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Abstract In this paper, which is motivated by the work of Roos [7] (SIAM J. Optim. 16(4):1110-1136, 2006), we examine
a new search direction derived from a family of parametric kernel functions for IIPM algorithms. The main iteration of the
algorithm is composed of one feasibility step followed by several centrality steps. The neighborhood of Newton process is
more wider using a sharper quadratic convergence results. The algorithm has polynomial complexity and matches the best
known iteration bound based on centrality steps. Furthermore, the numerical experiments demonstrate the efficiency of this
class of functions, providing increased flexibility in selecting the search direction for solving problems.
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1. Introduction

In this paper, we consider the linear optimization (LO) problem in the standard form :

(P) min {cTx : Ax = b, x ≥ 0},

with its dual problem

(D) max {bT y : AT y + s = c, s ≥ 0},

where c, x, s ∈ Rn, b, y ∈ Rm and A ∈ Rm×n is of full row rank.

Due to the efficiency from a computational point of view, the use of Interior Point Method based on the kernel
function becomes more attractive.

Since the appearance of the Roos’s paper [7], much works regarding this special topic of Infeasible interior point
algorithms for linear optimization, has been done. These works has essentially focused on the search direction
by trying to modify the KKT system of the primal and dual problem, especially the third equation namely the
centering equation of the system below (2) and consequently analyzing the algorithm’s convergence[1],[6]. Some
works have proposed an algorithms for Infeasible Interior point method IIPM with a new search directions based
on some specific kernel functions [10],[4],[3]. Our algorithm is an extension of the original work of Roos [7] and
Liu [10] in which no line search is needed, it uses a full Newton step instead of a damped step.
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In this paper, we propose a new search direction introduced by a class of parametric kernel functions whose
parameter p belongs to the interval [0, 1], giving a more slightly wider neighborhood of quadratic convergence for
feasibility steps which guarantees that the proximity-measure will be smallest than a threshold τ in a finite number
of iterations (do not exceed 4 in our case). The direction used in our work is more natural and better intuitively.
The analysis of the convergence and complexity of the algorithm follows. For the survey of IIPM we refer to the
introduction of Roos [7].

The paper is organized as follows. In Section 2 we present some useful properties in the analysis of feasible
IPM which will be exploited in the analysis of our IIPM. In Section 3 we present our full-Newton step IIPM. Each
main step of the method consists of a feasibility step and several centering steps. For the centering steps we exploit
a sharper quadratic convergence result which is done in a slightly wider neighborhood for the feasibility steps.
Section 4 is devoted to the analysis of our feasibility step. In Section 5 we obtain the complexity result of our
IIPM algorithm. In section 6, we present the numerical results of our algorithm. Finally we give some concluding
remarks in Section 7.

2. Feasible Newton step for IPMs

In our analysis we recall some useful properties of central path and feasible full Newton step. For more details, we
refer to [8],[9]. To solve (P) and (D), one needs to find a solution of the following system of equations.

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

xs = 0,

(1)

In these so-called optimality conditions the first two constraints represent primal and dual feasibility, whereas the
last equation is the so-called complementary condition. The nonnegativity constraints in the feasibility conditions
make the problem already nontrivial: only iterative methods can find solutions of linear systems involving
inequality constraints. The complementary condition is nonlinear, which makes it extra hard to solve this system.

2.1. Central Path

IPMs replace the complementarity condition by the so-called centering condition xs = µe, where µ may be any
positive number. This yields the system

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

xs = µe.

(2)

Surprisingly enough, if this system has a solution for some µ > 0, then a solution exists for every µ > 0, and
this solution is unique. This happens if and only if problems (P) and (D) satisfy the interior-point condition (IPC);
i.e., if (P) has a feasible solution x > 0 and (D) has a solution (y, s) with s > 0. If the IPC is satisfied, then the
solution of (2) is denoted by (x(µ), y(µ), s(µ)) and is called the µ-center of (P) and (D). The set of all ı̀-centers
forms a path, which is called the central path. As µ goes to zero, (x(µ), y(µ), s(µ)) converge to optimal solutions
of problems (P) and (D). Of course, the system (2) is still hard to solve, but by applying Newtons method one can
easily find approximate solutions.
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2.2. Properties of the Newton step

We proceed by describing Newtons method for solving (3), with µ fixed. Given any primal feasible x > 0, dual
feasible y and s > 0, we want to find displacements ∆x, ∆y and ∆s such that

A(x+∆x) = b,

AT (y +∆y) + (s+∆s) = c,

(x+∆x)(s+∆s) = µe.

According to Newton’s method for solving nonlinear equations, we obtain the linear system in the search
directions ∆x, ∆y and ∆s:

A∆x = b−Ax,

AT∆y +∆s = c−AT y − s,

x∆s+ s∆x = µe− xs.

(3)

Since A has full row rank, and since the vectors x and s are positive, one may easily verify that the coefficient
matrix in the linear system (3) is nonsingular. Hence, this system uniquely defines the search directions ∆x, ∆y
and ∆s. These search directions are used in all existing primal-dual (feasible and infeasible) IPMs.

If x is primal feasible and (y, s) is dual feasible pair, then b−Ax = 0 and c−AT y − s = 0, whence the above
system reduces to

A∆x = 0,

AT∆y +∆s = 0,

x∆s+ s∆x = µe− xs, (4)

which gives the usual search directions for feasible primal-dual IPMs. Then The new iterates are given by

x+ = x+∆x,

y+ = y +∆y,

s+ = s+∆s.

