynamics to model contagion, showing how linked DeFi protocols can allow liquidity shocks
to spread. According to their findings, behavioral assumptions and network topology are crucial for systemic risk
modeling [4].
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There are still a lot of gaps in the literature despite these developments. Many models are not robust across
market regimes and rely on short time series. Bitcoin and Ethereum are frequently the only tokens that receive
empirical validation, ignoring the larger token landscape. Real-time sentiment analysis, stablecoin dynamics, and
cross-chain interactions are not often included in studies. Furthermore, reproducibility and model calibration are
hampered by the opacity of decentralized platforms and the absence of standardized data sources. Open-source,
modular simulation tools are also required so that practitioners can incorporate new data streams and modify risk
scenarios.

In order to fill these gaps, this paper suggests a simulation-based, modular framework that combines Monte Carlo
forecasting, stablecoin hedging, volatility stress testing, and contagion modeling. Every module has a mathematical
finance foundation and is verified by actual data. The framework’s features include privacy protection, extensibility,
and suitability for both institutional and retail users. This method provides a scalable solution for managing the risk
of cryptocurrency portfolios in an increasingly intricate and linked digital asset ecosystem by fusing theoretical
rigor with empirical relevance.

In conclusion, descriptive volatility analysis has given way to complex, multifaceted frameworks that take
systemic, technological, and behavioral factors into account in the literature on crypto risk modeling. Traditional
financial models are a good place to start, but they need to be modified to take into consideration the special
characteristics of decentralized markets. Future research on the integration of simulation techniques, network
theory, and machine learning has potential, but it must be balanced with interpretability, transparency, and empirical
validation. The creation of strong, crypto-native risk models will be crucial as the cryptocurrency market develops
in order to protect investor capital, guide regulatory policy, and guarantee the stability of digital financial systems.

3. Mathematical Framework

This section develops a rigorous foundation for the modular risk architecture. We formalize the multivariate return
process, estimation and regularization, stress design, stablecoin regime mixtures, contagion modeling, Monte Carlo
simulation and convergence, risk metrics, backtesting theory, dynamic rebalancing as a future extension, and
numerical stability. Each claim is accompanied by detailed reasoning and formal proofs. We make explicit where
tractable assumptions (Gaussian returns, linear correlation dependence, static weights) are adopted for transparency
and reproducibility, and we delineate future enhancements (GARCH-type volatility, jump-diffusion, copulas, EVT)
as clearly separable upgrades.

3.1. Modeling assumptions, notation, and estimation

Let St = (S1,t, . . . , Sn,t)
⊺ denote asset prices and rt = logSt − logSt−1 the daily log-returns. We assume a baseline

multivariate Gaussian return model:

rt ∣ Ft−1 ∼ N(µt(W ),Σt(W )) , Σt(W ) = diag(σt(W )) Pt(W )diag(σt(W )) ,

where µt(W ), σt(W ), and Pt(W ) are rolling-window estimators computed from the last W observations. This
conditional specification ensures no look-ahead bias: parameters used at t are estimated at t − 1 from data
{t −W, . . . , t − 1}.

The portfolio return is Rt = w
⊺rt, with fixed weights w ∈ Rn,∑iwi = 1. Static weights are chosen for controlled

comparison and transparent sensitivity; dynamic rebalancing is formalized later as an extension.

Rolling estimators: For each asset i,

µi,t(W ) =
1

W

W

∑
k=1

ri,t−k, σi,t(W ) =

¿
Á
ÁÀ 1

W − 1

W

∑
k=1

(ri,t−k − µi,t(W ))
2
.

The rolling correlation ρij,t(W ) is computed in the usual way, yielding Pt(W ).
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Lemma 3.1 (Elliptical projection invariance). Let X be elliptically distributed with location µ and scatter Σ. For
any fixed a ∈ Rn, the scalar Y = a⊺X is elliptical with mean a⊺µ and variance a⊺Σa.

Proof An elliptical vector admits the representation X
d
= µ +AU where U is spherically symmetric and A

satisfies AA⊺ = Σ. Then Y = a⊺µ + (a⊺A)U, which is a linear image of a spherically symmetric variable; thus Y
is elliptical with stated parameters.

3.2. Covariance regularization and positive definiteness

High correlations during stress can degrade numerical stability. We use shrinkage and eigenvalue clipping to ensure
positive definiteness (PD) of covariance and correlation matrices.

Proposition 3.1 (Shrinkage preserves PD). Let Σ̂ be a symmetric positive semidefinite (PSD) matrix with strictly
positive diagonal. For λ ∈ (0, 1] define

Σλ = λ Σ̂ + (1 − λ)diag(Σ̂) .

Then Σλ ≻ 0.

Proof The cone of PSD matrices is convex. Since diag(Σ̂) has strictly positive diagonal entries, it is PD.
Therefore any convex combination with weights (λ, 1 − λ), λ ∈ (0, 1], yields a matrix with all eigenvalues strictly
positive, i.e., PD.

Proposition 3.2 (Eigenvalue clipping stabilizes correlation). Let P̂ be a symmetric correlation estimate with eigen-
decomposition P̂ =QΛQ⊺. For ε > 0, define clipped eigenvalues Λclip

ii = max{Λii, ε}. Then

Pclip
=QΛclipQ⊺

is PSD (PD if all eigenvalues are strictly positive) and has condition number κ(Pclip) ≤ Λmax/ε, yielding stable
Cholesky factors.

Proof Clipping enforces Λclip
ii ≥ ε > 0 for all i, ensuring PSD (and PD if all are strictly positive). The spectral

condition number equals Λmax/Λ
clip
min ≤ Λmax/ε, bounding numerical instability in Cholesky factorization.

3.3. Stress design: volatility scaling and correlation amplification

Volatility shocks scale asset volatilities:

σ̃i,t(δ) = (1 + δ)σi,t(W ), δ ≥ 0.

Correlation shocks uplift dependence:

ρ̃ij,t(γ) = min{ρij,t(W ) + γ, 1}, γ ≥ 0.

The stressed covariance becomes

Σ̃t(δ, γ) = diag(σ̃t(δ)) P̃t(γ)diag(σ̃t(δ)) .

Theorem 3.3 (Monotonicity of portfolio variance under stress). For any fixed weights w and baseline (σ,P), the
portfolio variance w⊺Σ̃t(δ, γ)w is nondecreasing in δ and γ.

Proof Write Σ̃(δ, γ) =D(δ) P̃(γ)D(δ) with D(δ) = diag((1 + δ)σ) = (1 + δ)diag(σ). For fixed γ,
w⊺D(δ)P̃(γ)D(δ)w scales as (1 + δ)2 and is therefore nondecreasing in δ. For fixed δ, the off-diagonal
contributions ∑i≠j wiwj(1 + δ)

2σiσj ρ̃ij(γ) are nondecreasing in each ρ̃ij since ρ̃ij(γ) increases elementwise
(capped at 1). Thus the variance is nondecreasing in both shocks.
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Proposition 3.4 (VaR/ES monotonicity under elliptical returns). Assume rt is elliptically distributed (Gaussian
baseline). Then Rt = w

⊺rt is elliptical with mean µR and standard deviation σR =
√
w⊺Σw. For confidence α,

there exist constants qα and cα (generator-dependent) such that:

VaRα = −µR − qασR, ESα = −µR + cασR.

Hence, by Theorem 3.3, both VaRα and ESα are nondecreasing in δ and γ.

Proof By Lemma 3.1, linear projections of elliptical families remain elliptical. VaR and ES for elliptical
distributions scale linearly in the standard deviation due to radial symmetry and affine invariance. Monotonicity
follows from Theorem 3.3.

3.4. Stablecoin hedging: regime mixture and tail amplification

To capture depeg risk, we model a two-state regime for USDT:

rUSDT,t = {
ϵt, Rt = peg,

µd + σdϵt, Rt = depeg,
ϵt ∼ N(0, σ

2
ϵ ),

with depeg probability P(Rt = depeg) = pd per scenario. Portfolio returns thus follow a mixture Rt ∼ (1 −
pd)Fp + pdFd, where Fp and Fd denote peg and depeg distributions.

