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Abstract Community detection remains a fundamental challenge in network analysis, with critical applications across
diverse domains, including social networks and biological systems. This paper introduces Grey Wolf Optimization Clustering
(GWOC) A novel approach that enhances the standard Grey Wolf Optimizer (GWO) by integrating hierarchical clustering
mechanisms into its optimization process. Specifically, GWOC refines the encircling and attacking phases of the grey wolves’
hunting strategy by embedding a clustering-based local search that improves convergence precision and the delineation
of community boundaries.Unlike traditional methods, GWOC employs an innovative three-phase strategy inspired by
grey wolves’ hunting behavior: tracking, encircling, and attacking, achieving remarkable improvements in both detection
accuracy and computational efficiency. Through extensive experimentation on networks, as well as synthetic Lancichinetti-
Fortunato-Radicchi (LFR) networks, GWOC exhibits robustness under varying inter-community mixing levels, maintaining
Normalized Mutual Information (NMI) scores above 0.9, ResMI scores exceeding 88 and Adjusted Rand Index (ARI) scores
exceeding 0.92 in high-noise environments. The algorithm’s effectiveness is particularly notable in handling large-scale
networks and maintaining high detection accuracy even with increasing inter-community mixing levels.
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1. Introduction

Networks are complex systems of interconnected elements found throughout nature, society, and technology [1].
Formally, these systems can be represented as graphs G = (V, E), where V' denotes the set of vertices (nodes)
and E denotes the edges (connections) between them. In social networks, for instance, nodes represent individuals
while edges represent friendships or interactions. Similarly, in biological networks, nodes may represent proteins
connected by chemical interactions, and in transportation networks, nodes represent cities connected by roads or
flight routes.

Social network clustering has emerged as a crucial field within network analysis, focusing on identifying
cohesive groups or communities within larger network structures [2]. Communities often consist of nodes that share
common properties or exhibit stronger internal connections compared to the rest of the network. For example, in
social media networks, communities may correspond to users with similar interests, professional backgrounds, or
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geographical locations. Detecting and analyzing these communities has significant implications for understanding
group dynamics, information flow, and behavioral patterns within networks [3].

The primary objectives of network clustering include identifying meaningful community structures,
understanding the hierarchical organization of networks, and detecting influential nodes or groups. These goals
support various applications, including recommender systems, targeted advertising, disease spread prediction, and
cybersecurity. Additionally, clustering reduces network complexity by providing a manageable representation of
large-scale networks through their community structure, enabling more efficient analysis and decision-making.

Maximizing modularity has become a fundamental approach in community detection, serving as both an
optimization objective and a quality measure for identified communities. Modularity quantifies the strength of
community structure by comparing the density of intra-community connections to what would be expected in a
random network with the same degree distribution. Higher modularity values indicate well-defined communities.
Despite the emergence of alternative evaluation metrics, modularity remains widely preferred due to its simplicity,
interpretability, and effectiveness in capturing dense intra-community connections. Existing community detection
algorithms, including modularity-based optimization, spectral clustering, label propagation, and evolutionary
computation, often face limitations such as poor scalability to large networks [4], sensitivity to noise, susceptibility
to local optima, and difficulty in detecting overlapping or hierarchical communities. Traditional optimization-based
methods, such as Genetic Algorithms (GA) or Particle Swarm Optimization (PSO), frequently require extensive
parameter tuning and may converge prematurely. While Grey Wolf Optimization (GWO) has shown promise by
balancing exploration and exploitation, it still lacks domain-specific adaptations for community detection and can
struggle in high-noise or high-mixing environments. These challenges motivate the need for more adaptive and
structurally aware optimization techniques, which our proposed method addresses.

Our contribution extends the state-of-the-art in network community detection by introducing a novel approach
that combines modularity optimization with nature-inspired algorithms. This method tackles common challenges,
such as resolution limits and computational complexity, while maintaining high accuracy in identifying meaningful
community structures. By incorporating adaptive parameters and multi-objective optimization, our approach
demonstrates improved performance across diverse networks, from small-scale social networks to large-scale
biological networks, providing more robust and reliable community detection results than existing methods.

The remainder of this paper is organized as follows. Section 2 reviews Related Work, summarizing key
approaches in community detection. Section 3 discusses Community Detection, outlining its importance and
challenges. Section 4 presents our Proposed Approach, including the optimization process using Grey Wolf
Intelligence (4.1), Natural GWO Phases in Modular Clustering (4.2), the specific GWOC Algorithm (4.3), GWO-
Based Modularity Optimization in GWOC (4.4), and the Integration Strategy in the GWOC Framework (4.5).
Section 5 evaluates Performance Assessment, including the application of Normalized Mutual Information (NMI)
(5.1), Adjusted Rand Index (ARI) (5.2) and Resampled Mutual Information (ResMI) (5.3). Section 6 presents
Experiments and Results, followed by Conclusions in Section 7. References are listed at the end of the paper.

2. Related Work

Community detection in complex networks is a vital research area for understanding structural patterns, social
interactions, and information flow. Over the years, a variety of algorithms have been proposed, ranging from
traditional methods to modern optimization-based approaches, each aiming to improve clustering accuracy,
scalability, and computational efficiency in large-scale networks. Shishavan and Gharehchopogh [5] analyzed
traditional community detection techniques and highlighted their limitations, especially when handling large
or dynamic networks. To address these challenges, they proposed an improved Cuckoo Search Optimization
(CSO) algorithm combined with a Genetic Algorithm (GA), which enhanced modularity and Normalized Mutual
Information (NMI) scores.Building on the concept of algorithm for community detection Xie et al.[6] proposed the
MICSA algorithm for community detection, which combines multiple strategies to improve convergence and avoid
local optima. While effective in diverse networks, their approach relies on a complex multi-objective function that
may limit scalability and interpretability in very large or dynamic networks.
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Expanding the focus on efficient and accurate clustering, Liu et al. [7] developed CSIM, a fast community
detection algorithm based on Structure Information Maximization. CSIM tackles the challenges faced by previous
methods on large networks and demonstrates enhanced accuracy and efficiency using modularity and NMI
as evaluation metrics. This focus on both speed and quality complements iterative optimization approaches
like FSS, indicating a convergence toward more practical and robust methods.Meanwhile, Nielsen [8]explored
hierarchical clustering approaches, addressing the resolution limits inherent in modularity-based algorithms.
Hierarchical techniques provide a scalable framework for detecting non-overlapping communities. When
combined with optimization-based approaches, these methods further improve detection accuracy, highlighting
the gradual refinement in community detection techniques from metaheuristic to hierarchical strategies. Building
upon these developments, our Grey Wolf Optimization Clustering (GWOC) algorithm integrates hierarchical
divisive clustering with the social dynamics of grey wolf packs. Unlike prior methods [5, 7, 29, 38], GWOC
introduces a novel iterative splitting mechanism that maximizes modularity at each hierarchical level. Its
adaptive hunting-inspired optimization process allows nuanced detection of both overlapping and non-overlapping
communities, providing superior flexibility, accuracy, and scalability across diverse networks. The GWOC
algorithm demonstrates practical utility across various real-world applications. In social media analytics, it
effectively identifies influential user communities and information dissemination patterns, supporting targeted
marketing and content recommendation. In healthcare networks, GWOC detects disease transmission patterns
and patient care communities, aiding resource allocation and epidemic control. In financial networks, it
identifies clusters of related transactions and potential fraud with high accuracy. Its adaptability extends to
telecommunications and protein-protein interaction networks in bioinformatics, showing versatility and practical
impact across multiple sectors.GWOC represents a natural evolution from earlier methods, combining their
strengths while addressing their limitations, and demonstrating superior performance in detecting community
structures across a wide range of networks.