An important observation is that ∆x lies in the null space of A, whereas ∆s belongs to the row space of A. This
implies that ∆x and ∆s are orthogonal, i.e., ∆xT∆s = 0. As a consequence, we have the important property that,
after a full-Newton step, the duality gap assumes the same value as at the µ-centers, namely nµ.

Lemma 1. (See [8], Lemma II.47) After a primal-dual Newton step, one has (x+)T s+ = nµ.

We measure proximity of iterates (x, y, s) to the µ-center (x(µ), y(µ), s(µ)) by the quantity δ(x, s;µ), which is
defined as follows:

δ(x, s;µ) := δ(v) :=
1

2
∥v − v−1∥, where v :=

√
xs

µ
. (5)

In the analysis of the algorithm, the effect of the proximity δ(x, s;µ) on a full-Newton step targeting the µ-center
of (P ) and (D), will be essential.

We recall the following interesting Theorem which implies that the Newton process is locally quadratically
convergent. This property has been crucial in the analysis in many papers as [8], [10], [6].

Theorem 2. (See [8], Theorem II.52) If δ(x, s;µ) < 1, then

δ(x+, s+;µ) ≤ δ2√
2(1− δ4)

.
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The quadratic convergence can be also obtained by using a tighter upper bound for δ(x+, s+;µ), which provides
a slightly wider neighborhood for the feasibility step of our IIPM. We can now deduce the following trivial corollary
which we state without proof.

Corollary 3. If δ(x, s;µ) ≤ 1/ 4
√
2, then δ(x+, s+;µ) ≤ δ2.

3. Infeasible full-Newton step for IIPM

In the case of an infeasible method, we call the triple (x, y, s) an ε-optimal solution of (P ) and (D) if the 2-norms
of the residual vectors b−Ax and c−AT y − s do not exceed ε, and if the duality gap satisfies xT s ≤ ε. In this
section, we present an infeasible-start algorithm that generates an ε-optimal solution of (P ) and (D), if it exists, or
establishes that no such solution exists.

3.1. Perturbed Problems

At the beginning, we choose arbitrarily x0 > 0 and (y0, s0) with s0 > 0 such that x0s0 = µ0e for some positive
number µ0. We denote the initial values of the primal and dual residuals r0b and r0c respectively as

r0b = b−Ax0,

r0c = c−AT y0 − s0.

For any ν such that 0 < ν ≤ 1, we consider the following perturbed problem (Pν), defined by

(Pν) min{(c− νr0c )
Tx : Ax = b− νr0b , x ≥ 0},

and its dual problem (Dν), which is given by

(Dν) max{(b− νr0b )
T y : AT y + s = c− νr0c , s ≥ 0},

We note that if ν = 1 then x = x0 yields a strictly feasible solution of (Pν), and (y, s) = (y0, s0) a strictly
feasible dual pair solution of (Dν). We deduce that if ν = 1 then (Pν) and (Dν) satisfy the IPC.

Lemma 4. (See [7], Lemma 1.1]) The original problems (P ) and (D) are feasible if and only if, for each ν
satisfying 0 < ν ≤ 1, the perturbed problems (Pν) and (Dν) satisfy the IPC.

In the sequel, we assume that (P ) and (D) are feasible.

3.2. Central Path of the Perturbed Problems

Let (P ) and (D) be feasible and 0 < ν ≤ 1. Then, Lemma (4) implies that the perturbed problems (Pν) and (Dν)
satisfy the IPC; hence, their central paths exist. This means that the system

Ax = b− νr0b , x ≥ 0, (6)

AT y + s = c− νr0c , s ≥ 0, (7)
xs = µe,

has a unique solution for every µ > 0. This unique solution is denoted by (x(µ, ν), y(µ, ν), s(µ, ν)) and is the
µ-center of the perturbed problems (Pν) and (Dν). In the sequel, the parameters µ and ν always satisfy the relation
µ = νµ0.
Note that since x0s0 = µ0e, x0 is the µ0-center of the perturbed problem (P1) and (y0, s0) the µ0-center of (D1).
In other words, (x(µ0, 1), y(µ0, 1), s(µ0, 1)) = (x0, y0, s0).
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3.3. Description of the Algorithm

It is well known that the efficiency of algorithm is measured by the total number of inner iterations which is referred
to as the iteration complexity of the algorithm. The best known iteration bound for IIPMs was first obtained by
Mizuno [5]

O
(
n log

max{(x0)T s0, ∥b−Ax0∥, ∥c−AT y0 − s0∥}
ε

)
.

Up to a constant, this bound was slightly improved by Roos [7] and then by Gu et al. [6].
At the beginning, we specify our initial iterate (x0, y0, s0). As usual in infeasible IPMs, we assume that the initial
iterates are designed as follows :

x0 = s0 = ζe, y0 = 0, µ0 = ζ2,

where e is the all-one vector of length n, µ0 is the initial dual gap and ζ > 0 is such that

∥x∗ + s∗∥∞ ≤ ζ,

for some optimal solution (x∗, y∗, s∗) of (P ) and (D).
At the start of the algorithm, we have initially δ(x, s;µ) = 0, since if ν = 1 and µ = µ0, then x = x0 is the µ-center
of the perturbed problem (Pν) and (y, s) = (y0, s0) is the µ-center of the perturbed problem (Dν). In the sequel,
we assume that, at the start of each iteration, just before the feasibility step, δ(x, s;µ) is smaller than or equal to a
threshold value τ > 0 which is ensured for the first iteration.
Now, we describe one (main) iteration of our algorithm. Suppose that, for some µ ∈ (0, µ0], we have (x, y, s)
satisfying the feasibility conditions (6) and (7) with ν = µ/µ0 and such that xT s = nµ and δ(x, s;µ) ≤ τ . We
reduce µ to µ+ = (1− θ)µ, with θ ∈ (0, 1), and find a new iterate (x+, y+, s+) that satisfies (6) and (7), with ν
replaced by ν+ = (1− θ)ν = µ+/µ0, and such that (x+)T s+ = nµ+ and δ(x+, s+;µ+) ≤ τ .
To be more precise, this is achieved as follows. Each main iteration consists of a feasibility step and a few
centering steps. The feasibility step serves to get an iterate (xf , yf , sf ) that is strictly feasible for (Pν+) and (Dν+)
and close to their µ+-center (x(ν+), y(ν+), s(ν+)). In fact, the feasibility step is designed in such a way that
δ(xf , sf ;µf ) ≤ 1/ 4

