

# Results on the Grundy Chromatic Number of Prism Graphs

K. Annathurai <sup>1</sup>, P. Periasamy <sup>2</sup>, V. Sankar Raj <sup>3,\*</sup>

<sup>1</sup>Department Of Mathematics, Thiruvalluvar College, Papanasam, Tirunelveli-627425, Tamilnadu, India

<sup>2</sup>Part time Research Scholar, Manonmaniam Sundaranar University, Tirunelveli-627012, Tamilnadu, India

<sup>3</sup>Department Of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, Tamilnadu, India

**Abstract** A Grundy coloring of a graph  $G$  is a proper vertex coloring with positive integers such that for any two colors  $i$  and  $j$  with  $i < j$ , every vertex colored  $j$  has at least one neighbor colored  $i$ . In this paper, we determine the Grundy chromatic number for several important families of graphs, including the prism graph, the  $n$ -crossed prism graph, the line graph of the crossed prism graph, and the antiprism graph. Whenever appropriate, illustrative examples are provided to demonstrate the corresponding Grundy colorings.

**Keywords** Grundy chromatic number, prism graph, crossed prism graph, antiprism graph.

**AMS 2010 subject classifications** 05C15, 05C38, 05C76, 05C78.

**DOI:** 10.19139/soic-2310-5070-3093

## 1. Introduction

Graph theory has evolved into one of the most dynamic and influential areas of modern mathematics. Its origins can be traced back to the seminal work of Leonhard Euler in 1736, in which he resolved the famous Königsberg bridge problem and, in doing so, laid the foundations for an entirely new mathematical discipline. Euler's insight—that the essential features of the problem concerned connectivity rather than geometry—introduced the concept of representing real-world situations through abstract structures composed of vertices and edges. Because of this foundational contribution, Euler is widely regarded as the “Father of Graph Theory.” Since that time, graph theory has developed into a rich and far-reaching field, with powerful theoretical frameworks and applications spanning numerous scientific and engineering domains.

A graph, in its simplest form, is a mathematical structure used to model pairwise relationships among a set of objects. These objects, called vertices, may represent people, devices, molecules, or abstract units, while the connections between them, called edges, capture interactions or relationships. Due to its versatility, graph theory plays an essential role across a diverse range of disciplines, including computer science, communication networks, physics, chemistry, biological systems, linguistics, operations research, and various branches of social sciences. Comprehensive surveys of graph-theoretic principles and applications can be found in [1, 4, 5, 9, 13], which highlight both foundational concepts and advanced developments in the study of graph structures, colorings, and algorithmic challenges.

One particularly important branch of graph theory is graph coloring, a topic that continues to attract extensive attention because of its theoretical depth and practical relevance. A proper coloring of a graph is an assignment of positive integers (called colors) to the vertices of the graph such that adjacent vertices always receive distinct

\*Correspondence to: P. Periasamy (Email: ppskmttc2013@gmail.com). Part time Research Scholar, Manonmaniam Sundaranar University, Tirunelveli-627012, Tamilnadu, India.

colors. The classical chromatic number, denoted  $\chi(G)$ , is the minimum number of colors needed for a proper vertex coloring of a graph  $G$ . Graph coloring problems arise naturally in scheduling, frequency assignment, compiler design, clustering, and various allocation problems, making them among the most widely studied topics in discrete mathematics. Early developments on chromatic properties, including structural characterizations and inequalities, appear in the works of Simmons [12] and Jensen and Toft [9], among others.

A refinement of proper coloring, known as *Grundy coloring*, emerged indirectly through ideas introduced by Patrick Michael Grundy (1917-1959) in the context of combinatorial game theory. Although Grundy did not formulate the concept explicitly in graph-theoretic terms, ideas from his study of impartial games inspired definitions that later became essential in greedy colorings and online coloring strategies. A Grundy coloring of a graph  $G$  is a proper coloring in which each color class appears “as early as possible” in the sense that every vertex colored with a color  $j$  must have neighbors colored with every color  $i$  for all integers  $i < j$ . Equivalently, higher-numbered colors can only occur if all lower-numbered colors are forced by adjacency constraints. Consequently, every Grundy coloring is a *complete* coloring, and its color classes form a nested structure dictated by the adjacency patterns.