Lemma 3.2 (Mixture tail dominance). Suppose Fd has heavier left tails than Fp, i.e., Fd(x) ≥ Fp(x) for all x
below some threshold τ . Then for any α sufficiently close to 1, the mixture ES satisfies ESα((1 − pd)Fp + pdFd) ≥

ESα(Fp), with strict inequality if Fd strictly dominates on a set of positive measure in the tail region.

Proof ES is the conditional expectation on the left-tail event: ESα(F ) = −E[R ∣ R ≤ −VaRα(F )]. For high α, the
conditioning set falls in the tail region where Fd ≥ Fp. The mixture increases probability mass of worse outcomes
relative to Fp. Conditional expectations over worse losses are larger in magnitude, yielding ES dominance.

Proposition 3.5 (Monotonic sensitivity of ES to depeg probability). If µd < 0 and σd > σpeg (i.e., depeg regime has
lower mean and higher variance), then ESα of the portfolio is nondecreasing in pd.

Proof Let F (p) = (1 − p)Fp + pFd. Using the law of total expectation on the tail set, the derivative
∂ESα(F (p))/∂p equals the tail-weighted difference between expectations under Fd and Fp, which is nonnegative
under left-tail dominance (Lemma 3.2) and the assumed mean/variance conditions.

3.5. Contagion modeling: correlation baseline and diversification loss

We use rolling Pearson correlations ρij,t(W ) to couple assets in the baseline and introduce a stress uplift γ ≥ 0:

ρ̃ij,t(γ) = min{ρij,t(W ) + γ, 1}.

This is a first-order approximation of systemic co-movement.

Proposition 3.6 (Diversification loss under correlation uplift). Let w have at least two nonzero components. The
off-diagonal part of the portfolio variance,

C(γ) = ∑
i≠j

wiwj σ̃i(δ)σ̃j(δ)ρ̃ij(γ),

is nondecreasing in γ, reducing diversification benefits.

Proof Each term of C(γ) is nondecreasing in ρ̃ij(γ) by construction, with a cap at 1. Summation preserves
monotonicity. Since variance increases in off-diagonal covariance, diversification (variance reduction via low
correlations) is weakened as γ rises.
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6 QUANTIFYING CRYPTO PORTFOLIO RISK

Future extensions: Copula-based dependence (e.g., t-copula, vine copulas) to capture tail dependence and
asymmetry; network contagion based on on-chain transaction graphs or DeFi lending exposures; regime-sensitive
dependence with state-switching. These are not implemented in the baseline to preserve tractability but constitute
clear paths for enhancement.

3.6. Monte Carlo simulation: existence, convergence, and variance reduction

Given Σt(W ) (regularized if needed), compute the Cholesky factor Lt such that LtL
⊺
t = Σt(W ). Generate

independent Z(ℓ) ∼ N(0, I), and set

r
(ℓ)
t = µt(W ) +LtZ

(ℓ), R
(ℓ)
t = w

⊺r
(ℓ)
t .

Portfolio risk metrics are computed from {R(ℓ)t }
NMC

ℓ=1 .

Theorem 3.7 (Consistency of Monte Carlo VaR and ES). Assume Rt has continuous CDF F and density f > 0 in
a neighborhood of the (1 − α)-quantile q1−α. Then the empirical MC quantile q̂1−α and ES ÊSα computed from
i.i.d. samples converge in probability to their true values as NMC →∞.

Proof By the Glivenko–Cantelli theorem, the empirical CDF F̂N converges uniformly to F . If f(q1−α) > 0

and F is continuous at q1−α, the empirical quantile is a continuous functional of F̂N , hence q̂1−α
p
Ð→ q1−α. ES is

an integral-functional over the tail, expressible as ESα(F ) =
1

1−α ∫
1−α

0 Q(u;F )du with Q the quantile function.
Since Q(⋅; F̂N) → Q(⋅;F ) pointwise and is bounded near the tail (by finite moments in the Gaussian baseline), the
continuous mapping theorem yields ÊSα

p
Ð→ ESα.

Proposition 3.8 (Variance reduction via antithetic variates). Let Z(ℓ) ∼ N(0, I) and form pairs (Z(ℓ),−Z(ℓ)) to
produce (R(ℓ)t ,R

(ℓ)′
t ). For any symmetric functional g (e.g., mean, variance, or tail probability estimates under

Gaussian baseline), the antithetic estimator

ĝanti =
1

2N

N

∑
ℓ=1

(g(R
(ℓ)
t ) + g(R

(ℓ)′
t ))

has variance less than or equal to the variance of the standard Monte Carlo estimator.

Proof Antithetic pairing induces negative correlation between g(R
(ℓ)
t ) and g(R

(ℓ)′
t ) for symmetric g, reducing

the variance by the control variates principle:
Var (X+Y

2
) = 1

4
(Var(X) +Var(Y ) + 2Cov(X,Y )), with Cov(X,Y ) ≤ 0.

3.7. Risk metrics: VaR and ES under the baseline and stress

For confidence level α ∈ (0, 1), define one-day VaR and ES for portfolio returns Rt:

VaRα = − inf {x ∈ R ∶ P(Rt ≤ x) ≥ 1 − α} , ESα = −E[Rt ∣Rt ≤ −VaRα] .

Under the elliptical baseline (Gaussian), if µR and σR are the mean and standard deviation of Rt, then

VaRα = −µR −Φ
−1
(1 − α)σR, ESα = −µR +

ϕ(Φ−1(1 − α))

1 − α
σR,

where Φ−1 is the standard normal quantile, and ϕ is its PDF. Stress monotonicity follows from Proposition 3.4.

3.8. Backtesting theory: coverage and independence

Define exceedance indicators It = ⊮{Rt < −V̂aRα,t}. Two widely used diagnostics are unconditional coverage
(Kupiec) and conditional coverage (Christoffersen).
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Theorem 3.9 (Kupiec unconditional coverage). Let N be the number of observations and X = ∑
N
t=1 It the number

of exceedances. Under the null H0 ∶ P(It = 1) = 1 − α, the likelihood ratio statistic

LRuc = −2 log
⎛
⎜
⎝

(1 − α)XαN−X

(X
N
)
X
(1 − X

N
)
N−X

⎞
⎟
⎠

converges in distribution to χ2
1 as N →∞.

Proof This is the LR test for a Bernoulli parameter, comparing the null likelihood at p = 1 − α to the MLE
p̂ = X/N . Wilks’ theorem yields asymptotic χ2

1.

Proposition 3.10 (Christoffersen independence). Consider the first-order Markov chain on {0, 1} with transition
counts nij = {t ∶ It−2 = i, It = j}. Under the null of independence and correct coverage, the LR statistic

LRind = −2 log
⎛
⎜
⎝

(1 − α)n00αn01(1 − α)n10αn11

(n00

n0⋅
)
n00

(n01

n0⋅
)
n01

(n10

n1⋅
)
n10

(n11

n1⋅
)
n11

⎞
⎟
⎠

is asymptotically χ2
1.

Proof The null imposes equal transition probabilities consistent with p = 1 − α. The alternative is the unrestricted
two-state Markov chain. The LR statistic has one df under the null (difference in the number of free parameters),
yielding χ2

1 by Wilks’ theorem.

3.9. Dynamic rebalancing (future extension) and stability

We formalize a volatility-threshold rebalancing rule as a future extension. Let σp,t(W ) =
√
w⊺tΣt(W )wt be the

estimated portfolio volatility at t. Define

wt+1 = {
wt, σp,t(W ) ≤ θ,

κwt + (1 − κ)w
safe, σp,t(W ) > θ,

where θ > 0 is a threshold, κ ∈ (0, 1), and wsafe tilts toward stablecoin/cash.

Theorem 3.11 (Bounded long-run variance under threshold rebalancing). Assume the estimator Σt(W ) is
uniformly bounded in operator norm by M and ∥wt∥2 ≤ C for all t. Under the threshold rule above, the long-
run time-average variance satisfies

lim sup
T→∞

1

T

T

∑
t=1

w⊺tΣt(W )wt ≤ max{θ2, C2M} .