√
2, i.e., (xf , yf , sf ) belongs to the quadratic convergence neighborhood with respect to the µ+-

center of (Pν+) and (Dν+). Then we can easily get an iterate (x+, y+, s+) that is strictly feasible for (Pν+) and
(Dν+) and such that (x+)T s+ = nµ+ and δ(x+, s+;µ+) ≤ τ , just by performing a few centering steps starting
from (xf , yf , sf ) and targeting the µ+-center of (Pν+) and (Dν+).
In what follows, we describe the feasibility step in more detail. Suppose that we have a strictly feasible iterate
(x, y, s) for (Pν) and (Dν). This means that (x, y, s) satisfies (6) and (7), with ν = µ/µ0. We need displacements
∆fx, ∆fy, ∆fs such that

xf = x+∆fx,

yf = y +∆fy,

sf = s+∆fs,

are feasible for (Pν+) and (Dν+). One may verify easily that (xf , yf , sf ) satisfies (6) and (7), with ν replaced
by ν+ = (1− θ)ν, only if the first two equations in the following system are satisfied:

A∆fx = θνr0b , (8)

AT∆fy +∆fs = θνr0c , (9)

s∆fx+ x∆fs = µe− xs, (10)

We conclude that, after the feasibility step, the iterate satisfies the affine equations (6) and (7), with ν = ν+.
The hard part in the analysis is to guarantee that xf and sf are positive and satisfy δ(xf , sf ;µ+) ≤ 1/ 4

√
2.

After the feasibility step, we perform a few centering steps in order to get iterate (x+, y+, s+) which satisfies
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(x+)T s+ = nµ+ and δ(x+, s+;µ+) ≤ τ . By using Corollary (3), the required number of centering steps can
be obtained easily. Indeed, assuming δ = δ(xf , sf ;µ+) ≤ 1/ 4

√
2, after k centering steps we will have iterates

(x+, y+, s+) that are still feasible for (Pν+) and (Dν+) and satisfy

δ(xf , sf ;µ+) ≤
(

1
4
√
2

)2k

.

From this, one deduces easily that δ(x+, s+;µ+) ≤ τ holds after at most

2 +

⌈
log2

(
log2

1

τ

)⌉
(11)

centering steps.

We give below a more formal description of the algorithm as follows

Input :
parameter p in [0, 1] ;
bound parameter ζ ;
threshold parameter τ > 0;
accuracy parameter ε > 0;
barrier update parameter θ in ]0, 1[.

begin
x := ζe; y := 0 ;s := ζe; ν := 1 ;
while max{xT s, ∥b−Ax∥, ∥c−AT y − s∥} ≥ ε do

begin
feasibility step (x, y, s) := (x, y, s) + (∆fx,∆fy,∆fs);
µ-update: µ := (1− θ)µ;
centrality steps:
while δ(x, s;µ) > τ do
(x, y, s) := (x, y, s) + (∆x,∆y,∆s);
end while

end
end while

end

Algorithm 1: Primal-Dual Infeasible IPMs Algorithm

Now we introduce the definition of a kernel function.

Definition 5. We call ψ : (0,∞) → [0,∞) a kernel function if ψ is twice differentiable and the following conditions
are satisfied

(i) ψ′(1) = ψ(1) = 0,
(ii) ψ′′(t) > 0 for all t > 0,

We define
A = AV −1X, V = diag(v), X = diag(x),

dfx =
v∆fx

x
, dfs =

v∆fs

s
(12)
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The system (8)-(10) which defines the search directions ∆fx, ∆fy and ∆fs, can be expressed in terms of the
scaled directions dfx and dfs as follows:

Adfx = θνr0b ,

A
T ∆fy

µ
+ dfs = θνvs−1r0c ,

dfx + dfs = v−1 − v, (13)

It is clear that the right-hand side of the equation (13) is the negative gradient direction of the logarithmic barrier
function :

Ψ(v) :=

n∑
i=1

ψ(vi), vi =

√
xisi
µ

whose kernel function is

ψ(t) =
t2 − 1

2
− log(t).

In this paper we make a slight modification of the standard Newton direction. The new system is then defined as
follows

Adfx = θνr0b ,

A
T ∆fy

µ
+ dfs = θνvs−1r0c ,

dfx + dfs = −∇Ψ(v). (14)

where our kernel function of Ψ is given by

ψp(t) =

{
t1+p−1
1+p + t1−q−1

q−1 p, q ∈]0, 1[ p+ q = 1
t2−1
2 − t+ 1 p = 1.

(15)

According to the definition (5), ψ(t) is obviously a kernel function.