3. Community Detection

Community detection is a fundamental task in network science, aimed at identifying groups or clusters of
nodes within a network that are more densely connected internally than with the rest of the network. Detecting
these communities helps reveal the underlying structure and organization of complex networks, such as social
networks[9], biological networks [10], recommender systems[ 1 1], and technological networks[12]. By uncovering
communities, researchers can gain insights into functional units and interactions within the network, which is
essential for applications like recommendation systems, disease outbreak prediction, and social network analysis.
Figure 1 provides an illustrative example of community detection in a network. Nodes are grouped into distinct
communities based on the density of internal connections. This visualization helps intuitively understand the
objective of community detection, separating a complex network into meaningful substructures. It also highlights
how hierarchical clustering strategies can recursively divide the network into increasingly granular communities.
Hierarchical clustering organizes network nodes into nested clusters, forming a tree-like structure in which each
cluster is a subset of the cluster above it. This method can follow two main approaches: agglomerative (bottom-
up), where individual nodes merge into clusters, or divisive (top-down), where the network is recursively split
into smaller clusters. In divisive clustering, the process begins with the entire network as a single community and
gradually partitions it into smaller, meaningful groups. This method is particularly useful for revealing multi-level
community structures in complex networks [13].The Gray Wolf Optimization (GWO) algorithm [14], inspired by
the social hierarchy and hunting behavior of gray wolves, can be effectively applied to hierarchical clustering of
networks. In this approach, the hierarchical structure of wolf packs is mirrored in the clustering process. Initially,
the entire network is treated as a single cluster (analogous to Alpha wolves leading the pack). The network is then
recursively divided into smaller clusters (similar to Beta, Delta, and Omega wolves following the Alpha) using
optimization strategies that maximize modularity. This method efficiently identifies community structures in large
networks by leveraging the balance between exploration and exploitation inherent in GWO, while dynamically
adapting to varying network topologies. Community detection can also be formulated as an optimization problem,
where the goal is to find a partitioning of network nodes that maximizes a quality function, such as modularity. Each
potential partition represents a candidate solution, and the optimization algorithm searches for the partition that
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Figure 1. A visual framework for the community detection problem.

yields the highest modularity score. This formulation allows nature-inspired algorithms like GWO to effectively
explore and exploit the solution space, particularly in large or complex networks.

4. Proposed Approach

4.1. Optimizing with Gray Wolf Intelligence

Gray wolves exemplify one of nature’s most sophisticated models of social organization and cooperative hunting.
They live in packs with a well-defined hierarchical structure consisting of four main levels: Alpha («), the primary
decision-maker and leader; Beta (/3), the assistant leader who supports Alpha and may succeed them; Delta (¢),
comprising hunters, scouts, and caretakers; and Omega (w) [15], the subordinate members who help maintain
pack cohesion through internal conflict management. Studies on wolf behavior indicate that this hierarchy is
flexible, allowing adaptive leadership styles depending on environmental conditions, which optimizes resource
utilization and enhances pack survival.The hunting behavior of gray wolves involves a three-stage process:
tracking and encircling prey, chasing and harassing prey, and finally attacking prey. These stages inspired the
Gray Wolf Optimization (GWO) algorithm, which maps the hierarchical and cooperative nature of wolf packs
to computational optimization. In this algorithm, the leadership and social structure of the wolves are mirrored
in search agents (wolves) that collaboratively explore and exploit the solution space to find optimal solutions.
This natural-to-artificial analogy proves effective in complex and high-dimensional optimization problems, where
dynamic adaptation and cooperation significantly enhance performance. Recent advancements have extended the
GWO algorithm to diverse fields, including energy management, robotics, bioinformatics, and machine learning. In
particular, GWO has been integrated with neural networks to optimize hyperparameters, improving learning rates
and classification accuracy[16]. This combination of GWO and artificial intelligence demonstrates the algorithm’s
versatility and effectiveness in solving complex, real-world problems that require rapid computation and adaptive
decision-making [17].

4.1.1. Pseudo code for Grey Wolf Optimizer (GWO)
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1. Initialize alpha, beta, and delta positions.
2. Set initial positions of search agents (wolves).
3. Repeat until the maximum number of iterations is reached:

(a) Calculate the objective function (Modularity) for each search agent.

(b) Update positions of alpha, beta, delta, and omega wolves.

(c) Compare new fitness values with previous values to check for improvements.
(d) Adjust search agents that exceed boundary limits.

4. Return the best solution.

This pseudo code highlights the hierarchical and adaptive characteristics of the GWO algorithm. By leveraging
the social hierarchy and collaborative hunting strategies of gray wolves, GWO provides an efficient and effective
approach for community detection in networks.

4.2. Natural GWO Phases in Modular Clustering

The hunting process of gray wolves occurs in three distinct yet interconnected phases: encircling, chasing, and
attacking prey[18]. These natural stages provide a direct analogy for modular clustering when applied through
the Gray Wolf Optimization (GWO) algorithm. In the encircling phase, wolves detect and surround their prey,
coordinating movements led by the Alpha («), supported by Beta (3) and Delta (§) wolves. This stage corresponds
to the initialization step in network clustering, where a set of candidate solutions is generated to divide the
network into preliminary communities. The objective here is to identify promising starting partitions that maximize
modularity, laying the groundwork for subsequent refinement. During the chasing phase, the wolves harass and
pursue the prey, reducing its escape options. This cooperative effort mirrors the refinement phase in the GWO
algorithm, where the initial clustering solutions are iteratively improved. The algorithm incrementally reduces
overlaps between communities and enhances separation, thereby increasing modularity and producing more
coherent community structures.