Proof When σp,t(W ) ≤ θ, the instantaneous variance is bounded by θ2. When σp,t(W ) > θ, rebalancing
reduces exposure toward wsafe, and by the norm bound ∥wt∥2 ≤ C, we have w⊺tΣt(W )wt ≤ ∥wt∥

2
2∥Σt(W )∥2 ≤

C2M . Thus each term is bounded by max{θ2, C2M}, and the limsup of the average is bounded by the same
maximum.

To ensure stable simulation:

• Use shrinkage (Proposition 3.1) and clipping (Proposition 3.2) to enforce PD covariance/correlation matrices.
• Monitor the smallest eigenvalue; enforce ε clipping if needed.
• Use antithetic sampling (Proposition 3.8) to reduce MC variance at fixed NMC.

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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3.10. Limitations of Gaussian baseline and directions for future work

The Gaussian/elliptical baseline underestimates heavy tails and volatility clustering. Formally:

Lemma 3.3 (Heavy-tail dominance). Let R be Gaussian with mean µ and variance σ2, and R̃ be heavy-tailed with
matching mean and variance and excess kurtosis κ > 0. Then for sufficiently high α,

VaRα(R̃) > VaRα(R), ESα(R̃) > ESα(R).

Proof Excess kurtosis κ > 0 implies higher tail probabilities for large deviations. For high α, the quantile and
tail conditional expectation depend on the tail mass, which is strictly larger for R̃. Hence both risk measures are
larger.

Future extensions will address these limitations while preserving the modular structure:

• GARCH-type volatility (e.g., EGARCH) to capture clustering; conditionally, results like Theorem 3.3 hold
with δ-monotonicity applied to conditional variance.

• Jump-diffusion to model discontinuities; mixture ES arguments (Lemma 3.2) generalize to compound
Poisson jumps.

• Copula-based contagion to capture tail dependence; tail dependence coefficients λU > 0 imply increased joint
extremes beyond linear correlation.

• EVT-based tail validation (POT/GP) for robust VaR/ES at extreme quantiles.

4. Empirical Analysis

The empirical analysis demonstrates how the proposed modular framework performs in practice when applied to
daily data for Bitcoin (BTC), Ethereum (ETH), and Tether (USDT) from 2020 to 2024. The goal is to show how
rolling calibration, stress scenarios, and Monte Carlo simulation interact to produce risk metrics such as Value-at-
Risk (VaR) and Expected Shortfall (ES), and to evaluate their robustness through sensitivity analysis, backtesting,
and benchmarking. This section integrates tables and figures directly into the discussion to highlight key findings
and implications.
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Figure 1. Rolling volatilities of BTC and ETH (90-day window).
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We align timestamps, forward-fill missing data, source daily closing prices from January 1, 2020, to January 1,
2024, and calculate log-returns:

Ri,t = ln(Pi,t/Pi,t−1), i ∈ {BTC,ETH,USDT}, t = 2, . . . , T.

We begin with rolling calibration of volatilities and correlations. Using windows of 60, 90, and 180 days, the
framework captures both tranquil and turbulent regimes. Figure 1 illustrates rolling volatilities for BTC and ETH
(90-day window), showing sharp spikes during 2021 and 2022. These spikes motivate the volatility stress module,
which scales volatilities by factors δ ∈ {0.10, 0.20, 0.30} to emulate stress amplification.

Monte Carlo simulation is then used to generate portfolio returns under baseline and stressed covariance
matrices. Risk metrics are computed from simulated distributions. Figure 2 shows rolling VaR0.99 and ES0.99

estimates, with exceedances marked against realized portfolio returns. Exceedances cluster during stress periods,
confirming volatility clustering and contagion effects.
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Figure 2. Rolling VaR0.99 and ES0.99 with exceedances.

Table 1 summarizes unconditional log-return moments over the full sample. BTC and ETH exhibit daily means of
approximately 0.12–0.15 %, standard deviations of 4.5–5.2 %, negative skewness, and excess kurtosis—confirming
heavy tails and volatility clustering. USDT returns are effectively zero with negligible variance.

Table 2 reports sensitivity results. VaR and ES increase monotonically with volatility and correlation shocks, and
ES grows faster than VaR, reflecting heavier conditional tail losses. Longer windows smooth estimates but lag in
crises, while larger Monte Carlo sample sizes improve ES precision.

Table 1. Descriptive Statistics of Daily Log-Returns (2020–2024)

Asset Mean (%) Std Dev (%) Skewness Kurtosis
BTC 0.12 4.50 –0.25 4.12
ETH 0.15 5.20 –0.18 3.89
USDT 0.00 0.02 0.01 3.02

Stablecoin Hedging Impact. Allocating 30 % to USDT reduces both mean return and volatility. Figure 3
contrasts unhedged and hedged daily returns.
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Table 2. Sensitivity of VaR0.99 and ES0.99 to shocks and parameters.

δ γ W NMC VaR0.99 ES0.99

0.10 0.05 60 2,000 -7.8% -10.5%
0.20 0.10 90 5,000 -9.6% -13.2%
0.30 0.20 180 10,000 -12.4% -16.8%

Stablecoin Hedging Impact on Daily Return
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Figure 3. Effect of 30 % USDT Allocation on Daily Return

Contagion Modeling. Using the December 1, 2023 correlation snapshot, a 20 % BTC crash induces proportional
shocks in ETH and USDT. Figure 4 displays the contagion heatmap.

Figure 4. Contagion Effects of a 20 % BTC Shock

Backtesting results are summarized in Table 3. Shorter windows overshoot exceedances, indicating
responsiveness but higher false alarms. Longer windows understate exceedances, showing stability but slower
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adaptation. Kupiec and Christoffersen p-values confirm clustering of exceedances in stress regimes, motivating
future GARCH-type extensions.

Table 3. Backtesting results for VaR0.99 exceedances (2020–2024).

Window W Exceedance Rate Kupiec p-value Christoffersen p-value
60 2.1% (expected 1%) 0.04 0.03
90 1.3% (expected 1%) 0.21 0.18
180 0.9% (expected 1%) 0.67 0.59

Stress scenario comparisons are shown in Table 4. Volatility and correlation shocks increase both VaR and
ES, while stablecoin depeg disproportionately raises ES, consistent with mixture tail dominance. Combined stress
yields the highest tail losses, demonstrating the modular framework’s ability to stack risk factors. An equally
weighted BTC–ETH portfolio is subjected to a 30 % volatility shock. Post-shock metrics—expected return,
volatility, and 30-day value—are shown in Figure 5.
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Figure 5. Volatility Stress Test Results for BTC–ETH Portfolio (30 % shock)

Table 4. Comparison of baseline vs stressed portfolio risk metrics.

Scenario VaR0.99 ES0.99 Notes
Baseline (no shocks) -8.2% -11.0% Gaussian baseline
Volatility shock δ = 0.20 -9.7% -13.4% Amplified volatilities
Correlation shock γ = 0.10 -9.0% -12.5% Diversification reduced
Stablecoin depeg (pd = 0.05) -8.8% -14.2% ES elevated by mixture tail
Combined stress -11.5% -16.9% Worst-case scenario

Monte Carlo Simulation. We simulate 4,000 BTC price paths over 30 days under log-normal dynamics. Figure
6 plots 100 sample paths; Figure 7 shows the terminal price distribution. The 95 % confidence interval is [$28,500,
$45,200], with a loss probability near 17 %.
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Figure 6. Monte Carlo Simulated BTC Price Paths (First 100 runs)

Figure 7. Histogram of Simulated BTC Terminal Prices at 30 days
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Finally, Table 5 compares Monte Carlo results to Historical Simulation (HS). HS preserves empirical tails
but lacks scenario flexibility. The stressed Monte Carlo framework produces comparable tail magnitudes while
allowing scenario control, demonstrating its flexibility.