The connection between Grundy colorings and greedy algorithms is particularly striking. Consider an ordering

$$\phi : v_1, v_2, \dots, v_n$$

of the vertices of a graph  $G$ . A *greedy coloring* assigns colors one vertex at a time, always choosing for  $v_t$  the smallest positive integer that does not appear among its colored neighbors. As shown in [2, 6, 7], every greedy coloring is indeed a Grundy coloring, and different orderings of vertices produce different Grundy colorings. This makes the Grundy number an inherently algorithmic and ordering-dependent parameter: it reflects the maximum number of colors that a greedy algorithm can be “forced” to use on a given graph.

Formally, the *Grundy chromatic number* of a graph  $G$ , denoted by  $\Gamma(G)$ , is the largest integer  $k$  for which  $G$  admits a Grundy  $k$ -coloring. If a graph has a Grundy  $k$ -coloring, then every vertex assigned the highest color  $k$  must be adjacent to vertices of all other colors  $1, 2, \dots, k-1$ . This requirement forces strong structural constraints: in particular, such a vertex must have degree at least  $k-1$ , which immediately yields the upper bound

$$\Gamma(G) \leq \Delta(G) + 1,$$

where  $\Delta(G)$  denotes the maximum degree of the graph. Since Grundy colorings are proper colorings, they also satisfy the lower bound

$$\chi(G) \leq \Gamma(G),$$

placing the Grundy number between the classical chromatic number and one greater than the maximum degree. Investigations into cases where  $\Gamma(G) = \chi(G)$ , or where the inequality is strict, have been explored in [3, 17]. These works highlight the complexity of analyzing greedy colorings and show that computing the Grundy number is NP-hard for general graphs.

Applications of Grundy colorings arise naturally in areas involving online decision making, scheduling, and resource allocation, where items must be assigned to categories sequentially without knowledge of future events. Research on such topics can be found in [5, 7], where first-fit and online colorings are analyzed through structural and combinatorial techniques. Further studies on Grundy colorings of specific families of graphs—such as trees, hypercubes, and bipartite graphs—appear in [6, 7, 17], providing explicit formulas and bounds for important classes of graphs.

Beyond general coloring theory, several researchers have examined specialized colorings and decomposition problems related to different graph families. Results on equitable colorings of Helm graphs, Gear graphs, coronas of wheels, and various sunlet graph families are found in [10, 11, 16]. Harmonious colorings of double star graphs are studied in [14], illustrating how structural restrictions can dramatically change colorability conditions. Moreover, results related to greedy structures and their recognition appear in [1], establishing foundations that connect greedy algorithms with structural graph parameters.

In recent years there has been increasing interest in applying Grundy colorings to highly structured graphs such as prisms, crossed prisms, antiprisms, and line graphs of these constructions. These graph families are of

special interest because they arise in studies of polyhedral structures, network topologies, and communication architectures. For example, prisms and crossed prisms model cylindrical or ladder-like frameworks, while antiprisms provide triangulated structures with rich symmetry. Their line graphs, in turn, capture adjacency relationships among edges, making them useful in scheduling and frequency assignment where conflict graphs are naturally line graphs of underlying communication patterns. Foundational work related to prism graph families and domination properties appears in [8], while coloring properties, particularly equitable and greedy colorings, are developed in [15].

The Grundy chromatic number of these graph families presents interesting challenges. Because greedy colorings are sensitive to vertex ordering, determining  $\Gamma(G)$  often requires constructing explicit colorings and proving that no larger coloring is possible. This involves analyzing adjacency patterns, degrees, neighborhood structures, and recursive extensions of coloring sequences. For prism graphs and crossed prism graphs, the interplay between the two cycles and the vertical connecting edges requires careful combinatorial analysis to ensure that every color from 1 to  $k - 1$  appears in the neighborhood of vertices colored  $k$ . For antiprism graphs, the alternating connections and triangulated faces impose additional constraints that affect both achievable color classes and upper bounds. In the case of line graphs of crossed prism graphs, the structural change from vertex-based to edge-based interactions often increases local density, requiring more refined bounding arguments.

The present study focuses on determining the Grundy chromatic number for the prism graph, the  $n$ -crossed prism graph, the line graph of the crossed prism graph, and the antiprism graph. Our goal is to establish exact values for  $\Gamma(G)$  in each case, supported by constructive colorings and rigorous structural arguments. Illustrations are provided where appropriate to demonstrate explicit coloring patterns and to highlight the combinatorial constraints that govern the Grundy number in each graph family.