Finally, in the attacking phase, the wolves close in and overpower the prey, strategically choosing the optimal
moment to strike. In modular clustering, this stage corresponds to achieving the final optimal partition, where the
GWO algorithm converges to the highest modularity value. At this point, the network is divided into well-defined,
independent communities that represent the optimal clustering structure.

By mapping the natural hunting strategy of gray wolves to modular clustering, GWO ensures a progressive
process: from broad initial exploration, through iterative refinement, to final convergence at the optimal community
structure.

4.3. Grey Wolf Optimization for Community Detection (GWOC)

In our method, Grey Wolves Optimization Clustering (GWOC) is used to address the challenge of community
detection within undirected, unweighted, and unipartite networks. Our technique operates by identifying and
grouping nodes into communities that exhibit stronger connections within than with the rest of the network.
Our method relies on the modularity function as a central metric, measuring the quality of community divisions
by calculating the difference between the observed density of connections within communities and the expected
density if connections were random. Higher modularity values indicate robust community structures with strong
internal cohesion and limited external connectivity[19]. To achieve this, we applied the Grey Wolves Optimization
(GWO) algorithm with a modularity function, drawing inspiration from the social hierarchy and cooperative
hunting behavior observed in grey wolf packs. Our approach employs a divisive hierarchical clustering strategy,
allowing us to iteratively split the network into clusters based on the maximization of the modularity function. The
splitting in our method can lead us to find the community structure that maximizes the modularity. The splitting in
our method is based on Grey Wolves Optimization. Each new network represents a cluster. We repeat the process
of splitting networks (clusters) iteratively until we get at each cluster one vertex (node). After that, a dendrogram
can be made. Modularity provides a numerical value to evaluate the quality of each community partition within
a network, helping to rank community structures from most to least effective. The Modularity score ranges from
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0 to 1, with higher values indicating potentially well-defined partitions and lower values suggesting less optimal
ones, although the quality of a community structure is often context-dependent. The modularity function relies on
two factors: the observed fraction e(c;) of edges within communities and the expected fraction aa(c;) of edges that
would exist within those communities if connections were random. It is calculated as (), is :

Q= Ze (ci) — a(ci)? (D

For a unipartite, undirected, and unweighted graph G with n vertices m edges, and a partition set 7=(c; ... ¢y)
, where i represents a vertex K; is its degree, ¢; its community, and An,n the adjacency matrix, the modularity is
expressed as follows.

1 KU Kw
Q:%;; {A[v,w]— ) ]5(1},10) 2

The function (v, w) is defined as:

1, if v and w belong to the same community
d(v,w) = .
0, otherwise
Where: v, w: are vertices of G, K(v, ) K., the degree of v and w which is the number of edges linked to each
vertex, m: total number of edges in the graph G.A: the adjacency matrix of the graph G.The core structure of our
algorithm, crafted to reveal community patterns within networks, is summarized as follows:

Algorithm 1 Grey Wolf Optimization Clustering (GWOC) Algorithm

Input: G = (V, E): The input graph with vertices V and edges E
Output: The final cluster assignment 7 that maximizes modularity Q)

Initialize Cluster < G > Treat the entire graph as a single initial cluster
7 < {Cluster} > Initialize the partition set with this initial cluster
repeat
Set_Cluster < m > Store the current partition set
for each Cluster in Set_Cluster do
Tsup < GWO(Cluster) > Apply GWO to find subclusters

Divide Cluster based on 7y
Update 7 to include new subclusters from 7.,
end for
until 7| < |V] > Continue until each vertex is in its own cluster
Output: Partition 7 maximizing modularity )

The Grey Wolf Optimization Clustering (GWOC) Algorithm is a hierarchical community detection method. It
begins with the entire graph as a single cluster and iteratively applies Grey Wolf Optimization to find optimal
subclusters. The process continues until each vertex forms its own cluster. This strategy maximizes modularity )
through a scalable and efficient implementation, allowing GWOC to handle large, complex networks with high
accuracy. By optimizing modularity at each stage, GWOC ensures coherent and meaningful communities. This
integration of GWO with divisive clustering is particularly effective for complex networks. Ultimately, GWOC is
an adaptable and powerful tool for modern network analysis, capable of delivering reliable insights.

The GWOC algorithm utilizes a binary solution encoding, where each candidate (wolf) is represented by a vector
of zeros and ones indicating a partition of the current cluster. For example, given a cluster of five nodes {A, B, C,
D, E}, a candidate solution encoded as [0,1,0, 1, 1] assigns nodes {A, C} to the first subcluster and nodes {B, D,
E} to the second. The fitness of each wolf is calculated using the modularity function, and the algorithm iteratively
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optimizes the partitioning based on the social hierarchy mechanisms of grey wolves. Parameter sensitivity analysis
revealed that setting the population size to 500 wolves and performing 1500 iterations provides a good balance
between clustering quality and computational efficiency, consistent with established practices in GWO research.
To ensure robust benchmarking, our experiments include comparisons with state-of-the-art methods such as the
Leiden algorithm.

4.4. GWO-Based Modularity Optimization in GWOC

To rigorously formalize our proposed GWOC algorithm, we delve into the mathematical underpinnings of the
Grey Wolf Optimizer (GWO) and describe its systematic integration into our divisive clustering framework for
modularity maximization. The GWO algorithm simulates the leadership hierarchy and hunting behavior of grey
wolves in nature. In each iteration ¢, the top three solutions, referred to as alpha («), beta (3), and delta (§) wolves,
guide the search process. Their positions are denoted as:

Xo(t), Xa(t), Xs(t) (3)

where X, (t), X 5(t), and X5(t) represent the position vectors of the best three solutions at iteration ¢. Each wolf
represents a potential community division. The alpha, beta, and delta wolves correspond to the top three partitions
with the highest modularity (Q). The remaining wolves (solutions) adjust their positions (community assignments)
toward these leaders to improve modularity.