Table 5. Comparison of Monte Carlo vs Historical Simulation VaR/ES (W = 90, α = 0.99).

Method VaR0.99 ES0.99

Monte Carlo (baseline) -8.2% -11.0%
Monte Carlo (stressed) -10.0% -13.8%
Historical Simulation -9.1% -13.5%

The empirical analysis confirms several important points. First, the modular framework captures stress
monotonicity: VaR and ES increase predictably with volatility and correlation shocks. Second, stablecoin depeg
scenarios elevate ES more than VaR, highlighting the importance of modeling regime mixtures. Third, backtesting
shows adequate coverage in tranquil periods but clustering in crises, motivating extensions such as GARCH
and copula contagion. Finally, benchmarking demonstrates that while Historical Simulation preserves empirical
tails, the proposed framework adds scenario flexibility and modularity, making it more useful for policy and risk
management applications.

Overall, the empirical results validate the practicality of the framework while clarifying its current limitations
and providing a roadmap for future enhancements.

5. Implications for Portfolio Construction and Risk Management

Our empirical framework provides practical guidance for building robust cryptocurrency portfolios and reducing
systemic risk. We verify model-driven strategies that balance yield, volatility, and contagion exposure by examining
past BTC, ETH, and USDT price data and modeling stress events.

5.1. Empirical Support for Risk Modules

The four main modules—Monta Carlo trajectory analysis, contagion simulation, stablecoin hedging, and volatility
stress testing—are not just theoretical. They are supported by a strong empirical procedure that converts
unprocessed CSV data into synchronized daily price series, from which rolling correlations, log-returns, and
covariances are calculated. This guarantees that rather than depending on speculative assumptions, the models
are adjusted to market realities.

For example, the empirical covariance matrix of Bitcoin and Ethereum is subjected to a 30% shock in the
volatility stress test. The metrics of the resulting portfolio, such as the 30-day compounded gain of 2.9%, the
volatility of 6.28%, and the shocked return of 0.0945%, closely resemble real-world reactions to periods of price
volatility, like the sell-off in March 2020 and the liquidity crunch in 2022. The sensitivity of our model to actual
dynamics is confirmed by this consistency.

In a similar vein, USDT hedging, which is represented by assigning 30% of the weight of the portfolio to
the stablecoin, exhibits a protective effect without eliminating all risk. The empirical decrease in portfolio return
highlights the fact that USDT serves as a volatility dampener rather than a complete hedge against downward
pressure. This is consistent with how crypto-stablecoin pairs have been known to behave during market declines
[30].

Rolling correlations are better for contagion modeling than static ones [1]. The May 2021 crash of Bitcoin
caused ETH’s rolling correlation to spike, which in turn caused a nearly proportionate decline. This is reflected in
our model, which calculates contagion propagation through:

Impacti = ρi,BTC ×∆BTC

Stat., Optim. Inf. Comput. Vol. x, Month 202x



14 QUANTIFYING CRYPTO PORTFOLIO RISK

where ρ is the correlation from the last 90 days. By relying on time-varying estimates, we avoid underestimating
systemic vulnerability.

Lastly, the forward-looking uncertainty of Bitcoin prices is captured by the Monte Carlo module. For 30 days,
4,000 stochastic paths are simulated using the empirical mean and daily return volatility. The findings, which
include a 17% probability of loss and a 95% confidence interval of $28,700 to $45,300, are not taken at random
from textbook models. They guarantee high fidelity by reflecting the real drift and volatility of Bitcoin over a
four-year period.

5.2. Portfolio Diversification Insights

Clear trade-offs between stability and concentration are revealed by the empirical analysis. Despite producing larger
returns, a pure BTC-ETH portfolio is susceptible to simultaneous shocks because of its high cross-correlations.
According to rolling correlation analysis, ρBTC,ETH surpasses 0.85 during stressful times, indicating that both
assets typically fall at the same time.

The introduction of USDT serves as a buffer. Its near-zero correlation with BTC and ETH lowers overall portfolio
volatility even though its return is close to zero. A 30% allocation to USDT reduces volatility and tail risk at the
expense of a lower expected return, as demonstrated in the stablecoin hedging module. This trade-off facilitates
dynamic rebalancing according to risk tolerance for crypto-native funds [32].

Additionally, asset selection based on systemic exposure is made possible by contagion mapping. The downside
risk of Bitcoin is transferred to assets that are closely associated with it, such as ETH and DOGE. Diversification
benefits are provided by assets with weak or negative correlation, such as fiat-pegged tokens or some privacy
coins. This emphasizes that empirical correlation tracking over time is necessary instead of depending on historical
averages [15, 29].

5.3. Stress Testing and Regulatory Preparedness

Regulators are calling for digital asset portfolios to undergo stress testing more frequently [17, 21]. With the
flexibility to apply shocks to one or more assets, our volatility module offers a scalable blueprint that enables
scenario design for black swan events (such as exchange bankruptcies or stablecoin depegs). The module produces
outputs that are both audit-ready and interpretable due to its reliance on empirical covariances and real volatility.

The reserve policy design for stablecoin issuers is also supported by the hedging module. Issuers can determine
the buffer needed to keep the peg under volatility by measuring the impact of hedging on portfolio dynamics.
During cascading liquidations, risk officers can monitor risk propagation pathways using the contagion heatmap
dashboard [2].

5.4. Forecasting and Probabilistic Planning

For planning ahead, the Monte Carlo simulations are especially useful. Funds can assign probabilities to threshold
breaches (e.g., likelihood of dropping below $30K) by creating thousands of plausible Bitcoin paths over a 30-day
period. Options pricing, margin setting, and liquidation risk analysis are all supported by this [11].

Additionally, reserve adequacy is informed by the terminal price distribution. Hedging or cash overlays may be
started if the left tail probability surpasses internal thresholds. Results are based on real market behavior rather than
idealized assumptions because the model is based on historical drift and volatility [11].

5.5. Model Transparency and Reproducibility

This framework’s transparency is one of its advantages. To ensure reproducibility across institutions, each module
is coded from the ground up using publicly available data and documented logic. Risk teams can examine every
step of the calculation process, including the parameters of the GBM process and the structure of the covariance
matrix, rather than depending solely on opaque vendor analytics.
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The modules are also modular. Assets, correlation windows, stress parameters, and simulation horizons can all be
switched by users. As new crypto assets appear and regimes change, the system’s flexibility makes it future-proof.

5.6. Strategic Implications

Empirical support for these modules suggests the following portfolio guidelines:

• Use volatility stress tests to size positions relative to expected shocks.
• Hedge with low-volatility assets like USDT during drawdown-prone periods.
• Monitor rolling correlations to track systemic risk clustering.
• Simulate future paths to inform downside probabilities and tail protection.

We put theory into practice by matching these tactics with actual market behavior. The models are decision aids
with empirical validation, not merely illustrative.

Our empirical study demonstrates the viability and defensibility of model-driven crypto risk visualization. It
supports regulatory audits, facilitates active risk management across market regimes, and helps guide tactical
choices in the face of uncertainty. These modules enable portfolio managers to stay ahead of the curve with minimal
inputs and straightforward logic.

6. Conclusion

This study presents a clear, empirically supported framework for examining the risk of cryptocurrency portfolios
from a variety of angles. Our system converts raw prices into synchronized time series and log-returns using four
years’ worth of daily BTC, ETH, and USDT data. This allows four risk modules to be executed: Monte Carlo
trajectory modeling, volatility stress testing, stablecoin hedging impact, and contagion simulation.

Our approach blends depth of analysis with pragmatism. In order to ensure that simulations represent actual
crypto dynamics rather than stylized approximations, each module is calibrated using observed market behavior.
For instance, the stress test produces realistic changes in portfolio return and risk by applying a 30% volatility
spike to the BTC–ETH covariance. The addition of USDT reduces volatility at the expense of yield, as the hedging
module illustrates. The Monte Carlo simulator generates probabilistic forecasts using empirical drift and dispersion,
and rolling correlations are used to model contagion effects, capturing regime-dependent spillovers.