By combining greedy procedures, structural decomposition, and detailed case analyses, we derive tight bounds and exact formulas for the Grundy number of these graphs. Since the studied graph families are symmetric, well-structured, and of practical significance in network modeling, the results presented here enrich the set of known exact Grundy numbers and contribute to the broader understanding of greedy and online coloring behaviors in graph theory.

## 2. Preliminaries

In this section we recall several standard graph constructions that will be used throughout the paper.

### Definition 2.1

[8] A *prism graph*, denoted by  $CL_n$  (also called the *circular ladder graph*), is the graph obtained from the skeleton of an  $n$ -prism. It has  $2n$  vertices and  $3n$  edges, consisting of two  $n$ -cycles joined by a perfect matching.

### Definition 2.2

[8] An *antiprism graph*, denoted by  $Q_n$ , is the graph corresponding to the skeleton of an  $n$ -antiprism. It contains  $2n$  vertices and  $4n$  edges, formed from two  $n$ -cycles with alternating diagonal connections.

### Definition 2.3

[8] Let  $n \geq 4$  be an even integer. An  *$n$ -crossed prism graph*, denoted by  $R_n$ , is obtained from two disjoint  $n$ -cycles by adding crossing edges so that each vertex  $u_i$  of the first cycle is adjacent to either  $v_{i+1}$  (for odd  $i$ ) or  $v_{i-1}$  (for even  $i$ ) in the second cycle. This produces a crossed (or twisted) cylindrical structure.

### Definition 2.4

[11] The *line graph* of a graph  $G$ , denoted by  $L(G)$ , is the graph whose vertices correspond to the edges of  $G$ . Two vertices of  $L(G)$  are adjacent if and only if their corresponding edges in  $G$  share a common endpoint.

### 3. Main Results

*Theorem 3.1*

For every integer  $n \geq 3$ , the Grundy chromatic number of the prism graph  $CL_n$  satisfies

$$\Gamma(CL_n) = 4.$$

*Proof*

The prism graph  $CL_n$  consists of two  $n$ -cycles

$$U = \{u_1, u_2, \dots, u_n\}, \quad V = \{v_1, v_2, \dots, v_n\},$$

together with a perfect matching joining  $u_i$  to  $v_i$  for all  $i$ . Thus,

$$E(CL_n) = \{u_i u_{i+1}, v_i v_{i+1} : 1 \leq i \leq n-1\} \cup \{u_1 u_n, v_1 v_n\} \cup \{u_i v_i : 1 \leq i \leq n\}.$$

Each vertex has degree 3, and therefore

$$\Gamma(CL_n) \leq \Delta(CL_n) + 1 = 4.$$

We now construct explicit Grundy 4-colorings for odd and even  $n$ .

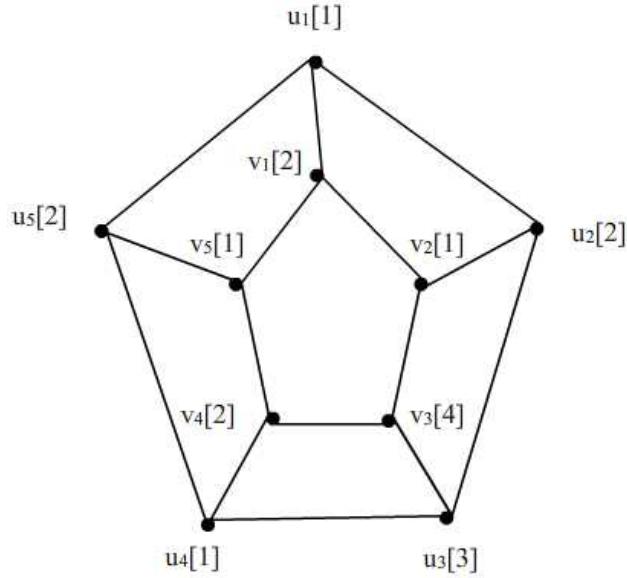


Figure 1. A Grundy 4-coloring of  $CL_5$ .