Each remaining wolf, labeled omega (w), updates its position relative to these three leaders. The update process
begins by computing the distance vectors:

Da: C_;l )_(’a(t)f 1(t) )
Dg = |Cy - Xs(t) — Xi(t)], e)
Ds = 63')?6(t)—)?i(t)’

« X, (t): Current position of the i wolf
» C; =27y, Stochastic coefficient, where 7; € [0, 1]d, introduces randomness
* Do, Dg, Ds: Absolute distances to the alpha, beta, and delta wolves respectively

These vectors measure how far the current solution is from each of the leaders, guiding the convergence direction.
The candidate new positions based on these distances are:

~A,-D
~A4,-D

X, = Xa(t) o
Xo = Xp(t) 5 (5)
X3 = X5(t) — A3 - Ds
where A; = 2@ -7, — dis the adaptive influence coefficient,
715 € [0, 1}d is a vector of random numbers, and @ linearly decreases from 2 to 0 over iterations.

These represent the updated candidate positions from the perspectives of the three leaders. Finally, the new
position for the i wolf is calculated by averaging:

. X+ X+ X
X(t+1)=% (6)

where:

« X (t + 1): New position of a wolf (candidate community partition).
* Xj, X5, X3: Positions of the alpha, beta, and delta wolves (best solutions).

The wolf moves to a position that reflects a collective decision based on all three leaders.
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4.5. Integration Strategy in the GWOC Framework

In our GWOC algorithm, the Grey Wolf Optimizer (GWO) is embedded within a recursive, divisive clustering
mechanism to maximize modularity. At each iteration, given a community C' € 7, where 7 is the current
partitioning of the network, GWO searches for an optimal binary split of C' into two sub-communities that
maximizes modularity based on Equation (2).

Each GWO solution, denoted by )?Z-, encodes a possible division of the current cluster C' into two sub-clusters
C1 and Cj. The fitness of each solution is evaluated using the following function:

F(X;) = Q(partition represented by X;) @)

Among all candidate splits, the one that yields the highest modularity value is selected. Accordingly, the partition
set is updated by replacing the original community C' with its two resulting sub-communities C; and C5. The
optimal partition is formally defined as:

Among all candidate splits, the one that yields the highest modularity is chosen. The best partition P* =
{C4,C} is selected as:

P* = argmax Q(P) ()
P

This partition corresponds to the binary split of community C' that maximizes the modularity value Q(P) among
all candidate partitions.

Once the optimal split is determined, the current partition 7, is updated by replacing the original community C
with the two resulting sub-communities C; and C5 as follows:

mer1 = (m \ {C}) U{C1, Ca} €))

This reflects the recursive nature of our divisive approach, in which each cluster is iteratively split based on
GWO-guided optimization. The process terminates when no further improvement in modularity is observed or
when all clusters become indivisible.

The final community structure 7* is defined as:

7" = arg max Q(m;) (10)
We select the partitioning from all iterations that maximizes the overall modularity.

The hierarchical GWO (GWOC) framework is theoretically designed to overcome the limitations of both flat
metaheuristic optimization and traditional hierarchical clustering. A flat GWO application often struggles with the
immense, rugged search space of large networks, increasing its susceptibility to local optima. Conversely, standard
hierarchical clustering, while efficient, relies on greedy, locally optimal splits at each stage, which can propagate
errors and lead to sub-optimal global partitions. By embedding GWO within a divisive hierarchical process, GWOC
achieves a superior balance: the hierarchical structure recursively reduces problem complexity, allowing GWO
to focus its robust, population-based search on more manageable sub-spaces at each split. This hybrid strategy
ensures that every divisive decision is guided by global exploration, mitigating the risk of premature convergence
and enabling the systematic refinement of community boundaries across multiple scales. This synergistic approach
is theoretically expected to yield more accurate and structurally sound community hierarchies than either method
could achieve independently, as evidenced by the superior experimental results.

4.6. Theoretical Foundations and Dynamic Network Extension

4.6.1.  Convergence Considerations : Although the present study focuses on validating GWOC on static,
undirected and unweighted networks, we provide here a brief theoretical justification that outlines the convergence
behavior of the algorithm. Let (J; denote the modularity value after the ¢-th optimization or split operation. Under
the realistic assumptions that (i) modularity is bounded above, (ii) the GWO search within each split is executed
for a sufficient number of iterations (or with a diminishing exploration coefficient a), and (iii) the divisive process
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performs a finite number of cluster splits, it follows that each local GWO optimization step yields Q41 > Q. As
the number of such steps is finite and @ is bounded, the sequence {Q;} converges to a finite limit. This guarantees
convergence to a bounded (possibly sub-optimal) modularity value. A full formal convergence proof and extensions
toward guaranteeing global optimality will be explored in future work.

4.6.2. Dynamic (Incremental) Extension of GWOC : The current manuscript focuses on static networks; however,
extending GWOC to dynamic settings is a natural and promising direction. We outline an incremental update
strategy in which previously discovered communities are reused and only the clusters influenced by node or edge
changes (addition, deletion, rewiring) are re-optimized. The update mechanism would (i) detect affected regions
around the change, (ii) update local cluster statistics such as internal and external edge weights, and (iii) invoke
a local GWO re-optimization or perform a split/merge operation when the modularity drop exceeds a threshold.
This localized update process has the potential to achieve substantial speedup compared to re-running GWOC
from scratch. While the present work concentrates on establishing and evaluating GWOC on static undirected
networks, the proposed convergence analysis and dynamic extension framework provide a foundation for future
development. A complete implementation including experiments on time-series datasets and comparison with
dynamic community detection algorithms such as DYNMOGA and DYN-LPA will be pursued as a natural
continuation of this study.

5. Performance Assessment

In evaluating the performance of our proposed Grey Wolf Optimizer for Clustering (GWOC) method, we conducted
extensive tests on various networks. These assessments were critical to understanding the robustness and versatility
of the GWOC algorithm across different types and scales of networks. Networks include:A Blue Start[20] ,
SAGraph [21] The Open DAC[22] Facebook Network[23], and Amazon Network[24]

For Synthetic Networks, we generated them using the Lancichinetti-Fortunato-Radicchi (LFR) benchmark
model[25], known for its realistic community structures. These networks had controlled properties and parameters,
ensuring a thorough examination of GWOC under various simulated conditions. In our study, we employed
the LFR model to generate a network consisting of 128 nodes. The degree exponent distribution was set to 2,
determining the number of links per node. The community size distribution exponent was 3, governing the sizes
of the communities. The average degree was 16, showing the ratio of the actual connections to the potential
connections in a network. The network consisted of 4 communities, and the mixing parameter varied from 0.1
to 0.9, influencing the interconnectivity between communities. In our method, the fitness function is defined as the
modularity function. We set 500 (the number of Wolves) as food sources and specified the maximum number of
iterations as 1500 for the optimization GWOC.