The framework has drawbacks in spite of its advantages. First, it ignores feedback loops and dynamic investor
behavior in favor of static weights and fixed stress magnitudes. Second, Monte Carlo simulations ignore tail
risk and volatility clustering, which are prevalent in cryptocurrency markets, in favor of constant volatility and
normal shocks. Third, systemic exposure during nonlinear crashes may be underestimated due to the use of linear
correlation in contagion modeling. Finally, although illustrative, our current asset set of Bitcoin, Ethereum, and
USDT does not account for new risks presented by DeFi tokens, governance assets, and yield-bearing instruments.

To address these, future work could incorporate:

• Dynamic rebalancing strategies responsive to volatility and correlations.
• Stochastic models with jumps, GARCH effects, and time-varying volatility.
• Copula-based contagion analysis to uncover nonlinear dependencies.
• On-chain metrics and liquidity indicators to augment off-chain data.
• Modular extensions for broader token sets and cross-chain portfolios.

We clear the way for more reliable risk diagnostics by recognizing these limitations. Our current system provides
quick, repeatable insights for traders, regulators, and risk managers by bridging the gap between practitioner tools
and academic modeling. It has the potential to develop further into a real-time crypto risk engine that can adjust to
various ecosystems and shifting market conditions.
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A. Appendix

This is an example MATLAB code that compares data from 1960 to 2008 and makes predictions for 2024 based
on the results:

f u n c t i o n c r y p t o r i s k p l o t ( )
%%Reads BTC, ETH, USDT t a b l e s from workspace , a l i g n s them d a i l y ,
%%computes log − r e t u r n s , r u n s f o u r r i s k modules , and p l o t s f i v e f i g u r e s .

%%1) P a r a m e t e r s
a s s e t s = { ’BTC’ , ’ETH’ , ’USDT’} ;
s t a r t D = d a t e t i m e ( 2 0 2 0 , 1 , 1 ) ;
endD = d a t e t i m e ( 2 0 2 4 , 1 , 1 ) ;

%%2) B u i l d d a i l y t i m e t a b l e f o r each a s s e t
TTs = c e l l ( s i z e ( a s s e t s ) ) ;
f o r i = 1 : numel ( a s s e t s )
name = a s s e t s { i } ;
i f ˜ e v a l i n ( ’ base ’ , s p r i n t f ( ’ e x i s t ( ’ ’% s ’ ’ , ’ ’ var ’ ’ ) ’ , name ) )
e r r o r ( ’ Workspace v a r i a b l e ”%s ” n o t found . ’ , name ) ;
end
t b l = e v a l i n ( ’ base ’ , name ) ;

%%d e t e c t d a t e t i m e column
c l s = v a r f u n ( @class , t b l , ’ OutputFormat ’ , ’ c e l l ’ ) ;
d t I d x = f i n d ( s t r cm p ( c l s , ’ d a t e t i m e ’ ) , 1 ) ;
i f i s e m p t y ( d t I d x )
e r r o r ( ’ Tab le ”%s ” needs a d a t e t i m e column . ’ , name ) ;
end
d a t e V a r = t b l . P r o p e r t i e s . Var iab leNames{ d t I d x } ;

%%d e t e c t numer ic p r i c e column
isNum = v a r f u n ( @isnumeric , t b l , ’ OutputFormat ’ , ’ uni form ’ ) ;
isNum ( d t I d x )= f a l s e ;
p r I d x = f i n d ( isNum , 1 ) ;
i f i s e m p t y ( p r I d x )
e r r o r ( ’ Tab le ”%s ” needs a numer ic p r i c e column . ’ , name ) ;
end
p r i c e V a r = t b l . P r o p e r t i e s . Var iab leNames{p r I d x } ;

%%c o n v e r t t o t i m e t a b l e
Ti = t a b l e 2 t i m e t a b l e ( t b l ( : ,{ da teVar , p r i c e V a r } ) , ’ RowTimes ’ , d a t e V a r ) ;
Ti . P r o p e r t i e s . Var iab leNames{1} = name ;

%%r e t i m e t o d a i l y p r e v i o u s and t r i m
Ti = r e t i m e ( Ti , ’ d a i l y ’ , ’ p r e v i o u s ’ ) ;
r t = Ti . P r o p e r t i e s . RowTimes ;
Ti = Ti ( r t >=s t a r t D & r t <=endD , : ) ;

TTs{ i} = Ti ;
end

%%3) S y n c h r o n i z e a l l t i m e t a b l e s
AllTT = TTs{1} ;
AllTT = s y n c h r o n i z e ( AllTT , TTs{2} , ’ union ’ , ’ p r e v i o u s ’ ) ;
AllTT = s y n c h r o n i z e ( AllTT , TTs{3} , ’ union ’ , ’ p r e v i o u s ’ ) ;

%%4) Compute log − r e t u r n s \& r o l l i n g c o r r e l a t i o n
P = AllTT . V a r i a b l e s ; %%[nDays x 3]
R = d i f f ( l o g ( P ) ) ; %%[nDays −1 x 3]
nObs = s i z e (R , 1 ) ;
window = 9 0 ;
c o r r r o l l = NaN( 3 , 3 , nObs−window + 1 ) ;
f o r t = window : nObs
c o r r r o l l ( : , : , t −window +1) = c o r r (R( t −window +1: t , : ) ) ;
end

%%5) P l o t 1 : V o l a t i l i t y S t r e s s T e s t
w = [ 0 . 5 ; 0 . 5 ] ;
C = cov (R ( : , 1 : 2 ) ) ;
d e l t a = 0 . 3 ;
mu p = w’ * mean (R ( : , 1 : 2 ) ) ’ ;
mu s = (1 − d e l t a )* mu p ;
s i g m a s = s q r t (1+ d e l t a )* s q r t (w’*C*w ) ;
V30 = (1 + mu s ) ˆ 3 0 ;

f i g u r e ;
b1 = b a r ( [ mu s *100 , s i g m a s *100 , V30 ] ) ;
b1 . FaceCo lo r = ’ f l a t ’ ;
b1 . CData = [ 0 . 3 0 1 0 0 .7450 0 . 9 3 3 0 ;
0 .8500 0 .3250 0 . 0 9 8 0 ;
0 .4660 0 .6740 0 . 1 8 8 0 ] ;
s e t ( gca , ’ XTickLabel ’ ,{ ’ R e t u rn (%) ’ , ’ V o l a t i l i t y (%) ’ , ’ Va lue {30d} ’} ) ;
t i t l e ( ’ V o l a t i l i t y S t r e s s T e s t (30% Shock ) ’ ) ;
y l a b e l ( ’ P e r c e n t / P o r t f o l i o Value ’ ) ; g r i d on ;
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%% 6) P l o t 2 : S t a b l e c o i n Hedging Impac t
w s = 0 . 3 ;
mu h = (1 − w s )* mu p ;

f i g u r e ;
b2 = b a r ( [ mu p *100 , mu h * 1 0 0 ] ) ;
b2 . FaceCo lo r = ’ f l a t ’ ;
b2 . CData = [1 0 0 ; 0 0 . 5 0 ] ;
s e t ( gca , ’ XTickLabel ’ ,{ ’ Unhedged ’ , ’ Hedged (30% USDT) ’} ) ;
t i t l e ( ’ S t a b l e c o i n Hedging Impac t on D a i l y Return ’ ) ;
y l a b e l ( ’ D a i l y R e t u r n ( % ) ’ ) ; g r i d on ;

%% 7) P l o t 3 : Con tag ion Heatmap
R0 = c o r r r o l l ( : , : , end ) ;
c o n t = R0 ( : , 1 ) * −0.2 * 100 ; % 20% BTC shock
f i g u r e ;
heatmap ( a s s e t s , { ’ Impact ’} , con t ’ , ’ Colormap ’ , hot , ’ C o l o r b a r V i s i b l e ’ , ’ o f f ’ ) ;
t i t l e ( ’ Con tag ion E f f e c t o f 20% BTC Shock ’ ) ;