**Case (i):** : For  $n$  is odd.

A periodic 4-coloring may be defined by coloring indices modulo 3 as follows:

$$\begin{aligned} c_4 : v_i &\quad \text{if } i \equiv 0 \pmod{3}, \\ c_3 : u_i &\quad \text{if } i \equiv 0 \pmod{3}, \\ c_2 : u_i &\quad \text{if } i \equiv 2 \pmod{3}, \quad v_i \quad \text{if } i \equiv 1 \pmod{3}, \\ c_1 : u_i &\quad \text{if } i \equiv 1 \pmod{3}, \quad v_i \quad \text{if } i \equiv 2 \pmod{3}. \end{aligned}$$

This produces the Grundy sequence

$$c_1, c_2, c_3, c_4,$$

so  $\Gamma(CL_n) \geq 4$  for odd  $n$ .

A sample coloring for  $CL_5$  is shown below.

**Case (ii):** For  $n$  is even.

A similar periodic coloring works for all even  $n \geq 4$ . One valid assignment is:

$$\begin{aligned} c_4 &: u_1, u_3, \\ c_3 &: v_1, v_3, \\ c_2 &: u_i \ (i \geq 4, \ i \text{ even}), \quad v_i \ (i = 2 \text{ or } i \geq 5, \ i \text{ odd}), \\ c_1 &: u_i \ (i \geq 2, \ i \text{ odd}), \quad v_i \ (i \geq 4, \ i \text{ even}). \end{aligned}$$

This again yields the Grundy sequence  $c_1, c_2, c_3, c_4$  and therefore

$$\Gamma(CL_n) \geq 4 \quad (n \text{ even}).$$

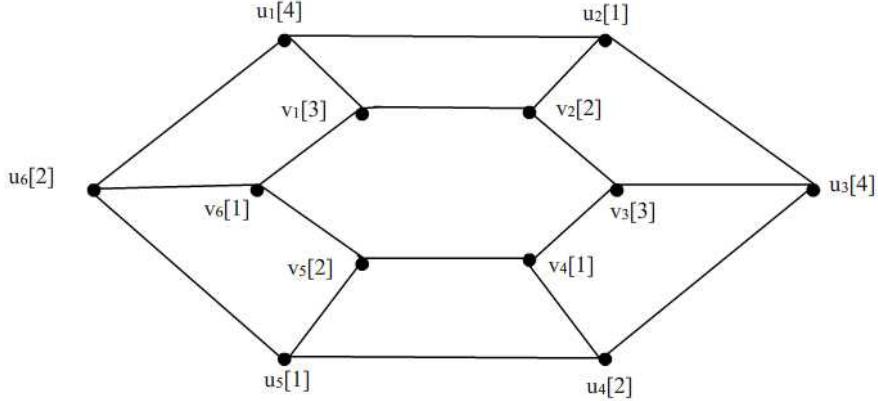


Figure 2. A Grundy 4-coloring of  $CL_6$ .

Assume, for contradiction, that  $\Gamma(CL_n) \geq 5$ . Then some vertex must receive color  $c_5$ , which requires neighbors realizing colors  $c_1, c_2, c_3, c_4$  simultaneously. But each vertex in  $CL_n$  has degree

$$\Delta(CL_n) = 3,$$

so it can have at most three colors in its open neighborhood. Thus no vertex can receive color  $c_5$ , and hence

$$\Gamma(CL_n) \leq 4.$$

Combining both directions, we obtain

$$\Gamma(CL_n) = 4 \quad \forall n \geq 3.$$

□

*Theorem 3.2*

For every integer  $n \geq 4$ , the Grundy chromatic number of the  $n$ -crossed prism graph  $R_n$  satisfies

$$\Gamma(R_n) = 4.$$

*Proof*

The crossed prism graph  $R_n$  has two  $n$ -cycles

$$U = \{u_1, u_2, \dots, u_n\}, \quad V = \{v_1, v_2, \dots, v_n\},$$

and three edge sets:

$$E_1 = \{u_i u_{i+1}, v_i v_{i+1} : 1 \leq i \leq n-1\} \cup \{u_1 u_n, v_1 v_n\},$$

$$E_2 = \{u_i v_{i+1} : i \text{ odd}\},$$

$$E_3 = \{u_i v_{i-1} : i \text{ even}\},$$

where indices are taken modulo  $n$ . Thus

$$E(R_n) = E_1 \cup E_2 \cup E_3.$$

Each vertex has degree

$$\deg(u_i) = \deg(v_i) = 3,$$

hence the general bound for Grundy colorings gives

$$\Gamma(R_n) \leq \Delta(R_n) + 1 = 4.$$

It remains to show that a Grundy 4-coloring exists for every  $n \geq 4$ .