Since ψ
′

p(t) = tp − t−q, equation (14) can be rewritten as

dfx + dfs = v−q − vp. (16)

In the sequel, the feasibility step will be based on the last equation. we can now define the following proximity
measure induced by our kernel function

σ(v) :=
1

2
∥∇Ψ(v)∥ =

1

2

∥∥v−q − vp
∥∥ . (17)

In fact we observe that σ(v) = 0 if and only if v = e, thus σ(v) = 0 is also an appropriate proximity measure.
Later we prove that this proximity is smaller than the one induced by the classical logarithmic barrier function (5).

3.4. Some technical lemmas

The following lemmas will be useful for our analysis.

Lemma 6. For any t > 0, one has ∣∣∣t− p
2 − t

p
2

∣∣∣ ≤ 1

2

∣∣t−1 − t
∣∣ , p ∈ [0, 1].
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Proof
For t in [0, 1], and by defining the following functions :

ρ(t, p) :=
t−1

2
+ t

p
2 and ϱ(t, p) :=

t

2
+ t−

p
2 ,

we get :
1

2

∣∣t−1 − t
∣∣− ∣∣∣t− p

2 − t
p
2

∣∣∣ = 1

2

(
t−1 − t

)
−
(
t−

p
2 − t

p
2

)
= ρ(t, p)− ϱ(t, p).

The right term in the last equation will be positive if the following statement is true :

min{ρ(t, p) : p ∈ [0, 1]} ≥ max{ϱ(t, p) : p ∈ [0, 1]}. (18)

Firstly, the derivative of ϱ(t, p) with respect to the p variable is positive :

dϱ

dp
(t, p) = −1

2
log(t)t−

p
2 ≥ 0.

Which means that the function ϱ is increasing in p. So its maximum is reached for p = 1, i.e :

max{ϱ(t, p) : p ∈ [0, 1]} = ϱ(t, 1) =
t

2
+ t−

1
2 .

Secondly, the derivative of the function ρ(t, p) with repsect to the p variable is negative :

dρ

dp
(t, p) =

1

2
log(t)t

p
2 ≤ 0,

which means that the function ρ is decreasing in p. So its minimum is reached for p = 1, i.e :

min{ρ(t, p) : p ∈ [0, 1]} = ρ(t, 1) =
t−1

2
+ t

1
2 .

We can now deduce that the statement (18) is true. Indeed :

ρ(t, 1)− ϱ(t, 1) =
t−1

2
+ t

1
2 −

(
t

2
+ t−

1
2

)
=

√
t(1− t2)

2t
√
t

≥ 0.

For the case where t > 1 and by redefining the following functions as :

ρ(t, p) :=
t

2
+ t−

p
2 and ϱ(t, p) :=

t−1

2
+ t

p
2 ,

we can get :
1

2

∣∣t−1 − t
∣∣− ∣∣∣t− p

2 − t
p
2

∣∣∣ = 1

2

(
t− t−1

)
−
(
t
p
2 − t−

p
2

)
= ρ(t, p)− ϱ(t, p).

By the same arguments above, we can easily verify that the statement (18) remain true for t > 0. The derivatives
of the last functions with respect to p can be easily obtained as follows :

dϱ

dp
(t, p) =

t

2
log(t)t

p
2 ≥ 0 and

dρ

dp
(t, p) = −1

2
log(t)t−

p
2 ≤ 0.

It means that the function ϱ(t, p) is increasing whence the ρ(t, p) function is decreasing with respect to p. Then :

max{ϱ(t, p) : p ∈ [0, 1]} = ϱ(t, 1) =
t−1

2
+ t

1
2 ,
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and
min{ρ(t, p) : p ∈ [0, 1]} = ρ(t, 1) =

t

2
+ t−

1
2 .

Once again we easily ensure that the statement (18) is verified. Indeed :

ρ(t, 1)− ϱ(t, 1) =
t

2
+ t−

1
2 −

(
t−1

2
+ t

1
2

)
=

√
t(t2 − 1)

2t
√
t

≥ 0,

and the lemma follows.

We can now derive the following result.

Corollary 7. For any vector v > 0, one has∥∥∥v− p
2 − v

p
2

∥∥∥ ≤ 1

2

∥∥v−1 − v
∥∥ , p ∈ [0, 1].

Proof
Due to the lemma (6) and by developing the left term in the last inequality, one can obviously get :∥∥∥v− p

2 − v
p
2

∥∥∥2 =

n∑
i=1

(
v
− p

2

i − v
p
2

i

)2
≤

n∑
i=1

1

4

(
v−1
i − vi

)2
=

1

4

∥∥v−1 − v
∥∥2 .

And the Lemma follows.

Furthermore, according to (5), we obtain:

δ
(
v

p
2

)
≤ 1

2
δ(v). (19)

Lemma 8. For any t > 0, one has : |t−q − tp| ≤
∣∣t−1 − t

∣∣ ∀ p, q ∈ [0, 1].

Proof
For t in [0, 1], we have by removing the absolute value and grouping terms in the following equation :∣∣t−1 − t

∣∣− ∣∣t−q − tp
∣∣ = (t−1 − t

)
−
(
t−q − tp

)
=
(
t−1 − t−q

)
+ (tp − t)

= t−1
(
1− t1−q

)
+ tp

(
1− t1−p

)
≥ 0.

For t > 1, we obtain by the same arguments :∣∣t−1 − t
∣∣− ∣∣t−q − tp

∣∣ = (t− t−1
)
−
(
tp − t−q

)
= (t− tp) +

(
t−q − t−1

)
= tp

(
t1−p − 1

)
+ t−1

(
t1−q − 1

)
≥ 0.

Which complete the proof.

We can now deduce the following relation between our proximity measure already mentioned in (17) and the
proximity measure defined by (5).

Corollary 9. For any vector v > 0, we have : σ(v) ≤ δ(v).