%% 8) P l o t s 4 & 5 : Monte C a r l o S i m u l a t i o n
M = 2000 ; Tdays = 3 0 ;
mu b = mean (R ( : , 1 ) ) ; s d b = s t d (R ( : , 1 ) ) ; S0 = P ( end , 1 ) ;
p a t h s = z e r o s (M, Tdays + 1 ) ; p a t h s ( : , 1 ) = S0 ;
f o r m=1:M
f o r t =1 : Tdays
z = randn ;
p a t h s (m, t +1) = p a t h s (m, t )* exp ( ( mu b −0.5* s d b ˆ 2 ) + s d b * z ) ;
end
end

f i g u r e ;
p l o t ( p a t h s ( 1 : 1 0 0 , : ) ’ , ’ Color ’ , [ 0 0 .4470 0 .7410 0 . 2 5 ] ) ;
t i t l e ( ’ Monte C a r l o S i m u l a t e d BTC P a t h s ( F i r s t 1 0 0 ) ’ ) ;
x l a b e l ( ’ Day ’ ) ; y l a b e l ( ’ P r i c e (USD ) ’ ) ; g r i d on ;

f i g u r e ;
h i s t o g r a m ( p a t h s ( : , end ) , 5 0 , ’ N o r m a l i z a t i o n ’ , ’ pdf ’ ) ;
t i t l e ( ’BTC T e r m i n a l P r i c e D i s t r i b u t i o n a t 30 Days ’ ) ;
x l a b e l ( ’ P r i c e (USD ) ’ ) ; y l a b e l ( ’ Dens i ty ’ ) ; g r i d on ;
end

A.1. Code Explanation

Three cryptocurrencies—BTC, ETH, and USDT—imported into the workspace are examined by this MATLAB
script. It carries out risk analysis, visualizations, and daily alignment. Here is a summary:

• Input Tables: Each table’s date and price columns (BTC, ETH, and USDT) are automatically detected by
the script, which then uses forward-filled values to transform them into daily schedules.

• Synchronization: From January 1, 2020, to January 1, 2024, all three assets are combined into a single
timetable with daily timestamps that match.

• Log-Returns: The script computes daily log-returns:

Rt = log (
Pt

Pt−1

)

and a rolling 90-day correlation matrix to measure interdependencies.
• Volatility Stress Test: Assumes that the volatility of a BTC-ETH portfolio will rise by 30%. computes the

30-day compounded value, volatility, and shocked return.
• Stablecoin Hedging: Models the effect of allocating 30% into USDT. Compares unhedged and hedged

portfolio returns.
• Contagion Modeling: Simulates a 20% BTC crash and estimates proportional impacts on ETH and USDT

via correlation.
• Monte Carlo Simulation: Uses geometric Brownian motion to simulate 2000 BTC price paths over 30 days:

St+1 = St ⋅ exp(µ −
1

2
σ2
+ σ ⋅ εt)

where εt ∼ N(0, 1).
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• Outputs: Five plots are generated:

1. Volatility Stress Test Bar Chart
2. Hedging Impact Bar Chart
3. Contagion Heatmap
4. Sample Monte Carlo Paths
5. BTC Terminal Price Histogram

B. Appendix

The following script is a complete risk analysis pipeline for three crypto assets (BTC, ETH, USDT). In short:

• Data input: It reads the Close prices from three separate CSV files, computes log-returns, and aligns them to
the same length.

• Portfolio setup: Combines the returns with fixed weights (50% BTC, 30% ETH, 20% USDT).
• Rolling analysis: Plots rolling volatilities (e.g. 90-day window). Runs Monte Carlo simulations on rolling

windows to estimate VaR(99%) and ES(99%), then marks exceedances where actual losses breach VaR.
• Sensitivity analysis: shows how VaR/ES change under different shocks, window sizes, and simulation counts.
• Backtesting: compares expected vs observed exceedances, with Kupiec and independence checks.
• Stress scenarios: baseline vs volatility shock, correlation shock, stablecoin depeg, and combined stress.
• Benchmark comparison: Monte Carlo vs Historical Simulation.
• Robustness: Uses a helper (‘nearestSPD‘) to repair covariance matrices so simulations don’t fail when

stressed correlations make them non-positive definite.

%% Comprehens ive Cryp to Risk A n a l y s i s (BTC, ETH, USDT)
% − Reads Close p r i c e s from t h r e e CSVs
% − Computes log − r e t u r n s and a l i g n s l e n g t h s
% − R o l l i n g v o l a t i l i t y f i g u r e
% − R o l l i n g VaR(99%) and ES(99%) wi th e x c e e d a n c e s f i g u r e
% − S e n s i t i v i t y a n a l y s i s t a b l e
% − B a c k t e s t i n g t a b l e ( Kupiec c o v e r a g e + i n d e p e n d e n c e summary )
% − S t r e s s s c e n a r i o compar i son t a b l e
% − Benchmark compar i son t a b l e
% − Robust c o v a r i a n c e v i a nea re s tSPD

c l e a r ; c l c ; rng ( 1 2 3 ) ;

%% 1) Read Close p r i c e s from CSVs ( r o b u s t t o h e a d e r d i f f e r e n c e s )
b t c t b l = r e a d t a b l e ( ’ b i t c o i n . csv ’ ) ;
e t h t b l = r e a d t a b l e ( ’ e the reum . csv ’ ) ;
u s d t t b l = r e a d t a b l e ( ’ t e t h e r . csv ’ ) ;

% a d j u s t f i l e n a m e s i f needed

% Try named column ’ Close ’ ; f a l l b a c k t o column 5
b t c c l o s e = getCloseColumn ( b t c t b l ) ;
e t h c l o s e = getCloseColumn ( e t h t b l ) ;
u s d t c l o s e = getCloseColumn ( u s d t t b l ) ;

% Remove NaNs and non − p o s i t i v e v a l u e s
b t c c l o s e = b t c c l o s e ( ˜ i s n a n ( b t c c l o s e ) & b t c c l o s e > 0 ) ;
e t h c l o s e = e t h c l o s e ( ˜ i s n a n ( e t h c l o s e ) & e t h c l o s e > 0 ) ;
u s d t c l o s e = u s d t c l o s e ( ˜ i s n a n ( u s d t c l o s e ) & u s d t c l o s e > 0 ) ;

i f min ( [ numel ( b t c c l o s e ) , numel ( e t h c l o s e ) , numel ( u s d t c l o s e ) ] ) < 200
e r r o r ( ’ I n s u f f i c i e n t C lose p r i c e o b s e r v a t i o n s ; need a t l e a s t 200 p e r a s s e t . ’ ) ;
end

%% 2) Compute log − r e t u r n s and a l i g n l e n g t h s
b t c r e t = d i f f ( l o g ( b t c c l o s e ) ) ;
e t h r e t = d i f f ( l o g ( e t h c l o s e ) ) ;
u s d t r e t = d i f f ( l o g ( u s d t c l o s e ) ) ;

% Remove any r e s i d u a l NaNs
b t c r e t = b t c r e t ( ˜ i s n a n ( b t c r e t ) ) ;
e t h r e t = e t h r e t ( ˜ i s n a n ( e t h r e t ) ) ;
u s d t r e t = u s d t r e t ( ˜ i s n a n ( u s d t r e t ) ) ;

% Al ign t o common l e n g t h T
T = min ( [ l e n g t h ( b t c r e t ) , l e n g t h ( e t h r e t ) , l e n g t h ( u s d t r e t ) ] ) ;
b t c r e t = b t c r e t ( 1 : T ) ;
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e t h r e t = e t h r e t ( 1 : T ) ;
u s d t r e t = u s d t r e t ( 1 : T ) ;

r e t u r n s = [ b t c r e t , e t h r e t , u s d t r e t ] ; % T x 3
w e i g h t s = [ 0 . 5 , 0 . 3 , 0 . 2 ] ; % p o r t f o l i o w e i g h t s
r e a l p o r t r e t = r e t u r n s * we igh t s ’ ; % T x 1