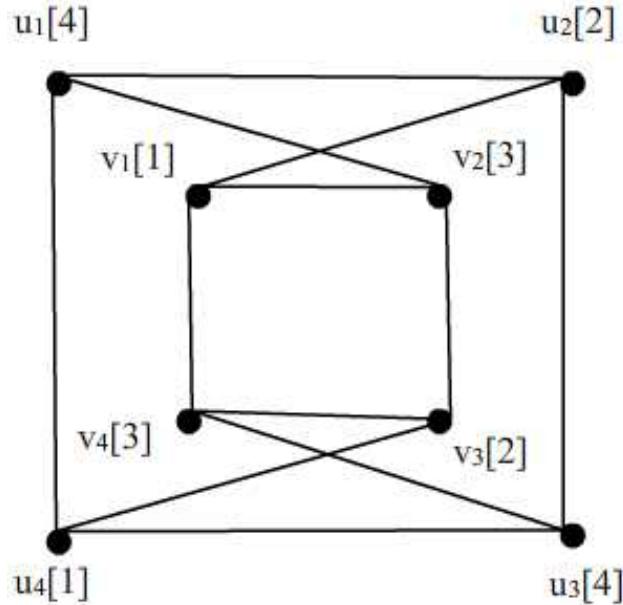


Figure 3. A Grundy 4-coloring of  $R_4$ .

**Case (i):**  $n \equiv 0 \pmod{4}$ .

A valid 4-coloring may be assigned periodically as follows:

$$\begin{aligned} c_4 &: u_i \quad (i \text{ odd}), \\ c_3 &: v_i \quad (i \text{ even}), \quad 1 \leq i \leq n/4. \\ c_2 &: v_{4i-1}, u_{4i-2}, \\ c_1 &: v_{4i-3}, u_{4i}, \end{aligned}$$

This produces the complete Grundy sequence

$$c_1, c_2, c_3, c_4,$$

so  $\Gamma(R_n) \geq 4$  in this case.

**Case (ii):**  $n \equiv 2 \pmod{4}$

A similar periodic construction yields a Grundy 4-coloring. One valid assignment is:

$$\begin{aligned} c_4 &: u_1, \\ c_3 &: v_2, v_n, u_3, \\ c_2 &: u_i \ (i \geq 2 \text{ odd}), \quad v_i \ (i \text{ odd}), \\ c_1 &: u_i \ (i \geq 4 \text{ even}), \quad v_i \ (i \geq 4 \text{ even}). \end{aligned}$$

Again this yields the Grundy sequence

$$c_1, c_2, c_3, c_4.$$

Assume for contradiction that  $\Gamma(R_n) \geq 5$ . Then some vertex would receive color  $c_5$ . By definition of Grundy

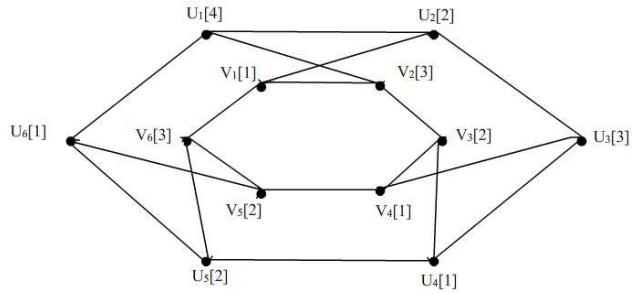


Figure 4. A Grundy 4-coloring of  $R_8$ .

coloring, that vertex must have neighbors colored with each of  $c_1, c_2, c_3, c_4$ . This requires degree at least 4. However, each vertex of  $R_n$  has degree

$$\deg(x) = 3,$$

so no vertex can realize four distinct smaller colors in its open neighborhood. This contradicts the assumption that a color  $c_5$  is possible.

