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Abstract A Grundy coloring of a graph G is a proper vertex coloring with positive integers such that for any two colors i
and j with i < j, every vertex colored j has at least one neighbor colored i. In this paper, we determine the Grundy chromatic
number for several important families of graphs, including the prism graph, the n–crossed prism graph, the line graph of the
crossed prism graph, and the antiprism graph. Whenever appropriate, illustrative examples are provided to demonstrate the
corresponding Grundy colorings.
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1. Introduction

Graph theory has evolved into one of the most dynamic and influential areas of modern mathematics. Its origins
can be traced back to the seminal work of Leonhard Euler in 1736, in which he resolved the famous Königsberg
bridge problem and, in doing so, laid the foundations for an entirely new mathematical discipline. Euler’s insight-
that the essential features of the problem concerned connectivity rather than geometry-introduced the concept of
representing real-world situations through abstract structures composed of vertices and edges. Because of this
foundational contribution, Euler is widely regarded as the “Father of Graph Theory.” Since that time, graph theory
has developed into a rich and far-reaching field, with powerful theoretical frameworks and applications spanning
numerous scientific and engineering domains.

A graph, in its simplest form, is a mathematical structure used to model pairwise relationships among a set
of objects. These objects, called vertices, may represent people, devices, molecules, or abstract units, while the
connections between them, called edges, capture interactions or relationships. Due to its versatility, graph theory
plays an essential role across a diverse range of disciplines, including computer science, communication networks,
physics, chemistry, biological systems, linguistics, operations research, and various branches of social sciences.
Comprehensive surveys of graph-theoretic principles and applications can be found in [1, 4, 5, 9, 13], which
highlight both foundational concepts and advanced developments in the study of graph structures, colorings, and
algorithmic challenges.

One particularly important branch of graph theory is graph coloring, a topic that continues to attract extensive
attention because of its theoretical depth and practical relevance. A proper coloring of a graph is an assignment
of positive integers (called colors) to the vertices of the graph such that adjacent vertices always receive distinct

∗Correspondence to: P. Periasamy (Email: ppskmttc2013@gmail.com). Part time Research Scholar, Manonmaniam Sundaranar University,
Tirunelveli-627012, Tamilnadu, India.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 202x International Academic Press



Z. SHEN, Z. GENG AND J. YANG 1

colors. The classical chromatic number, denoted χ(G), is the minimum number of colors needed for a proper vertex
coloring of a graph G. Graph coloring problems arise naturally in scheduling, frequency assignment, compiler
design, clustering, and various allocation problems, making them among the most widely studied topics in discrete
mathematics. Early developments on chromatic properties, including structural characterizations and inequalities,
appear in the works of Simmons [12] and Jensen and Toft [9], among others.

A refinement of proper coloring, known as Grundy coloring, emerged indirectly through ideas introduced
by Patrick Michael Grundy (1917-1959) in the context of combinatorial game theory. Although Grundy did
not formulate the concept explicitly in graph-theoretic terms, ideas from his study of impartial games inspired
definitions that later became essential in greedy colorings and online coloring strategies. A Grundy coloring of a
graph G is a proper coloring in which each color class appears “as early as possible” in the sense that every vertex
colored with a color j must have neighbors colored with every color i for all integers i < j. Equivalently, higher-
numbered colors can only occur if all lower-numbered colors are forced by adjacency constraints. Consequently,
every Grundy coloring is a complete coloring, and its color classes form a nested structure dictated by the adjacency
patterns.

The connection between Grundy colorings and greedy algorithms is particularly striking. Consider an ordering

ϕ : v1, v2, . . . , vn

of the vertices of a graph G. A greedy coloring assigns colors one vertex at a time, always choosing for vt the
smallest positive integer that does not appear among its colored neighbors. As shown in [2, 6, 7], every greedy
coloring is indeed a Grundy coloring, and different orderings of vertices produce different Grundy colorings. This
makes the Grundy number an inherently algorithmic and ordering-dependent parameter: it reflects the maximum
number of colors that a greedy algorithm can be “forced” to use on a given graph.