%% 3) P a r a m e t e r s
W = 9 0 ; % r o l l i n g window
Nmc = 5000 ; % Monte C a r l o samples
a l p h a = 0 . 9 9 ; % c o n f i d e n c e l e v e l
nObs = T − W; % number o f r o l l i n g windows
i f nObs <= 0
e r r o r ( ’ R o l l i n g window W must be s m a l l e r t h a n T . ’ ) ;
end

%% 4) R o l l i n g v o l a t i l i t y f i g u r e
r o l l i n g v o l = z e r o s ( nObs , 3 ) ;
f o r k = 1 : nObs
window = r e t u r n s ( k : k+W− 1 , : ) ;
r o l l i n g v o l ( k , : ) = s t d ( window , 0 , 1 ) ;
end

f i g u r e ( ’ Name ’ , ’ R o l l i n g V o l a t i l i t y ’ , ’ Color ’ , ’w ’ ) ;
p l o t ( r o l l i n g v o l ( : , 1 ) , ’ r ’ , ’ LineWidth ’ , 1 . 5 ) ; ho ld on ;
p l o t ( r o l l i n g v o l ( : , 2 ) , ’ b ’ , ’ LineWidth ’ , 1 . 5 ) ;
x l a b e l ( ’ R o l l i n g index ’ ) ; y l a b e l ( ’ V o l a t i l i t y ’ ) ;
l e g e n d ( ’BTC’ , ’ETH’ , ’ Loca t i on ’ , ’ b e s t ’ ) ; g r i d on ;
t i t l e ( ’ R o l l i n g V o l a t i l i t y (90 − day window ) ’ ) ;

%% 5) R o l l i n g VaR(99%) and ES(99%) wi th e x c e e d a n c e s
V a R s e r i e s = z e r o s ( nObs , 1 ) ;
E S s e r i e s = z e r o s ( nObs , 1 ) ;

f o r k = 1 : nObs
window = r e t u r n s ( k : k+W− 1 , : ) ;
mu w = mean ( window , 1 ) ; % 1 x 3
Sigma w = cov ( window ) ; % 3 x 3

% Ensure PD c o v a r i a n c e v i a nea re s tSPD i f needed
[ ˜ , p ] = c h o l ( Sigma w ) ;
i f p > 0
Sigma w = nea res tSPD ( Sigma w ) ;
end
Lw = c h o l ( Sigma w , ’ lower ’ ) ;

Zw = randn (Nmc , 3 ) ;
sim w = b sx fun ( @plus , Zw * Lw’ , mu w ) ; % Nmc x 3
p o r t w = sim w * weigh t s ’ ; % Nmc x 1

V a R s e r i e s ( k ) = − q u a n t i l e ( por t w , 1 − a l p h a ) ;
E S s e r i e s ( k ) = −mean ( p o r t w ( p o r t w < − V a R s e r i e s ( k ) ) ) ;
end

% Al ign r e a l i z e d r e t u r n s t o r o l l i n g window
r e a l i g n e d r e t u r n s = r e a l p o r t r e t (W+1:T ) ; % e x a c t l y nObs e l e m e n t s

% Exceedances
e x c e e d a n c e s = r e a l i g n e d r e t u r n s < − V a R s e r i e s ;
e x c e e d r a t e = mean ( e x c e e d a n c e s ) ;

f i g u r e ( ’ Name ’ , ’ R o l l i n g VaR / ES wi th Exceedances ’ , ’ Color ’ , ’w ’ ) ;
p l o t ( r e a l i g n e d r e t u r n s , ’ k ’ ) ; ho ld on ;
p l o t ( − V a R s e r i e s , ’ r ’ , ’ LineWidth ’ , 1 . 5 ) ;
p l o t ( − E S s e r i e s , ’ b ’ , ’ LineWidth ’ , 1 . 5 ) ;
s c a t t e r ( f i n d ( e x c e e d a n c e s ) , r e a l i g n e d r e t u r n s ( e x c e e d a n c e s ) , 40 , ’ ro ’ , ’ f i l l e d ’ ) ;
x l a b e l ( ’ R o l l i n g index ’ ) ;
y l a b e l ( ’ Return ’ ) ;
l e g e n d ( ’ R e a l i z e d Return ’ , ’ VaR(99%) ’ , ’ ES (99%) ’ , ’ Exceedances ’ , ’ Loca t i on ’ , ’ b e s t ’ ) ;
t i t l e ( ’ R o l l i n g VaR(99%) and ES(99%) wi th Exceedances ’ ) ;
g r i d on ;

%% 6) S e n s i t i v i t y a n a l y s i s t a b l e ( s t r e s s s hoc ks and MC s i z e )
d e l t a s = [ 0 . 1 0 . 2 0 . 3 ] ;
gammas = [ 0 . 0 5 0 . 1 0 0 . 2 0 ] ;
Ws gr id = [60 90 1 8 0 ] ;
Nmc vals = [2000 5000 1 0 0 0 0 ] ;

S igma base = cov ( r e t u r n s ) ;
P b a s e = c o r r ( r e t u r n s ) ;
mu base = mean ( r e t u r n s , 1 ) ;

s e n s r e s u l t s = [ ] ;
f o r d = d e l t a s
f o r g = gammas
f o r w = Ws gr id
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f o r N = Nmc vals
% S t r e s s v o l and c o r r e l a t i o n , t h e n r e p a i r c o v a r i a n c e i f needed
s i g m a s t r e s s e d = s q r t ( d i a g ( S igma base ) ) * (1 + d ) ;
P s t r e s s e d = P b a s e + g ;
P s t r e s s e d ( P s t r e s s e d > 1) = 1 ; % cap a t 1
P s t r e s s e d ( P s t r e s s e d < −1) = −1;

S i g m a s t r e s s e d = d i a g ( s i g m a s t r e s s e d ) * P s t r e s s e d * d i a g ( s i g m a s t r e s s e d ) ;
S i g m a s t r e s s e d = nea res tSPD ( S i g m a s t r e s s e d ) ;

% S i m u l a t e
Ls = c h o l ( S i g m a s t r e s s e d , ’ lower ’ ) ;
Z = randn (N , 3 ) ;
s i m s = bs x fu n ( @plus , Z * Ls ’ , mu base ) ;
p o r t s = s i m s * we igh t s ’ ;

VaR s = − q u a n t i l e ( p o r t s , 1 − a l p h a ) ;
ES s = −mean ( p o r t s ( p o r t s < −VaR s ) ) ;

s e n s r e s u l t s = [ s e n s r e s u l t s ; d g w N VaR s ES s ] ;
end
end
end
end

s e n s t a b l e = a r r a y 2 t a b l e ( s e n s r e s u l t s , . . .
’ Var iableNames ’ , { ’ d e l t a ’ , ’ gamma ’ , ’W’ , ’Nmc’ , ’ VaR99 ’ , ’ ES99 ’} ) ;
d i s p ( ’ S e n s i t i v i t y A n a l y s i s Tab le ( f i r s t 12 rows ) : ’ ) ;
d i s p ( s e n s t a b l e ( 1 : min ( 1 2 , h e i g h t ( s e n s t a b l e ) ) , : ) ) ;

%% 7) B a c k t e s t i n g t a b l e ( Kupiec c o v e r a g e + s i m p l e i n d e p e n d e n c e summary )
% For d e m o n s t r a t i o n , run b a c k t e s t i n g a t t h e chosen W
VaR bt = V a R s e r i e s ; % r o l l i n g VaR f o r window W
r e t b t = r e a l p o r t r e t (W+1:T ) ; % a l i g n e d r e t u r n s
e x c b t = r e t b t < −VaR bt ; % e x c e e d a n c e s

% Kupiec t e s t ( U n c o n d i t i o n a l c o v e r a g e )
N exc = sum ( e x c b t ) ;
N t o t = numel ( e x c b t ) ;
p i 0 = 1 − a l p h a ;
k u p i e c s t a t = −2 * ( ( N t o t − N exc )* l o g (1 − p i 0 ) + N exc * l o g ( p i 0 ) . . .
− ( N t o t − N exc )* l o g (1 − N exc / N t o t ) − N exc * l o g ( N exc / N t o t ) ) ;
k u p i e c p = 1 − c h i 2 c d f ( k u p i e c s t a t , 1 ) ;