Thus,

$$\Gamma(R_n) \leq 4.$$

Combining the constructive lower bound and the degree upper bound gives

$$\Gamma(R_n) = 4 \quad \text{for all } n \geq 4.$$

□

*Theorem 3.3*

The Grundy chromatic number of the line graph of the  $n$ -crossed prism graph is

$$\Gamma(L(R_n)) = 3.$$

*Proof*

Let  $V(R_n) = \{u_i : 1 \leq i \leq n\} \cup \{v_i : 1 \leq i \leq n\}$ , where the cycle edges are

$$E_1 = \{v_i v_{i+1} : 1 \leq i \leq n-1\} \cup \{v_1 v_n\},$$

the second cycle edges are

$$E_2 = \{u_i u_{i+1} : 1 \leq i \leq n-1\} \cup \{u_1 u_n\},$$

and the crossed edges are

$$E_3 = \begin{cases} u_i v_{i+1}, & i \text{ odd}, \\ u_i v_{i-1}, & i \text{ even}. \end{cases}$$

Thus,

$$E(R_n) = E_1 \cup E_2 \cup E_3.$$

The line graph  $L(R_n)$  has vertex set

$$V(L(R_n)) = E(R_n),$$

and two vertices in  $L(R_n)$  are adjacent when the corresponding edges of  $R_n$  share an endpoint.

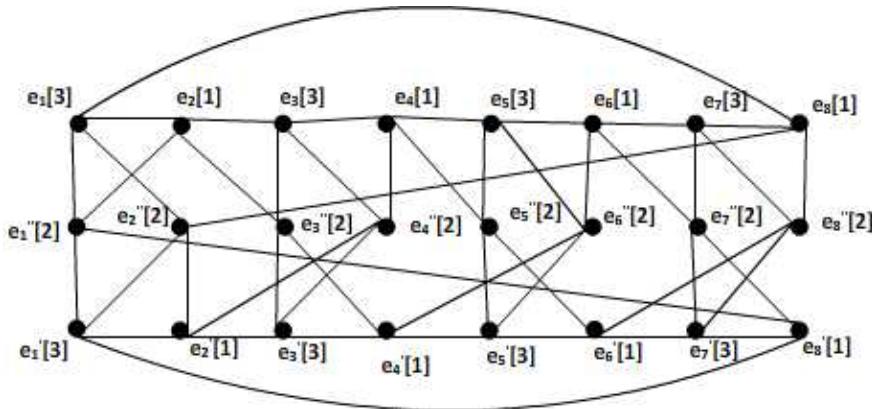


Figure 5. A Grundy 3-coloring of  $L(R_8)$

We now exhibit a Grundy 3-coloring.

- Assign color  $c_3$  to all vertices of  $L(R_n)$  corresponding to edges  $e_i \in E_1$  with  $i$  odd and  $e'_i \in E_2$  with  $i$  odd.
- Assign color  $c_2$  to all vertices corresponding to the crossed edges  $E_3$ .
- Assign color  $c_1$  to the remaining cycle edges:  $e_i \in E_1$  with  $i$  even and  $e'_i \in E_2$  with  $i$  even.

This coloring is proper since consecutive edges in the underlying cycles alternate between even and odd indices, and the crossed edges meet both cycle edges of opposite parity. Moreover, each color class appears only when all smaller colors appear in its neighborhood, confirming that this is a Grundy coloring. Thus,

$$\Gamma(L(R_n)) \geq 3.$$

Now suppose  $\Gamma(L(R_n)) > 3$ . If some vertex receives color  $c_4$ , then by the definition of a Grundy coloring, its neighbors must contain all colors  $c_1, c_2, c_3$ . However, every edge in  $R_n$  is incident to at most two other edges in the same cycle and at most one crossed edge. Thus every vertex in  $L(R_n)$  has degree at most 3. Hence no vertex can

see three distinct colors in its neighborhood, and so no vertex can receive color  $c_4$ . Therefore,

$$\Gamma(L(R_n)) \leq 3.$$

Finally, assume  $\Gamma(L(R_n)) < 3$ . Then only colors  $c_1$  and  $c_2$  may be used. But in  $L(R_n)$  there exist vertices that are mutually adjacent in paths of length three (coming from three incident edges of  $R_n$ ), and such a structure demands at least three Grundy colors. Thus a 2-Grundy-coloring is impossible.