Proof
The result is obviously derived from the last lemma. Indeed :

σ2(v) =
1

4

∥∥v−q − vp
∥∥2 =

1

4

n∑
i=1

(
v−q
i − vpi

)2
≤ 1

4

n∑
i=1

(
v−1
i − vi

)2
= δ2(v).

And the Corollary follows.
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Thus the result is obtained

Lemma 10. For t > 0 and p in [0, 1], one has the following two statements :

1

t
≤ 1

t2
+

1

tp
− 1

tp+1
(20)

1

t
≥ 1

t2 + tp − tp+1
(21)

Proof
Since we have for any t > 0 :

1

t2
+

1

tp
− 1

tp+1
− 1

t
=

(t− 1)
(
1− tp−1

)
tp+1

≥ 0,

the first inequality (20) is then verified.
To prove the second inequality (21), we observe that the right hand side of the following equation :

1

t
− 1

t2 + tp − tp+1
=

(t− 1)
(
1− tp−1

)
t2 + tp − tp+1

is always positive for any t > 0. Thus the lemma follows.

We can now state the following result which will play an important role regarding the feasibility analysis
discussed in the next section.

Corollary 11. For t > 0 and p in [0, 1], one has :

1

t2 + tp − tp+1
≤ 1

t2
+

1

tp
− 1

tp+1

Proof
The result is consequently derived by combining the two inequalities in the lemma (10) where the function
t 7−→ 1/t played the intermediate role between its upper bound and the lower one.

Lemma 12. According to the result of Lemma (1), for any p ∈ [0, 1] one has∥∥∥v p
2

∥∥∥ ≤
√
n.

Proof
By applying Hölder’s inequality, we obtain :∥∥∥v p

2

∥∥∥2 =

n∑
i=1

(
v

p
2

i

)2
=

n∑
i=1

vpi

=

n∑
i=1

(
v2i
) p

2 . (1)
2−p
2

≤

(
n∑

i=1

v2i

) p
2

.

(
n∑

i=1

1

) 2−p
2

= n
p
2 . n

2−p
2 = n.

Thus the result is obtained.
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10 NEW SEARCH DIRECTION BASED ON A CLASS OF PARAMETRIC KERNEL FUNCTIONS

Lemma 13. For any vector v > and p ∈ [0, 1], one has

(i)

∥∥∥∥√1− θv−
p
2 − v

p
2

√
1− θ

∥∥∥∥2 ≤ (1− θ) δ2(v) +
θ2n

1− θ

and

(ii)

∥∥∥∥√1− θv−1 − v√
1− θ

∥∥∥∥2 ≤ 4 (1− θ) δ2(v) +
θ2n

1− θ
.

Proof
By applying the lemma (12) and (19), we obtain∥∥∥∥√1− θv−

p
2 − v

p
2

√
1− θ

∥∥∥∥2 =

∥∥∥∥√1− θ

(
v−

p
2 − v

p
2

1− θ

)∥∥∥∥2
= (1− θ)

∥∥∥∥v− p
2 − v

p
2 + v

p
2 − v

p
2

1− θ

∥∥∥∥2
= (1− θ)

∥∥∥v− p
2 − v

p
2

∥∥∥2 + θ2

1− θ

∥∥∥v p
2

∥∥∥2 − 2θ
(
v−

p
2 − v

p
2

)T
v

p
2

≤ 4 (1− θ) δ2
(
v

p
2

)
+

θ2n

1− θ

≤ (1− θ) δ2(v) +
θ2n

1− θ
.

The second statement can be checked by following the same previous steps. Thus the lemma follows.

Lemma 14. (See [1], Lemma A.1) For i = 1, ...,m, let fi : R+ → R denote a convex function. Then, for any
nonzero z ∈ Rn

+, the following inequality

n∑
i=1

fi(zi) ≤
1

eT z

n∑
j=1

zj

fj(eT z) +∑
i̸=j

fi(0)


holds.

4. Analysis of the feasibility step

Let x, y and s denote the iterates at the start of an iteration, and assume that xT s = nµ and δ(v) ≤ τ which is true
at the first iteration since δ(v0) = 0, according to the choice of (x0, s0) stated in Sect.(3.3).

4.1. Feasibility step

As we established in Sect.(3.3), the feasibility step generates new iterate (xf , yf , sf ) that satisfies the feasibility
conditions for (Pν+) and (Dν+), except possibly the nonnegativity constraints. A crucial element in the analysis
is to show that, after the feasibility step, we get δ(xf , sf ;µ+) ≤ 1/ 4

√
2, i.e., the new iterates (xf , yf , sf ) are

positive and within the neighborhood where the Newton process targeting the µ+-center of (Pν+) and (Dν+) is
quadratically convergent.
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S. BOUALI 11

Note that (16) can be rewritten as

s∆x+ x∆s = µ
1+q
2 (xs)

1−q
2 − µ

1−p
2 (xs)

1+p
2

= µ
2−p
2 (xs)

p
2 − µ

1−p
2 (xs)

1+p
2 , since q = 1− p

= µ1− p
2 µ

p
2 vp − µ

1−p
2 µ

1+p
2 v1+p

= µ
(
vp − vp+1

)
. (22)

Using xs = µv2 and ∆fx∆fs = µdfxd
f
s , we obtain

xfsf = xs+ (s∆fx+ x∆fs) + ∆fx∆fs

= µv2 + µvp (e− v) + µdfxd
f
s

= µ
(
v2 + vp − vp+1 + dfxd

f
s

)
. (23)

The feasibility condition can now be stated in the following Lemma.