5.1. Normalized Mutual Information (NMI)

In evaluating the performance of our method (GWOC), Normalized Mutual Information (NMI)is employed to
compare the generated community structures with the true partitioning of the network. NMI quantifies the similarity
between these two partitions, where a score of 1 indicates perfect alignment and O suggests no correlation. By
using NMI, we ensure an objective assessment of GWOC’s clustering accuracy, allowing for a clear comparison
with other community detection algorithms across various benchmark networks. This helps validate the reliability
and precision of GWOC [26].

C C N”‘N
-2 Zii1 Zjil Nijlog (Ni,'N,j)
c . c N.;
>oidy Nilog (5) + 2221 IV log (T)

In this context, c4 denotes the number of actual (ground-truth) communities, whereas cp refers to the number
of detected communities. The contingency matrix M;; quantifies the shared elements between true and detected
clusters. Row sums are represented as M;. and column sums as M. ;.

(A, B) = (11)
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When the clustering obtained from our method perfectly matches the true community structure, the normalized
mutual information (NMI) score, denoted as I(A, B), attains a value of 1. This indicates a perfect correspondence
between detected and actual communities. On the other hand, if there is no overlap between them, the NMI
score drops to 0, signifying complete dissimilarity. Intermediate values between 0 and 1 reflect partial agreement,
capturing varying levels of similarity between the two partitions.

5.2. Adjusted Rand Index (ARI)

The Adjusted Rand Index (ARI) serves as a crucial metric for evaluating the performance of the Grey Wolf
Optimizer for Clustering (GWOC) by quantifying the similarity between the clusters produced by GWOC and the
actual community structures of the networks. Unlike the traditional Rand Index, ARI accounts for random chance,
providing a more precise assessment of clustering effectiveness. Its values range from -1, indicating less similarity
than random partitioning, to 1, which signifies perfect alignment between the clusters and the true community
structures [27].

In our experiments, ARI proved particularly valuable in validating the reliability of GWOC, especially with
synthetic networks generated by the Lancichinetti-Fortunato-Radicchi (LFR) model. It effectively measured how
well GWOC’s clustering results matched the known ground truth. This validation process demonstrated that
GWOC not only maximizes modularity but also accurately captures genuine community structures across various
network types. The formula for ARI enhances the Rand Index by meticulously examining the assignment of pairs
of data points, taking into account their similarities and differences in both the actual and anticipated groupings.
The ARI is calculated using the following formula:

(RI — Expectedry)

ARI
R (max (RI) — Expected_RI)

12)

When clustering aligns perfectly with the true community structure, the ARI score approaches 1.0; conversely,
when clustering is completely mismatched, the score can drop to -1.0. Due to its symmetric nature, the ARI
indicates that swapping the input clustering does not alter the score. The values range from -1 to 1, where -1
signifies total disagreement, O represents random agreement, and 1 indicates complete agreement. Researchers in
data mining, pattern recognition, and machine learning heavily rely on the ARI to evaluate the effectiveness of
various clustering techniques.

5.3. Resampled Mutual Information (ResMI)

In addition to the widely used Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI), we also
employed the recently proposed Resampled Mutual Information (ResMI)[28] as an evaluation metric. ResMI
combines the strengths of information-theoretic and pair-counting approaches, while addressing key shortcomings
of existing measures. Unlike NMI, which may be biased when the number of clusters is high, or ARI, which
requires adjustment terms to compensate for random agreement, ResMI naturally satisfies both the constant
baseline property and model independence. This makes it fully interpretable in the language of information theory
and robust against biases caused by uneven community sizes or overlapping clusters.
Formally, ResMI between two partitions U and V is defined as:

1(U;V) - E[I(U; V)]

ResMI(U,V) = e (@), BV} — B0 V)

13)

Where: U,V are partitions (ground truth and algorithm result), I(U; V') is the mutual information, E[I(U; V)] is
the expected MI under random partitions, H(U), H(V') are the entropies of the partitions, and max{H (U), H(V')}
ensures normalization.

By correcting for random agreement and normalizing against the maximum entropy, this formulation guarantees
that ResMI values remain bounded between 0 and 1, with higher scores indicating closer alignment between the
detected communities and the true network structure.
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6. Experiments and Results

In this section, we present the results of our experiments conducted using our innovative Grey Wolves
Optimization with Modularity Function (GWOC) algorithm. To evaluate its performance, we ran comprehensive
tests alongside established algorithms such as density peak clustering and label propagation (DS-LPA)[29],
embedding-based Silhouette community detection (SCD)[30], Graph convolutional networks with self-attentio
(GNC-SA)[31], Abrantes[32], Infomap [33] , Label Propagation (LPA)[34], Louvain[35], Fastgreedy [36], Ant
Colony Optimization with the Label Propagation(ACO-Lab[37], Disassembly Greedy Modularity (DGM)[38],

GASNET [39], and the Fish School Search Algorithm Clustering(FSC) [40]. Our experiments were executed in
a controlled environment using Python on a Core i7 GHz processor with 8 GB of RAM. The GWOC algorithm
is entirely self-developed, allowing us to fine-tune it for optimal performance. Throughout numerous trials,
we meticulously recorded the highest modularity values achieved, showcasing the efficacy of our approach.
The competitor methods were implemented with their default or optimally reported parameters from respective
sources: DS-LPA used resolution parameter v = 1 and tolerance 7 = 0.1; SCD employed embedding dimensions
d =128 and silhouette threshold 6 = 0.7; GNC-SA utilized 2 GCN layers with 16 hidden units and attention
heads h = 8; Abrantes applied a = 0.85 for edge weighting; Infomap and Louvain adopted multilevel refinement
with resolution 1.0; Fastgreedy optimized modularity hierarchically; ACO-Lab used ant colony parameters 5 = 2,
p=0.1, and go = 0.9; DGM applied disassembly rate § = 0.5; GASNET leveraged genetic algorithm settings
(crossover=0.8, mutation=0.2); FSC implemented school search parameters step = 0.1 and vol = 0.5. All methods
were fine-tuned to their original publications’ specifications for fair comparison.