Formally, the Grundy chromatic number of a graph G, denoted by Γ(G), is the largest integer k for which G
admits a Grundy k-coloring. If a graph has a Grundy k-coloring, then every vertex assigned the highest color k
must be adjacent to vertices of all other colors 1, 2, . . . , k − 1. This requirement forces strong structural constraints:
in particular, such a vertex must have degree at least k − 1, which immediately yields the upper bound

Γ(G) ≤ ∆(G) + 1,

where ∆(G) denotes the maximum degree of the graph. Since Grundy colorings are proper colorings, they also
satisfy the lower bound

χ(G) ≤ Γ(G),

placing the Grundy number between the classical chromatic number and one greater than the maximum degree.
Investigations into cases where Γ(G) = χ(G), or where the inequality is strict, have been explored in [3, 17].
These works highlight the complexity of analyzing greedy colorings and show that computing the Grundy number
is NP-hard for general graphs.

Applications of Grundy colorings arise naturally in areas involving online decision making, scheduling, and
resource allocation, where items must be assigned to categories sequentially without knowledge of future events.
Research on such topics can be found in [5, 7], where first-fit and online colorings are analyzed through structural
and combinatorial techniques. Further studies on Grundy colorings of specific families of graphs—such as trees,
hypercubes, and bipartite graphs—appear in [6, 7, 17], providing explicit formulas and bounds for important classes
of graphs.

Beyond general coloring theory, several researchers have examined specialized colorings and decomposition
problems related to different graph families. Results on equitable colorings of Helm graphs, Gear graphs, coronas of
wheels, and various sunlet graph families are found in [10, 11, 16]. Harmonious colorings of double star graphs are
studied in [14], illustrating how structural restrictions can dramatically change colorability conditions. Moreover,
results related to greedy structures and their recognition appear in [1], establishing foundations that connect greedy
algorithms with structural graph parameters.

In recent years there has been increasing interest in applying Grundy colorings to highly structured graphs
such as prisms, crossed prisms, antiprisms, and line graphs of these constructions. These graph families are of
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special interest because they arise in studies of polyhedral structures, network topologies, and communication
architectures. For example, prisms and crossed prisms model cylindrical or ladder-like frameworks, while
antiprisms provide triangulated structures with rich symmetry. Their line graphs, in turn, capture adjacency
relationships among edges, making them useful in scheduling and frequency assignment where conflict graphs
are naturally line graphs of underlying communication patterns. Foundational work related to prism graph families
and domination properties appears in [8], while coloring properties, particularly equitable and greedy colorings,
are developed in [15].

The Grundy chromatic number of these graph families presents interesting challenges. Because greedy colorings
are sensitive to vertex ordering, determining Γ(G) often requires constructing explicit colorings and proving that
no larger coloring is possible. This involves analyzing adjacency patterns, degrees, neighborhood structures, and
recursive extensions of coloring sequences. For prism graphs and crossed prism graphs, the interplay between the
two cycles and the vertical connecting edges requires careful combinatorial analysis to ensure that every color from
1 to k − 1 appears in the neighborhood of vertices colored k. For antiprism graphs, the alternating connections and
triangulated faces impose additional constraints that affect both achievable color classes and upper bounds. In the
case of line graphs of crossed prism graphs, the structural change from vertex-based to edge-based interactions
often increases local density, requiring more refined bounding arguments.

The present study focuses on determining the Grundy chromatic number for the prism graph, the n–crossed prism
graph, the line graph of the crossed prism graph, and the antiprism graph. Our goal is to establish exact values
for Γ(G) in each case, supported by constructive colorings and rigorous structural arguments. Illustrations are
provided where appropriate to demonstrate explicit coloring patterns and to highlight the combinatorial constraints
that govern the Grundy number in each graph family.

By combining greedy procedures, structural decomposition, and detailed case analyses, we derive tight bounds
and exact formulas for the Grundy number of these graphs. Since the studied graph families are symmetric, well-
structured, and of practical significance in network modeling, the results presented here enrich the set of known
exact Grundy numbers and contribute to the broader understanding of greedy and online coloring behaviors in
graph theory.

2. Preliminaries

In this section we recall several standard graph constructions that will be used throughout the paper.

Definition 2.1
[8] A prism graph, denoted by CLn (also called the circular ladder graph), is the graph obtained from the skeleton
of an n-prism. It has 2n vertices and 3n edges, consisting of two n-cycles joined by a perfect matching.

Definition 2.2
[8] An antiprism graph, denoted by Qn, is the graph corresponding to the skeleton of an n-antiprism. It contains
2n vertices and 4n edges, formed from two n-cycles with alternating diagonal connections.