Lemma 15. The iterates (xf , yf , sf ) are strictly feasible if and only if

v2 + vp − vp+1 + dfxd
f
s > 0 ∀p ∈ [0, 1].

Proof
If xf and sf are positive then (23) makes clear that v2 + vp − vp+1 + dfxd

f
s > 0, proving the only if part of

the lemma. For the proof of the converse implication, we introduce a steplength α ∈ [0, 1] and we define
xα = x+ α∆fx and sα = s+ α∆fs.
We then have x0 = x, x1 = xf and similar relations for s. Hence we have x0s0 = xs > 0. Using (22), xs = µv2

and ∆fx∆fs = µdfxd
f
s , we may write:

xαsα = (x+ α∆fx)(s+ α∆fs)

= xs+ α(s∆fx+ x∆fs) + α2∆fx∆fs

= µv2 + αµ
(
vp − vp+1

)
+ α2µdfxd

f
s

> µ (1− α)
(
v2 + α

(
v2 + vp − vp+1

))
.

The right hand-side of the last inequality is nonnegative. Indeed, if the ith coordinate vi belongs to the interval [0, 1]
the term

v2i + vpi − vp+1
i = v2i + vpi (1− vi)

is obviously non negative.
For the case vi ≥ 1, the quantity

v2i + vpi − vp+1
i = vp+1

i

(
v1−p
i − 1

)
+ vpi

stills also non negative.
It follows that xαsα > 0 for α ∈ [0, 1]. Hence, none of the entries of xα and sα vanishes for 0 ≤ α ≤ 1. Since x0

and s0 are positive, and xα and sα depend linearly on α, this implies that xα > 0 and sα > 0 for any α in the
interval [0, 1]. Hence, x1 and s1 must be positive, proving the ’if’ part of the statement in the lemma.

We define

ṽ := v2 + vp − vp+1. (24)

Because we need a lower bound to the vector ṽ, we recall the following Lemma stated in Roos’s book [2].
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12 NEW SEARCH DIRECTION BASED ON A CLASS OF PARAMETRIC KERNEL FUNCTIONS

Lemma 16. (See Lemma II.60 in [2]) Let ρ(δ) := δ +
√
1 + δ2, which is simply denoted later by ρ := ρ(δ). Then

1

ρ(δ)
≤ vi ≤ ρ(δ), 1 ≤ i ≤ n.

By using the previous Lemma, we can easily derive the following bounds of ṽi

1

ρ2
+

1

ρp
− ρp+1 ≤ ṽi ≤ ρ2 + ρp − 1

ρp+1
(25)

We denote ρ̃ := ρ−2 + ρ−p − ρp+1, which means that ρ̃ ≤ ṽi.
Instead of ρ̃, we can define and take the following value

ρp(ρ) := 2ρ−2 − ρp+1 , (26)

as a lower bound to ṽi since obviously ρp(ρ) ≤ ρ̃ because by definition ρ ≥ 1.

Furthermore the function t 7−→ 2t−2 − tp+1 where t ≥ 1 is decreasing and it vanishes in t∗p = 2
1

p+3 which
obviously depends on p.
We are so interested in the minimum value of t∗p with respect to the variable p. In fact, the function p 7−→ 2

1
p+3 is

decreasing since its derivative
−2

1
p+3

(p+ 3)2
log 2

is negative, involving

min{t∗p / p ∈ [0, 1]} = t∗1 =
4
√
2 ∼= 1.19 , (27)

which yields without any more proof the following result

Lemma 17. For any p in [0, 1], the lower bound ρp(ρ) of ṽi is positive if

ρ ∈ [1,
4
√
2[. (28)

In the sequel we denote

ωi := ωi(v) :=
1

2

√
|dfxi|2 + |dfsi|2,

and ω := ω(v) := ∥(ω1, ..., ωn)∥. This implies

(dfx)
T dfs ≤ ∥dfx∥∥dfs∥ ≤ 1

2
(∥dfx∥2 + ∥dfs∥2) = 2ω2,

|dfxid
f
si| = |dfxi||d

f
si| ≤

1

2
(|dfxi|

2 + |dfsi|
2) = 2ω2

i ≤ 2ω2, 1 ≤ i ≤ n.

We proceed by deriving an upper bound for δ(xf , sf ;µ+). According to definition (5), one has

δ(xf , sf ;µ+) =
1

2

∥∥vf − (vf )−1
∥∥ , where vf :=

√
xfsf

µ+
. (29)

In the sequel, we denote δ(xf , sf ;µ+) by δ(vf ) and we have the following result.

Lemma 18. Assuming v2 + vp − vp+1 + dfxd
f
s > 0, one has

4δ2
(
vf
)
≤ 5 (1− θ) δ2(v) +

2θ2n

1− θ
+

2ω2

1− θ
+

(1− θ)2ω2

ρp
(
ρp − 2ω2

) ,
where ρp := ρp(ρ).
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Proof
According to (29) and (23), one has

(
vf
)2

=
xfsf

µ(1− θ)
=
v2 + vp − vp+1 + dfxd

f
s

1− θ
=
ṽ + dfxd

f
s

1− θ

and

4δ2
(
vf
)
=

n∑
i=1

(
(vfi )

2 + (vfi )
−2 − 2

)
=

n∑
i=1

(
ṽi + dfxid

f
si

1− θ
+

1− θ

ṽi + dfxid
f
si

− 2

)

≤
n∑

i=1

(
ṽi + 2ω2

i

1− θ
+

1− θ

ṽi − 2ω2
i

− 2

)
.

For each i we define the function

fi(zi) =
ṽi + zi
1− θ

+
1− θ

ṽi − zi
− 2, i = 1, ..., n.