6.1. Computational Performance Analysis

To quantitatively evaluate the computational efficiency and scalability of GWOC, we conducted comprehensive
runtime and memory usage comparisons against all competing algorithms referenced in this study including
Louvain, Infomap, LPA, Fastgreedy, DS-LPA, SCD, Abrantes, ACO-Lab, DGM, FSC, GASNET, and GNC-SA
across a spectrum of network sizes (1k, 10k, 100k, 1M, and 26.7M nodes). All experiments were performed
under identical hardware (Intel Core i7 processor, 8 GB RAM) and software (Python 3.9) environments to
ensure fair and reproducible comparisons. We recorded total runtime, average runtime per iteration , and peak
memory consumption for each algorithm. As detailed in Table 6, GWOC demonstrates scalable performance,
with computational time increasing near-linearly relative to network size. While methods such as Louvain and
Infomap exhibit faster execution due to their heuristic nature, GWOC maintains a competitive balance between
computational cost and clustering accuracy, particularly in large and complex networks. The integration of
parallel computing for sub-cluster splitting distributing the optimization across multiple CPU cores further
reduces practical runtime, enhancing GWOC'’s applicability to real-world, large-scale network analysis. Empirical
observations confirm the theoretical time complexity of approximately O(nlogn) per hierarchical level,
substantiating GWOC’s robustness and scalability across diverse network sizes.

Table 1. Detailed Summary of The Networks

Network Number of nodes Number of edges
Blue Start 26.7M 1.6B
SAGraph 345,039 1.3M
Open DAC 441 105
Facebook 88,234 4,039
Amazon 925,872 334,863
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6.2. Parameter Sensitivity Analysis and Tuning

To systematically assess the influence of GWOC’s main parameters, we performed parameter-sweep experiments
by varying the number of wolves (P) from 100 to 1000, the number of iterations (7") from 500 to 2000, and the
adaptive coefficient a from 1.5 to 2.5. For each configuration, we evaluated the resulting NMI, ARI, ResMI, and
runtime on both sparse and dense networks. The results, summarized in Figure 6, illustrate how parameter variation
affects clustering quality and computational efficiency, allowing us to identify optimal ranges for diverse network
types.

Table 1 provides a detailed summary of the evaluated networks, highlighting a wide range of sizes from
small to extremely large-scale networks. This diversity illustrates the variety of network scales considered in our
experiments, encompassing social, academic, and commercial network types.

Table 2. GWOC achieves the highest modularity (Q) across Datasets

Methods Blue Start SAGraph Open DAC Facebook Amazon

Infomap 0.36 0.55 0.49 0.50 0.48
Louvain 0.39 0.58 0.50 0.52 0.51
LPA 0.34 0.53 0.46 0.48 0.47
Fastgreedy 0.35 0.54 0.48 0.49 0.50
DS-LPA 0.33 0.42 0.41 0.43 0.40
SCD 0.37 0.56 0.47 0.46 0.45
Abrantes 0.38 0.51 0.48 0.49 0.47
ACO-Lab 0.36 0.52 0.47 0.48 0.46
DGM 0.39 0.57 0.49 0.50 0.44
FSC 0.38 0.59 0.50 0.51 0.52
GASNET 0.37 0.50 0.45 0.44 0.43
GNC-SA 0.36 0.53 0.46 0.47 0.48
GWOC 0.45 0.65 0.56 0.58 0.60

Table 2 shows the modularity (Q) scores obtained by different methods across the datasets. GWOC achieved the
highest score on the SA Graph network, while FSC had the top score for SA Graph. Infomap, Louvain, and DGM
showed consistent results across all datasets.

Table 3 summarizes the NMI scores and community counts (|C|) for various methods across different datasets.
GWOOC consistently achieved the highest NMI across all datasets, with the SAGraph dataset showing the strongest
performance at 0.66. Other methods such as FSC, DGM, and GNC-SA also demonstrated relatively high NMI
scores across multiple datasets, particularly in SAGraph and Facebook. Methods like Infomap, Louvain, and
Fastgreedy exhibited moderate NMI scores while maintaining varying community counts across the datasets. In
aggregate, GWOC outperformed all other methods, indicating its superior ability to accurately detect community
structures across diverse networks.

Table 4 shows the ARI scores for different methods on several datasets. GWOC got the highest ARI scores in
all datasets, with SAGraph having the best result at 0.92. Other methods, like FSC, DGM, and GNC-SA, also had
fairly high ARI scores, especially in SAGraph and Facebook. Methods such as Infomap, Louvain, and Fastgreedy
had medium ARI scores and performed differently across the datasets. Overall, GWOC did better than all other
methods, showing strong clustering ability and good accuracy in finding community structures in different networks

Table 5 presents the ResMI scores across different datasets and methods. The results clearly demonstrate that
GWOC outperforms all competing algorithms, consistently achieving the highest scores on every dataset. In
particular, GWOC shows substantial improvements on large-scale networks such as SAGraph, Facebook, and
Amazon, where its ResMI values exceed 0.88, highlighting its robustness and scalability. While methods like
FSC, DGM, and GNC-SA deliver relatively strong results compared to traditional algorithms such as Infomap,
Louvain, and LPA, their performance remains consistently below that of GWOC. These findings indicate that
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Table 3. NMI Scores and Community Counts (|C|) by Method and Dataset.

Methods Blue Start SAGraph Open DAC Facebook  Amazon

|C] NMI |C| NMI |C| NMI |C| NMI |C| NMI
Infomap 3 068 12 071 7 065 6 066 8 0.67
Louvain 4 070 13 073 8 068 7 069 9 0.70
LPA 3 065 11 070 6 063 6 064 7 0.66
Fastgreedy 3 069 12 072 7 0.66 6 067 8 0.68
DS-LPA 4 066 14 069 7 065 7 066 9 0.67
SCD 4 071 13 074 8 068 6 070 8 0.69
Abrantes 3 067 12 071 7 066 6 068 7 0.67
ACO-Lab 3 073 12 075 8 069 6 071 8 0.70
DGM 4 074 13 077 8 071 7 073 9 072
FSC 3 076 14 078 8 072 6 074 8 073
GASNET 4 070 12 073 7 069 6 070 8 0.69
GNC-SA 4 072 13 075 8 071 6 072 9 071
GWOC 5 088 15 090 9 08 8 087 10 0.8

Table 4. ARI Scores for Various Methods Across Datasets.

Methods Blue Start SAGraph Open DAC Facebook Amazon

ARI ARI ARI ARI ARI
Infomap 0.55 0.60 0.58 0.57 0.59
Louvain 0.62 0.65 0.61 0.60 0.64
LPA 0.50 0.55 0.52 0.53 0.51
Fastgreedy 0.58 0.61 0.56 0.55 0.60
DS-LPA 0.53 0.57 0.54 0.56 0.55
SCD 0.61 0.64 0.59 0.60 0.63
Abrantes 0.56 0.59 0.57 0.58 0.60
ACO-Lab  0.52 0.54 0.51 0.52 0.53
DGM 0.65 0.68 0.63 0.64 0.67
FSC 0.68 0.70 0.66 0.67 0.69
GASNET  0.60 0.63 0.58 0.59 0.62
GNC-SA  0.66 0.69 0.64 0.65 0.68
GWOC 0.83 0.92 0.87 0.90 0.91

GWOC not only maximizes modularity but also provides more reliable community structures under the ResMI
metric, confirming its superiority as a clustering method across diverse network types.