Definition 2.3
[8] Let n ≥ 4 be an even integer. An n-crossed prism graph, denoted by Rn, is obtained from two disjoint n-cycles
by adding crossing edges so that each vertex ui of the first cycle is adjacent to either vi+1 (for odd i) or vi−1 (for
even i) in the second cycle. This produces a crossed (or twisted) cylindrical structure.

Definition 2.4
[11] The line graph of a graph G, denoted by L(G), is the graph whose vertices correspond to the edges of G. Two
vertices of L(G) are adjacent if and only if their corresponding edges in G share a common endpoint.
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3. Main Results

Theorem 3.1
For every integer n ≥ 3, the Grundy chromatic number of the prism graph CLn satisfies

Γ(CLn) = 4.

Proof
The prism graph CLn consists of two n–cycles

U = {u1, u2, . . . , un}, V = {v1, v2, . . . , vn},

together with a perfect matching joining ui to vi for all i. Thus,

E(CLn) = {uiui+1, vivi+1 : 1 ≤ i ≤ n− 1} ∪ {u1un, v1vn} ∪ {uivi : 1 ≤ i ≤ n}.

Each vertex has degree 3, and therefore

Γ(CLn) ≤ ∆(CLn) + 1 = 4.

We now construct explicit Grundy 4-colorings for odd and even n.

Figure 1. A Grundy 4-coloring of CL5.

Case (i): : For n is odd.

A periodic 4-coloring may be defined by coloring indices modulo 3 as follows:

c4 : vi if i ≡ 0 (mod 3),

c3 : ui if i ≡ 0 (mod 3),

c2 : ui if i ≡ 2 (mod 3), vi if i ≡ 1 (mod 3),

c1 : ui if i ≡ 1 (mod 3), vi if i ≡ 2 (mod 3).

This produces the Grundy sequence

c1, c2, c3, c4,
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so Γ(CLn) ≥ 4 for odd n.

A sample coloring for CL5 is shown below.

Case (ii): : For n is even.

A similar periodic coloring works for all even n ≥ 4. One valid assignment is:

c4 : u1, u3,

c3 : v1, v3,

c2 : ui (i ≥ 4, i even), vi (i = 2 or i ≥ 5, i odd),
c1 : ui (i ≥ 2, i odd), vi (i ≥ 4, i even).

This again yields the Grundy sequence c1, c2, c3, c4 and therefore

Γ(CLn) ≥ 4 (n even).

Figure 2. A Grundy 4-coloring of CL6.

Assume, for contradiction, that Γ(CLn) ≥ 5. Then some vertex must receive color c5, which requires
neighbors realizing colors c1, c2, c3, c4 simultaneously. But each vertex in CLn has degree

∆(CLn) = 3,

so it can have at most three colors in its open neighborhood. Thus no vertex can receive color c5, and hence

Γ(CLn) ≤ 4.

Combining both directions, we obtain

Γ(CLn) = 4 ∀n ≥ 3.

Theorem 3.2
For every integer n ≥ 4, the Grundy chromatic number of the n–crossed prism graph Rn satisfies

Γ(Rn) = 4.
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Proof
The crossed prism graph Rn has two n–cycles

U = {u1, u2, . . . , un}, V = {v1, v2, . . . , vn},

and three edge sets:
E1 = {uiui+1, vivi+1 : 1 ≤ i ≤ n− 1} ∪ {u1un, v1vn},

E2 = {uivi+1 : i odd},
E3 = {uivi−1 : i even},

where indices are taken modulo n. Thus

E(Rn) = E1 ∪ E2 ∪ E3.

Each vertex has degree

deg(ui) = deg(vi) = 3,

hence the general bound for Grundy colorings gives

Γ(Rn) ≤ ∆(Rn) + 1 = 4.

It remains to show that a Grundy 4-coloring exists for every n ≥ 4.

Figure 3. A Grundy 4-coloring of R4.

Case (i): : n ≡ 0 (mod 4).

A valid 4–coloring may be assigned periodically as follows:

c4 : ui (i odd),
c3 : vi (i even),
c2 : v4i−1, u4i−2,

c1 : v4i−3, u4i,

1 ≤ i ≤ n/4.
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This produces the complete Grundy sequence

c1, c2, c3, c4,

so Γ(Rn) ≥ 4 in this case.

Case (ii): : n ≡ 2 (mod 4)

A similar periodic construction yields a Grundy 4-coloring. One valid assignment is:

c4 : u1,

c3 : v2, vn, u3,

c2 : ui (i ≥ 2 odd), vi (i odd),
c1 : ui (i ≥ 4 even), vi (i ≥ 4 even).