Combining the inequalities,

$$\Gamma(L(R_n)) = 3.$$

□

*Theorem 3.4*

For the antiprism graph  $Q_n$  on  $2n$  vertices, the Grundy chromatic number is

$$\Gamma(Q_n) = \begin{cases} 3, & n = 3, \\ 5, & n > 3. \end{cases}$$

*Proof*

The antiprism graph  $Q_n$  has vertex set

$$V(Q_n) = \{v_i : 1 \leq i \leq n\} \cup \{u_i : 1 \leq i \leq n\},$$

with edges:

$$\begin{aligned} E(Q_n) = & \{v_i v_{i+1} : 1 \leq i \leq n-1\} \cup \{v_1 v_n\} \\ & \cup \{u_i u_{i+1} : 1 \leq i \leq n-1\} \cup \{u_1 u_n\} \\ & \cup \{v_i u_i : 1 \leq i \leq n\} \\ & \cup \{v_i u_{i+1} : 1 \leq i \leq n-1\} \cup \{v_n u_1\}. \end{aligned}$$

This construction produces two  $n$ -cycles linked by alternating diagonal edges. Since each vertex is adjacent to exactly four others, the degree satisfies

$$\Delta(Q_n) = 4,$$

and therefore the Grundy bound

$$\Gamma(Q_n) \leq \Delta(Q_n) + 1 = 5$$

holds for all  $n$ .

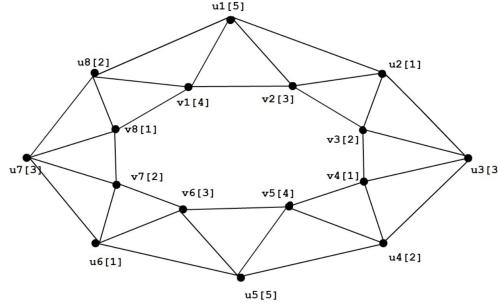
We now determine the exact value.

**Case (i):** For  $n = 3$  Assign the colors:

$$c_3 : u_1, v_3; \quad c_2 : v_1, u_2; \quad c_1 : v_2, u_3.$$

This is a valid Grundy coloring using 3 colors. Assume for contradiction that four colors are possible. Let a vertex receive color  $c_4$ . Then its neighbors must contain all colors  $c_1, c_2, c_3$ , but each vertex in  $Q_3$  has degree 3, contradicting Grundy conditions. Thus,

$$\Gamma(Q_3) = 3.$$

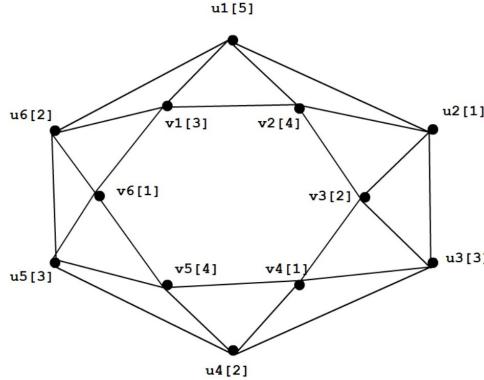
Figure 6.  $\Gamma(Q_8)$ 

**Case (ii):** For  $n \geq 4$ .

For  $n \geq 4$ , we establish that the antiprism graph  $Q_n$  admits a Grundy coloring using five colors. To construct such a coloring, we color the vertices of the two  $n$ -cycles in a repeating pattern. More precisely, for  $1 \leq i \leq \lfloor \frac{n}{4} \rfloor$ , we assign

$$\begin{aligned} c_5 &: u_{4i-3}, \\ c_4 &: v_{4i-3}, \\ c_3 &: u_{4i-1}, v_{4i-2}, \\ c_2 &: u_{4i}, v_{4i-1}, \\ c_1 &: u_{4i-2}, v_{4i}. \end{aligned}$$

This periodic assignment ensures that each color appears only after all smaller colors have already appeared

Figure 7.  $\Gamma(Q_6)$ 

on the neighbors of the corresponding vertex, thereby forming a valid Grundy sequence

$$c_1, c_2, c_3, c_4, c_5.$$

Consequently,

$$\Gamma(Q_n) \geq 5.$$

To show that no sixth Grundy color can occur, suppose a vertex of  $Q_n$  is assigned color  $c_6$ . By definition of a Grundy coloring, this vertex must have neighbors colored with each of  $c_1, c_2, c_3, c_4$ , and  $c_5$ . However, every

vertex in  $Q_n$  has degree 4, meaning that it can have at most four distinct colors in its neighborhood. This contradicts the requirement for a vertex to receive color  $c_6$ .