One can easily verify that if ṽi − zi > 0 then fi(zi) is convex in zi. By taking zi = 2ω2
i , we can require

ṽi − 2ω2
i > 0 .

By using (25) and (26), this holds if

2ω2 ≤ ρp. (30)

Furthermore, we can use Lemma (14) to get

4δ2
(
vf
)
≤

n∑
i=1

fj(ωj) ≤
1

2ω2

n∑
j=1

2ω2
j

fj(2ω2) +
∑
i̸=j

fi(0)


=

1

2ω2

n∑
j=1

2ω2
j

( ṽj + 2ω2

1− θ
+

1− θ

ṽj − 2ω2
− 2

)
+
∑
i̸=j

fi(0)

 .
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14 NEW SEARCH DIRECTION BASED ON A CLASS OF PARAMETRIC KERNEL FUNCTIONS

Using Corollory (11) and Lemma (13) we obtain

n∑
i=1

(
ṽi

1− θ
+

1− θ

ṽi
− 2

)
=

n∑
i=1

(
v2 + vp − vp+1

1− θ
+

1− θ

v2 + vp − vp+1
− 2

)

≤
n∑

i=1

(
v2 + vp − vp+1

1− θ
+

1− θ

v2
+

1− θ

vp
− 1− θ

vp+1
− 2

)

=

n∑
i=1

(
v2

1− θ
+

1− θ

v2
− 2

)
+

n∑
i=1

(
vp

1− θ
+

1− θ

vp
− 2

)

−
n∑

i=1

(
vp+1

1− θ
+

1− θ

vp+1
− 2

)

=

∥∥∥∥√1− θv−1 − v√
1− θ

∥∥∥∥2 + ∥∥∥∥√1− θv−
p
2 − v

p
2

√
1− θ

∥∥∥∥2
−

∥∥∥∥∥√1− θv−
p+1
2 − v

p+1
2

√
1− θ

∥∥∥∥∥
2

≤
∥∥∥∥√1− θv−1 − v√

1− θ

∥∥∥∥2 + ∥∥∥∥√1− θv−
p
2 − v

p
2

√
1− θ

∥∥∥∥2
≤ 5 (1− θ) δ2(v) +

2θ2n

1− θ
,

which implies

∑
i̸=j

fi(0) =
∑
i̸=j

(
ṽi

1− θ
+

1− θ

ṽi
− 2

)

=

[
n∑

i=1

(
ṽi

1− θ
+

1− θ

ṽi
− 2

)]
−
(

ṽj
1− θ

+
1− θ

ṽj
− 2

)
≤ 5 (1− θ) δ2(v) +

2θ2n

1− θ
−
(

ṽj
1− θ

+
1− θ

ṽj
− 2

)
.

Then

4δ2
(
vf
)
≤ 5 (1− θ) δ2(v) +

2θ2n

1− θ

+
1

2ω2

n∑
i=j

2ω2
j

(
ṽj + 2ω2

1− θ
+

1− θ

ṽj − 2ω2
− 2−

(
ṽj

1− θ
+

1− θ

ṽj
− 2

))
= 5 (1− θ) δ2(v) +

2θ2n

1− θ

+
2ω2

1− θ
+

1

2ω2

n∑
i=j

2ω2
j (1− θ)

(
1

ṽj − 2ω2
− 1

ṽj

)

= 5 (1− θ) δ2(v) +
2θ2n

1− θ
+

2ω2

1− θ
+

1

2ω2

n∑
i=j

2ω2
j

(1− θ)2ω2

ṽj (ṽj − 2ω2)
.
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Since the last term in the right hand side is decreasing with respect to ṽj and by using again (25) and (26), we
deduce

4δ2
(
vf
)
≤ 5 (1− θ) δ2(v) +

2θ2n

1− θ
+

2ω2

1− θ
+

(1− θ)2ω2

ρp
(
ρp − 2ω2

) ,
which completes the proof of the lemma.

We choose now

τ =
1

16
, θ =

α

2
√
n
, 0 ≤ α ≤ 1. (31)

Because we need to have δ(vf ) ≤ 1/ 4
√
2, it follows from Lemma (18) that it suffices if

5 (1− θ) δ2(v) +
2θ2n

1− θ
+

2ω2

1− θ
+

(1− θ)2ω2

ρp
(
ρp − 2ω2

) ≤ 2
√
2. (32)

Once again, since the function ρp 7−→ 1

ρp(ρp−2ω2)
is decreasing, we need a lower bound of ρp, which depends on

p and ρ, in order to maximize the last term in the left hand side of inequality (32). One can easily check that ρp is
decreasing with respect to the p variable since its derivative

−ρp+1 log ρ

is negative where ρ ≥ 1. So the minimum value of ρp is reached for p = 1

min{ρp} = ρ1 = 2ρ−2 − ρ2.

On the other hand, the function ρp is also decreasing with respect to ρ variable. So its minimum value is reached
for the following value of ρ denoted by

ρ̂ :=
1

16
+

√
1 +

(
1

16

)2

∼= 1.0645 , (33)

since δ ≤ τ . In addition, the condition (28) is satisfied because ρ̂ < 4
√
2, which guarantees that ρp remains positive.

Thus by replacing the value ρ̂ into the function ρp, we can easily deduce

min
{
ρp such that p ∈ [0, 1] and ρ ∈ [1,

4
√
2[
}
= 2 (ρ̂)

−2 − (ρ̂)
2

∼= 0.6321 . (34)

Furthermore one can check that the left-hand side of (32) is monotonically increasing with respect to ω2. By some
elementary calculations, for n ≥ 1 and δ(v) ≤ τ , we obtain

ω ≤ 0.3735 =⇒ δ(vf ) ≤ 1
4
√
2
. (35)

We note that with the previous choice of ω, the condition (30) still satisfied. Later in this paper, we will give a
precise value of α.
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4.2. Upper Bound for ω(v)

Let us denote the null space of the matrix A as L. So

L := {ξ ∈ Rn : Aξ = 0}.