Again this yields the Grundy sequence

c1, c2, c3, c4.

Assume for contradiction that Γ(Rn) ≥ 5. Then some vertex would receive color c5. By definition of Grundy

Figure 4. A Grundy 4-coloring of R8.

coloring, that vertex must have neighbors colored with each of c1, c2, c3, c4. This requires degree at least 4.
However, each vertex of Rn has degree

deg(x) = 3,

so no vertex can realize four distinct smaller colors in its open neighborhood. This contradicts the assumption
that a color c5 is possible.

Thus,

Γ(Rn) ≤ 4.

Combining the constructive lower bound and the degree upper bound gives

Γ(Rn) = 4 for all n ≥ 4.

Theorem 3.3
The Grundy chromatic number of the line graph of the n-crossed prism graph is

Γ(L(Rn)) = 3.
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Proof
Let V (Rn) = {ui : 1 ≤ i ≤ n} ∪ {vi : 1 ≤ i ≤ n}, where the cycle edges are

E1 = {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {v1vn},

the second cycle edges are

E2 = {uiui+1 : 1 ≤ i ≤ n− 1} ∪ {u1un},

and the crossed edges are

E3 =

uivi+1, i odd,

uivi−1, i even.

Thus,

E(Rn) = E1 ∪ E2 ∪ E3.

The line graph L(Rn) has vertex set

V (L(Rn)) = E(Rn),

and two vertices in L(Rn) are adjacent when the corresponding edges of Rn share an endpoint.

Figure 5. A Grundy 3-coloring of L(R8)

We now exhibit a Grundy 3-coloring.

• Assign color c3 to all vertices of L(Rn) corresponding to edges ei ∈ E1 with i odd and e′i ∈ E2 with i odd.
• Assign color c2 to all vertices corresponding to the crossed edges E3.
• Assign color c1 to the remaining cycle edges: ei ∈ E1 with i even and e′i ∈ E2 with i even.

This coloring is proper since consecutive edges in the underlying cycles alternate between even and odd indices,
and the crossed edges meet both cycle edges of opposite parity. Moreover, each color class appears only when all
smaller colors appear in its neighborhood, confirming that this is a Grundy coloring. Thus,

Γ(L(Rn)) ≥ 3.

Now suppose Γ(L(Rn)) > 3. If some vertex receives color c4, then by the definition of a Grundy coloring, its
neighbors must contain all colors c1, c2, c3. However, every edge in Rn is incident to at most two other edges in the
same cycle and at most one crossed edge. Thus every vertex in L(Rn) has degree at most 3. Hence no vertex can
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see three distinct colors in its neighborhood, and so no vertex can receive color c4. Therefore,

Γ(L(Rn)) ≤ 3.

Finally, assume Γ(L(Rn)) < 3. Then only colors c1 and c2 may be used. But in L(Rn) there exist vertices that
are mutually adjacent in paths of length three (coming from three incident edges of Rn), and such a structure
demands at least three Grundy colors. Thus a 2-Grundy-coloring is impossible.

Combining the inequalities,

Γ(L(Rn)) = 3.

Theorem 3.4
For the antiprism graph Qn on 2n vertices, the Grundy chromatic number is

Γ(Qn) =

{
3, n = 3,

5, n > 3.

Proof
The antiprism graph Qn has vertex set

V (Qn) = {vi : 1 ≤ i ≤ n} ∪ {ui : 1 ≤ i ≤ n},

with edges:
E(Qn) = {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {v1vn}

∪ {uiui+1 : 1 ≤ i ≤ n− 1} ∪ {u1un}
∪ {viui : 1 ≤ i ≤ n}
∪ {viui+1 : 1 ≤ i ≤ n− 1} ∪ {vnu1}.

This construction produces two n-cycles linked by alternating diagonal edges. Since each vertex is adjacent to
exactly four others, the degree satisfies

∆(Qn) = 4,

and therefore the Grundy bound

Γ(Qn) ≤ ∆(Qn) + 1 = 5

holds for all n.
We now determine the exact value.

Case (i): : For n = 3 Assign the colors:

c3 : u1, v3; c2 : v1, u2; c1 : v2, u3.

This is a valid Grundy coloring using 3 colors. Assume for contradiction that four colors are possible. Let a
vertex receive color c4. Then its neighbors must contain all colors c1, c2, c3, but each vertex in Q3 has degree
3, contradicting proper Grundy conditions. Thus,

Γ(Q3) = 3.
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Figure 6. Γ(Q8)

Case (ii): For n ≥ 4.