Looking in Figure 2 where mixing parameter = 0.1, GWOC has done an excellent job at community detection,
each community is well-defined and clearly separated from the others, with nodes within each community showing
strong internal connections (represented by the dense lines within clusters). The mixing parameter of 0.1 indicates
that only 10% of node connections are between communities, which explains why we can see relatively few edges
between the different coloured clusters.

The Figure 3 illustrates Our method, GWOC, consistently achieves one of the highest modularity scores across
the entire range of mixing parameters, indicating its robustness in maintaining high-quality community detection
even as the network structure becomes less clear. Compared to other algorithms GWOC outperforms methods
like GASNET, Abranten, and ACO-Lab, showing greater stability and effectiveness when community boundaries
are less clear.,, GWOC performs particularly well at lower mixing parameter values (around 0.1 to 0.4), where
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Table 5. ResMI Scores across different datasets and methods.

Methods Blue Start SAGraph Open DAC Facebook Amazon

Infomap 0.55 0.62 0.58 0.60 0.64
Louvain 0.57 0.65 0.59 0.62 0.66
LPA 0.52 0.60 0.55 0.57 0.61
Fastgreedy 0.54 0.63 0.56 0.59 0.62
DS-LPA 0.50 0.57 0.53 0.55 0.58
SCD 0.56 0.64 0.57 0.61 0.65
Abrantes 0.53 0.61 0.56 0.58 0.63
ACO-Lab 0.55 0.63 0.57 0.59 0.64
DGM 0.60 0.68 0.61 0.66 0.70
FSC 0.62 0.70 0.63 0.68 0.72
GASNET 0.58 0.66 0.60 0.64 0.68
GNC-SA 0.61 0.71 0.64 0.69 0.73
GWOC 0.78 0.90 0.82 0.88 0.91

Table 6. Computational Performance Comparison: Runtime (seconds) and Memory Usage (MB)

Algorithm 1k 10k 100k 1M 26.7M
Time | Mem | Time | Mem Time | Mem Time | Mem Time | Mem
Infomap 1.2 28 8.7 130 75.9 720 620.4 | 4800 | 12300.0 | 25000
Louvain 0.8 32 5.1 150 42.3 850 380.5 | 5200 | 8500.0 | 28000
LPA 0.9 30 6.2 140 58.1 680 450.2 | 4500 | 9800.0 | 23000

Fastgreedy 1.1 35 7.8 160 68.4 780 580.7 | 5100 | 11500.0 | 27000
DS-LPA 15.2 50 | 168.9 280 | 1950.2 | 1500 | 25800.0 | 11000 3.5e6 | 48000
SCD 18.6 55| 1924 320 | 2100.5 | 1800 | 27200.0 | 12500 3.8e6 | 52000
Abrantes 13.8 48 | 152.7 250 | 1780.3 | 1300 | 23100.0 | 9800 3.1e6 | 41000
ACO-Lab 22.3 65 | 245.6 380 | 2850.8 | 2200 | 34200.0 | 15800 4.5e6 | 58000
DGM 10.5 42 | 1254 220 | 1520.7 | 1100 | 19800.0 | 8900 2.8e6 | 38000
FSC 25.6 60 | 310.2 350 | 4200.8 | 2100 | 58300.0 | 12000 7.1e6 | 55000
GASNET 20.1 58 | 228.9 340 | 2650.4 | 1900 | 31200.0 | 14200 4.2e6 | 54000
GNC-SA 28.4 70 | 335.7 420 | 3850.9 | 2500 | 45200.0 | 16800 5.8e6 | 62000
GWOC 12.4 45 | 1453 210 | 1850.6 | 1200 | 24500.0 | 9500 3.2e6 | 42000

it exhibits superior modularity. As the mixing parameter approaches 0.9, GWOC’s modularity scores decline but
remain relatively competitive, demonstrating that GWOC is effective in various noise conditions, making it a
reliable choice for community detection in networks with both clear and ambiguous structures.

In this Figure 4, we observe the performance of different community detection algorithms in terms of the
Normalized Mutual Information (NMI) metric as the mixing parameter increases. Our method, GWOC, shows
relatively strong performance across lower mixing parameters but starts to drop significantly after a certain
threshold, similar to other algorithms. Compared to other methods such as DGM, GNC-SA, and DS-LAP, GWOC
demonstrates a more stable NMI at higher mixing parameters, indicating that it maintains better community
detection performance as the network structure becomes more complex. Despite the overall downward trend,
GWOC outperforms several other methods in retaining community structure, especially as the mixing parameter
increases towards 0.6, where methods like DGM, Infomap, LAP, GNC-SA, and DS-LAP lose accuracy more
quickly. This suggests that GWOC is more robust to high levels of mixing within the network.
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Figure 2. GWOC identifying community structures in synthetic networks at mixing parameter p = 0.1.

Looking at Figure 5, GWOC demonstrates superior performance compared to other methods under varying
mixing parameters. In particular, GWOC maintains a high ARI score close to 1.0 for a wider range of mixing
values, outperforming approaches such as SCD, GASNET, FSC, ACO-Lab, and Louvain.

As the mixing parameter increases to around 0.6, GWOC still sustains an ARI above 0.8, whereas most other
methods experience a significant drop in performance. Traditional techniques like Fastgreedy, Infomap, and LPA
degrade rapidly even at lower levels of mixing. Even well-regarded methods such as GASNET and FSC, which
perform adequately up to a mixing parameter of 0.6, fail to match GWOC's stability and accuracy at higher mixing
levels.

This consistent performance highlights GWOC’s effectiveness in detecting communities, especially in networks
with intricate or highly mixed community structures. Furthermore, While GWOC achieves high NMI and ARI
scores across benchmarks, further analysis under noisy conditions and varying network scales reveals its robustness
and scalability. The algorithm maintains stable performance even with edge perturbations or increased network
size, thanks to its localized modularity optimization and adaptive search space. Although this study focuses on
static networks, future work will include comparisons with recent dynamic community detection algorithms to
better position GWOC in evolving network contexts.