Hence, no Grundy coloring of  $Q_n$  uses more than five colors, and therefore

$$\Gamma(Q_n) = 5 \quad \text{for all } n > 3.$$

□

#### 4. Conclusion

In this work, we investigated the Grundy chromatic number for several important graph families, including the prism graph, the  $n$ -crossed prism graph, the line graph of the crossed prism graph, and the antiprism graph. Using constructive Grundy colorings and structural properties of each graph, we established exact values of their Grundy chromatic numbers and provided illustrative examples to demonstrate the achievable color sequences. These results contribute to a deeper understanding of Grundy colorings in structured graph classes and offer a foundation for further studies on dynamic colorings and chromatic bounds in complex network topologies.

#### REFERENCES

1. Y. Caro, A. Sebő, M. Tarsi, *Recognizing greedy structures*, Journal of Algorithms, vol. 20, pp. 137-156, 1996.
2. C. A. Christen, S. M. Selkow, *Some perfect coloring properties of graphs*, Journal of Combinatorial Theory, Series B, vol. 27, pp. 49-59, 1979.
3. P. Erdős, W. R. Hare, S. T. Hedetniemi, R. Laskar, *On the equality of Grundy and chromatic number of graphs*, Journal of Graph Theory, vol. 11, pp. 157-159, 1987.
4. Z. Füredi, A. Gyárfás, G. Sárközy, S. Selkow, *Inequalities for the First-Fit chromatic number*, Journal of Graph Theory, vol. 59, no. 1, pp. 75-88, 2008.
5. A. Gyárfás, J. Lehel, *On-line and first-fit coloring of graphs*, Journal of Graph Theory, vol. 12, pp. 217-227, 1988.
6. S. M. Hedetniemi, S. T. Hedetniemi, A. Beyer, *A linear algorithm for the Grundy (coloring) number of a tree*, Congressus Numerantium, vol. 36, pp. 351-363, 1982.
7. D. G. Hoffman, P. D. Johnson Jr., *Greedy colorings and the Grundy chromatic number of the  $n$ -cube*, Bulletin of the ICA, vol. 26, pp. 49-57, 1999.
8. S. Jebisha Esther, J. Veninstine Vivik, *Minimum Dominating Set for the Prism Graph Family*, Mathematics in Applied Sciences and Engineering, vol. 4, no. 1, pp. 30-39, 2023.
9. T. R. Jensen, B. Toft, *Graph Coloring Problems*, Wiley, New York, 1995.
10. K. Kaliraj, V. J. Vernold, *On equitable coloring of Helm graph and Gear graph*, International Journal of Mathematical Combinatorics, vol. 4, pp. 32-37, 2010.
11. K. Kaliraj, J. Vernold Vivin, M. M. Akbar Ali, *On Equitable Coloring of Sunlet Graph Families*, Ars Combinatoria, vol. CIII, pp. 497-504, 2012.
12. G. J. Simmons, *On the chromatic number of a graph*, Congressus Numerantium, vol. 40, pp. 339-366, 1983.
13. J. A. Telle, A. Proskurowski, *Algorithms for vertex partitioning problems on partial  $k$ -trees*, SIAM Journal on Discrete Mathematics, vol. 10, pp. 529-550, 1997.
14. M. Venkatachalam, J. Vernold Vivin, K. Kaliraj, *Harmonious Coloring on Double Star Graph Families*, Ars Combinatoria, vol. 43, no. 2, pp. 153-158, 2012.
15. J. Vernold Vivin, K. Kaliraj, *Equitable Coloring of Mycielskian of Some Graphs*, Journal of Mathematical Extension, vol. 11, no. 3, pp. 1-18, 2017.
16. J. Vernold Vivin, K. Kaliraj, *On equitable coloring of corona of wheels*, Electronic Journal of Graph Theory and Applications, vol. 4, no. 2, pp. 206-222, 2016.
17. M. Zaker, *Grundy chromatic number of the complement of bipartite graphs*, Australasian Journal of Combinatorics, vol. 31, pp. 325-329, 2005.