For n ≥ 4, we establish that the antiprism graph Qn admits a Grundy coloring using five colors. To construct
such a coloring, we color the vertices of the two n-cycles in a repeating pattern. More precisely, for
1 ≤ i ≤

⌊
n
4

⌋
, we assign

c5 : u4i−3,

c4 : v4i−3,

c3 : u4i−1, v4i−2,

c2 : u4i, v4i−1,

c1 : u4i−2, v4i.

This periodic assignment ensures that each color appears only after all smaller colors have already appeared

Figure 7. Γ(Q6)

on the neighbors of the corresponding vertex, thereby forming a valid Grundy sequence

c1, c2, c3, c4, c5.

Consequently,

Γ(Qn) ≥ 5.

To show that no sixth Grundy color can occur, suppose a vertex of Qn is assigned color c6. By definition of a
Grundy coloring, this vertex must have neighbors colored with each of c1, c2, c3, c4, and c5. However, every
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vertex in Qn has degree 4, meaning that it can have at most four distinct colors in its neighborhood. This
contradicts the requirement for a vertex to receive color c6.

Hence, no Grundy coloring of Qn uses more than five colors, and therefore

Γ(Qn) = 5 for all n > 3.

4. Conclusion

In this work, we investigated the Grundy chromatic number for several important graph families, including the
prism graph, the n−crossed prism graph, the line graph of the crossed prism graph, and the antiprism graph. Using
constructive Grundy colorings and structural properties of each graph, we established exact values of their Grundy
chromatic numbers and provided illustrative examples to demonstrate the achievable color sequences. These results
contribute to a deeper understanding of Grundy colorings in structured graph classes and offer a foundation for
further studies on dynamic colorings and chromatic bounds in complex network topologies.
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5. A. Gyárfás, J. Lehel, On-line and first-fit coloring of graphs, Journal of Graph Theory, vol. 12, pp. 217-227, 1988.
6. S. M. Hedetniemi, S. T. Hedetniemi, A. Beyer, A linear algorithm for the Grundy (coloring) number of a tree, Congressus

Numerantium, vol. 36, pp. 351-363, 1982.
7. D. G. Hoffman, P. D. Johnson Jr., Greedy colorings and the Grundy chromatic number of the n-cube, Bulletin of the ICA, vol. 26,

pp. 49-57, 1999.
8. S. Jebisha Esther, J. Veninstine Vivik, Minimum Dominating Set for the Prism Graph Family, Mathematics in Applied Sciences and

Engineering, vol. 4, no. 1, pp. 30-39, 2023.
9. T. R. Jensen, B. Toft, Graph Coloring Problems, Wiley, New York, 1995.

10. K. Kaliraj, V. J. Vernold, On equitable coloring of Helm graph and Gear graph, International Journal of Mathematical
Combinatorics, vol. 4, pp. 32-37, 2010.

11. K. Kaliraj, J. Vernold Vivin, M. M. Akbar Ali, On Equitable Coloring of Sunlet Graph Families, Ars Combinatoria, vol. CIII, pp.
497-504, 2012.

12. G. J. Simmons, On the chromatic number of a graph, Congressus Numerantium, vol. 40, pp. 339-366, 1983.
13. J. A. Telle, A. Proskurowski, Algorithms for vertex partitioning problems on partial k-trees, SIAM Journal on Discrete Mathematics,

vol. 10, pp. 529-550, 1997.
14. M. Venkatachalam, J. Vernold Vivin, K. Kaliraj, Harmonious Coloring on Double Star Graph Families, Ars Combinatoria, vol. 43,

no. 2, pp. 153-158, 2012.
15. J. Vernold Vivin, K. Kaliraj, Equitable Coloring of Mycielskian of Some Graphs, Journal of Mathematical Extension, vol. 11, no. 3,

pp. 1-18, 2017.
16. J. Vernold Vivin, K. Kaliraj, On equitable coloring of corona of wheels, Electronic Journal of Graph Theory and Applications, vol.

4, no. 2, pp. 206-222, 2016.
17. M. Zaker, Grundy chromatic number of the complement of bipartite graphs, Australasian Journal of Combinatorics, vol. 31, pp.

325-329, 2005.

Stat., Optim. Inf. Comput. Vol. x, Month 202x


	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Conclusion