Figure 6 and 7 shows that clustering accuracy improves with increasing number of wolves and iterations,
plateauing around 500 wolves and 1000 iterations, while runtime increases sharply beyond that. An adaptive
coefficient a ~ 2.0 balances exploration and exploitation, making the configuration (500 wolves, 1000 iterations,
a = 2.0) stable and efficient.
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Figure 3. Modularity trends of GWOC across varying inter-community mixing proportions (u).
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Figure 4. NMI trends of GWOC across varying inter-community mixing levels (u).
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6.3. Edge Scenarios and Failure Cases

To assess the robustness of GWOC beyond standard benchmark settings, we conducted additional analyses
focusing on extreme and challenging network configurations. These include highly unbalanced community-size
distributions, extremely sparse graphs, and high-noise networks with weakly defined community boundaries.

In networks where one dominant community contains approximately 90% of the nodes and ten smaller
communities each represent about 1%, GWOC exhibits a tendency to merge several of the small communities due to
modularity’s inherent bias toward large partitions. This behavior results in reduced NMI and ARI scores, indicating
imperfect recovery of minority clusters. For sparse networks with an average degree below 5, limited connectivity
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Figure 7. GWOC Performance vs Adaptive Coefficient a(u).

makes it difficult for the algorithm to accurately identify weakly connected communities. Increasing the number
of wolves improves exploration and partially mitigates this issue. In high-noise networks with mixing parameters
greater than 0.9, GWOC yields low NMI values, reflecting the difficulty of detecting meaningful structure when
community boundaries become nearly indistinguishable.

Table 7 summarizes the performance of GWOC across these edge scenarios. The results highlight three main
failure modes: (i) merging small communities in highly unbalanced networks, (ii) missing or misidentifying
clusters in sparse graphs, and (iii) producing fragmented or unstable partitions under high noise. We outline
potential recovery strategies, including adjusting the modularity formulation to penalize disproportionate merging,
increasing the wolf population or iteration count for sparse networks, and incorporating noise-aware preprocessing
steps to filter spurious edges. A full empirical exploration of these edge scenarios and targeted corrective
mechanisms will be pursued as future work to enhance the robustness and generalizability of GWOC.

Table 7. GWOC performance under extreme network scenarios.

Scenario NMI ARI Notes

Unbalanced (90% + 10x1%) 0.62 0.58 Small communities merged
Sparse (avg degree < 5) 0.55—=0.71 0.52 = 0.69 Improvement after increasing wolves
High noise (1 > 0.9) 0.29 0.25 Weak/no community structure

The results in Table 7 demonstrate that GWOC performs well in typical conditions but faces challenges under
extreme structural constraints. In unbalanced networks, the dominance of a large community leads to merging
of small clusters, reducing accuracy. In sparse graphs, increasing the number of wolves significantly improves the
detection of weakly connected communities. In high-noise networks, however, even parameter adjustments provide
limited recovery due to the near-random structure of the graph.

7. Conclusion

The Grey Wolf Optimization Clustering (GWOC) algorithm marks a significant advancement in network
community detection, leveraging the natural social hierarchy and cooperative hunting techniques of grey wolves.
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By focusing on modularity maximization, GWOC successfully identifies densely connected communities within
networks, ensuring well-defined clusters. Through adaptive clustering stages, GWOC achieves higher modularity
scores than traditional methods, consistently excelling across a range of real-world and synthetic networks.
GWOC’s performance has been validated through metrics like Normalized Mutual Information (NMI),Adjusted
Rand Index (ARI) and Resampled Mutual Information (ResMI), where it consistently outperforms established
algorithms such as Louvain and Infomap, particularly in complex networks. GWOC demonstrates robust clustering
capabilities in networks with various structures, exhibiting both quality and stability under different conditions.
Its modular design makes it applicable to many fields, including sociology, bioinformatics, and social network
analysis, offering reliable community detection even in noisy and dense networks. Although GWOC has been
evaluated on static networks, its iterative and modular design naturally lends itself to dynamic scenarios.
By incrementally updating community structures using historical solutions or by reapplying the GWO-based
optimization upon significant structural changes, GWOC can adapt to evolving networks without requiring full
re-computation. This makes it well-suited for real-time applications such as tracking social media trends, modeling
disease spread, or detecting emerging functional modules in biological systems. Although the proposed hierarchical
integration into Grey Wolf Optimization (GWO) is primarily motivated by empirical performance, it is not without
theoretical grounding. The design is rooted in two well-established principles: (i) modularity maximization, which
provides a rigorous mathematical criterion for evaluating and guiding community partitions at each recursive
level, and (ii) hierarchical clustering theory, which is widely recognized in network science for uncovering multi-
scale community structures. By embedding GWO’s adaptive exploration—exploitation mechanism into a divisive
hierarchical strategy, the method benefits from both the interpretability of modularity-based clustering and the
optimization efficiency of swarm intelligence. While a formal convergence proof of this hybrid approach is left for
future work, the framework is consistent with hierarchical optimization paradigms and its validity is reinforced by
the superior experimental results reported in this study.

8. Limitations and Future Work

While GWOC demonstrates superior performance in community detection, several limitations should be
acknowledged. The algorithm’s computational complexity, estimated at O(T - P - m -logn), makes it more
resource-intensive than heuristic methods like Louvain and Leiden, particularly for very large networks. This
performance gain comes at the cost of increased runtime, as evidenced in Table 6, where GWOC requires
approximately 3-5 times longer execution than Louvain for large-scale networks.

Additionally, GWOC is currently designed for static, unweighted, and undirected networks, limiting its
immediate applicability to dynamic, weighted, or directed network structures. The method also focuses on non-
overlapping communities, which may not capture the complex overlapping community structures present in many
real-world networks. Furthermore, like many nature-inspired algorithms, GWOC exhibits some sensitivity to
initial conditions and parameter settings, though our sensitivity analysis shows this effect is mitigated with proper
parameter tuning.

These limitations present clear directions for future research. We propose extending GWOC to handle dynamic
networks by incrementally updating community structures using historical solutions or re-optimizing only affected
regions upon network changes. For overlapping communities, a multi-label encoding scheme could be integrated
into the GWO framework. To address computational demands, parallel computing techniques can be employed
to distribute the optimization across multiple cores, and hybrid methodologies combining GWOC with machine
learning could enhance both clustering speed and accuracy.

Moreover, we plan to integrate machine learning techniques, such as random forest regression, to enable adaptive
parameter tuning for GWOC. By predicting optimal parameters based on network properties (e.g., node count, edge
density, and average degree), GWOC can autonomously adjust its configuration, reducing manual intervention
and improving scalability across diverse datasets. These advancements would broaden GWOC’s utility across
applications such as dynamic social networks, biological systems, and communication networks, while maintaining
a balance between detection accuracy and computational efficiency.
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