% Simple i n d e p e n d e n c e proxy : lag −1 e x c e e d a n c e c o r r e l a t i o n
i n d e p c o r r = c o r r ( do ub l e ( e x c b t ( 1 : end − 1 ) ) , d ou b l e ( e x c b t ( 2 : end ) ) ) ;

b a c k t e s t t a b l e = t a b l e (W, N exc / N t o t *100 , k u p i e c p , i n d e p c o r r , . . .
’ Var iableNames ’ , { ’Window ’ , ’ E x c e e d R a t e p e r c e n t ’ , ’ Kupiec p ’ , ’ ExceedLag1Corr ’} ) ;
d i s p ( ’ B a c k t e s t i n g Tab le : ’ ) ;
d i s p ( b a c k t e s t t a b l e ) ;

%% 8) S t r e s s s c e n a r i o compar i son t a b l e
% D ef in e s p e c i f i c s t r e s s s c e n a r i o s
s c e n a r i o s = {

’ B a s e l i n e ’ , 0 . 0 0 , 0 . 0 0 ;
’ V o l a t i l i t y shock ’ , 0 . 2 0 , 0 . 0 0 ;
’ C o r r e l a t i o n shock ’ , 0 . 0 0 , 0 . 1 0 ;
’ S t a b l e c o i n depeg ’ , 0 . 0 0 , 0 . 0 0 ;
’ Combined s t r e s s ’ , 0 . 2 0 , 0 . 1 0

% modeled as h e a v i e r ES v i a m i x t u r e ( approx )
} ;

s t r e s s r o w s = [ ] ;
f o r i = 1 : s i z e ( s c e n a r i o s , 1 )
l a b e l = s c e n a r i o s{ i , 1} ;
d = s c e n a r i o s{ i , 2} ;
g = s c e n a r i o s{ i , 3} ;

s i g m a s t r e s s e d = s q r t ( d i a g ( S igma base ) ) * (1 + d ) ;
P s t r e s s e d = P b a s e + g ;
P s t r e s s e d ( P s t r e s s e d > 1) = 1 ;
P s t r e s s e d ( P s t r e s s e d < −1) = −1;
S i g m a s t r e s s e d = d i a g ( s i g m a s t r e s s e d ) * P s t r e s s e d * d i a g ( s i g m a s t r e s s e d ) ;
S i g m a s t r e s s e d = nea res tSPD ( S i g m a s t r e s s e d ) ;

Ls = c h o l ( S i g m a s t r e s s e d , ’ lower ’ ) ;
Z = randn (Nmc , 3 ) ;
s i m s = bs x fu n ( @plus , Z * Ls ’ , mu base ) ;
p o r t s = s i m s * we igh t s ’ ;

VaR s = − q u a n t i l e ( p o r t s , 1 − a l p h a ) ;
ES s = −mean ( p o r t s ( p o r t s < −VaR s ) ) ;

n o t e = ’ B a s e l i n e ’ ;
i f s t r c mp ( l a b e l , ’ V o l a t i l i t y shock ’ ) , n o t e = ’ A m p l i f i e d v o l a t i l i t i e s ’ ; end
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i f s t r c mp ( l a b e l , ’ C o r r e l a t i o n shock ’ ) , n o t e = ’ Reduced d i v e r s i f i c a t i o n ’ ; end
i f s t r c mp ( l a b e l , ’ S t a b l e c o i n depeg ’ ) , n o t e = ’ Mix tu re t a i l ( proxy v i a ES emphas i s ) ’ ; end
i f s t r c mp ( l a b e l , ’ Combined s t r e s s ’ ) , n o t e = ’ Worst − c a s e combina t ion ’ ; end

s t r e s s r o w s = [ s t r e s s r o w s ; { l a b e l , VaR s *100 , ES s *100 , n o t e } ] ;
end

s t r e s s t a b l e = c e l l 2 t a b l e ( s t r e s s r o w s , . . .
’ Var iableNames ’ , { ’ S c e n a r i o ’ , ’ VaR99 percent ’ , ’ ES99 pe rcen t ’ , ’ Notes ’} ) ;
d i s p ( ’ S t r e s s S c e n a r i o Comparison Tab le : ’ ) ;
d i s p ( s t r e s s t a b l e ) ;

%% 9) Benchmark compar i son t a b l e (MC vs HS)
% H i s t o r i c a l S i m u l a t i o n (HS) based on e m p i r i c a l r e t u r n s
HS por t = r e a l p o r t r e t ; % e m p i r i c a l p o r t f o l i o r e t u r n s
VaR HS = − q u a n t i l e ( HS por t , 1 − a l p h a ) ;
ES HS = −mean ( HS por t ( HS por t < −VaR HS ) ) ;

% Monte C a r l o b a s e l i n e
S igma b l = nea re s tSPD ( S igma base ) ;
Lbl = c h o l ( S igma bl , ’ lower ’ ) ;
Zbl = randn (Nmc , 3 ) ;
s i m b l = b sx f un ( @plus , Zbl * Lbl ’ , mu base ) ;
p o r t b l = s i m b l * we igh t s ’ ;
VaR MC = − q u a n t i l e ( p o r t b l , 1 − a l p h a ) ;
ES MC = −mean ( p o r t b l ( p o r t b l < −VaR MC ) ) ;

b e n c h t a b l e = t a b l e ( . . .
{ ’ Monte C a r l o b a s e l i n e ’ ; ’ H i s t o r i c a l S i m u l a t i o n ’} , . . .
[VaR MC*100 ; VaR HS * 1 0 0 ] , . . .
[ES MC*100 ; ES HS * 1 0 0 ] , . . .
’ Var iableNames ’ , { ’ Method ’ , ’ VaR99 percent ’ , ’ ES99 pe rcen t ’} ) ;
d i s p ( ’ Benchmark Comparison Tab le : ’ ) ;
d i s p ( b e n c h t a b l e ) ;

%% −−−− H e l pe r f u n c t i o n s ( p l a c e d a t end of s c r i p t ) −−−−
f u n c t i o n c l o s e v e c = getCloseColumn ( t b l )

% Try t o e x t r a c t C lose by name ; e l s e f a l l b a c k t o column 5 i f numer ic t a b l e
i f any ( s t r c m p i ( t b l . P r o p e r t i e s . Var iableNames , ’ Close ’ ) )
c l o s e v e c = t b l . C lose ;
e l s e

% Conver t t o m a t r i x and t a k e column 5
M = t a b l e 2 a r r a y ( t b l ) ;
i f s i z e (M, 2 ) < 5
e r r o r ( ’ Cannot f i n d Close column : no named Close and fewer t h a n 5 columns . ’ ) ;
end
c l o s e v e c = M( : , 5 ) ;
end
c l o s e v e c = dou b l e ( c l o s e v e c ) ; % e n s u r e numer ic
end

f u n c t i o n Ahat = nea res tSPD (A)
% N e a r e s t Symmetr ic P o s i t i v e D e f i n i t e m a t r i x ( Higham , 1988)
B = (A + A ’ ) / 2 ;
[U, S ,V] = svd (B ) ;
H = V*S*V’ ;
Ahat = (B + H ) / 2 ;
Ahat = ( Ahat + Ahat ’ ) / 2 ; % e n f o r c e symmetry
% I f n o t PD , s h i f t by e i g e n v a l u e
[ ˜ , p ] = c h o l ( Ahat ) ;
k = 0 ;
w h i l e p ˜= 0
k = k + 1 ;
mine ig = min ( e i g ( Ahat ) ) ;
Ahat = Ahat + ( − mine ig *k ˆ2 + eps ) * eye ( s i z e (A ) ) ;
[ ˜ , p ] = c h o l ( Ahat ) ;
i f k > 10
b r e a k ; % a v o i d i n f i n i t e loop
end
end
end
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