Then the affine space {ξ ∈ Rn : Aξ = θνr0b} equals dx + L. Note that the row space of A equals the orthogonal
complement L⊥ of L, and dfs ∈ θνvs−1r0c + L⊥. We recall the following result from Roos [7].

Lemma 19. (See Lemma 4.6 in [7]) Let q be the (unique) point in the intersection of the affine spaces dx + L and
ds + L⊥. Then

2ω(v) ≤
√

∥q∥2 + (∥q∥+ 2σ(v))
2
.

Note that (35) implies that we must have ω ≤ 0.3735 to guarantee δ(vf ) ≤ 1/ 4
√
2. Due to Lemma (19) this will

certainly hold if ∥q∥ satisfies
∥q∥2 + (∥q∥+ 2δ(v))

2 ≤ 4 ∗ (0.3735)2. (36)

Furthermore from Ross [7], we can have

√
µ∥q∥ ≤ θνζ

√
eT
(x
s
+
s

x

)
. (37)

In what follows, we give bounds for the rate vectors x/s and s/x.

4.3. Bounds for x/s and s/x

Note that x is feasible for Pν and (y, s) for Dν and moreover δ(x, s;µ) ≤ τ , i.e., these iterates are close to the
µ-centers of Pν and Dν . Based on this information we need to estimate the sizes of the entries of the vectors x/s
and s/x. We recall now a useful result from Roos [7], which is still available for our choice of τ = 1

16 .

Corollary 20. Let τ = 1
16 and δ(v) ≤ τ . Then√

x

s
≤

√
2
x(µ, ν)
√
µ

,

√
s

x
≤

√
2
s(µ, ν)
√
µ

. (38)

Proof
Following the same notations as in the Appendix of Roos ([7], Corollary A.10 and Theorem A.9), and by some
elementary calculations, one may easily verify that if τ = 1

16 , then τ ′ ≈ 0.0041, ϱ(τ ′) ≈ 1.0645 and χ(τ ′) ≈
0.9369, which gives

ϱ(τ ′)

χ(τ ′)
≈ 1.1362 <

√
2 (≈ 1.4142).

Thus the result follows.

Using (38) and substituting into (37) yields

√
µ∥q∥ ≤ θνζ

√
2eT

(
x(µ, ν)2

µ
+
s(µ, ν)

µ

)
. (39)

This gives
µ∥q∥ ≤

√
2θνζ

√
∥x(µ, ν)∥2 + ∥s(µ, ν)∥2. (40)

By substitution of µ = µ0ν = ζ2ν = and θ = α
2
√
n

into (40), we obtain the following upper bound for the norm
of ∥q∥

∥q∥ ≤ α√
2n ζ

√
∥x(µ, ν)∥2 + ∥s(µ, ν)∥2. (41)
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We define

κ(ζ, ν) =

√
∥x(µ, ν)∥2 + ∥s(µ, ν)∥2

√
2n ζ

, 0 < ν ≤ 1, µ = µ0ν,

and
κ(ζ) = max

0<ν≤1
κ(ζ, ν),

we obtain so
∥q∥ ≤ α κ(ζ).

Because we are looking for the value that we do not allow ω to exceed and in order to guarantee that
δf (v) ≤ 1/ 4

√
2, (36) holds if ∥q∥ satisfies ∥q∥2 +

(
∥q∥+ 1

8

)2 ≤ 4 ∗ (0.3735)2, since δ(v) ≤ 1/16. This will be
certainly satisfied if ∥q∥ ≤ 0.462. We may now deduce the value of α:

α =
0.462

κ(ζ)
, (42)

which guarantee that δf (v) ≤ 1/ 4
√
2 holds. Furthermore, following Sect.4.6 in Roos [7], we can prove that

κ(ζ) =
√
2n. We then conclude by substitution into (42) that

θ =
0.462

2
√
2 n

. (43)

5. Iteration Bound

In the previous sections, we have found that, if at the start of an iteration the iterates satisfy δ(x, s;µ) ≤ τ , with
τ = 1/16, then after the feasibility step, with θ as defined in (43), the feasible iterates satisfy δ(xf , sf ;µ+) ≤ 1/ 4

√
2.

According to (11), so each main iteration consists of at most

2 +

⌈
log2

(
log2

1

τ

)⌉
= 4

so-called inner iterations, in each of which we need to compute a new search direction to get the iterate (x+, s+;µ+)
that satisfies δ(x+, s+;µ+) ≤ τ . In each main iteration both the duality gap and the norms of the residual vectors
are reduced by the factor 1− θ . Hence, using (x0)T s0 = nζ2, the total number of main iterations is bounded above
by

1

θ
log

max{nζ2, ∥r0b∥, ∥r0c∥}
ε

.

By using (43), the total number of inner iterations is so bounded above by

17
√
2n log

max{nζ2, ∥r0b∥, ∥r0c∥}
ε

.

6. Numerical results

To carry out the numerical tests, we chose four kernel functions ψ1, ψ2, ψ3, ψ4, according to the definition (15),
that correspond respectively to the following parameters : 1, 0.85, 0.5 and 0.2. The Figure 1 displays the curves of
the four kernel functions used in the numerical tests to provide a geometric illustration of their behavior. For each
of these functions, we performed tests under the MATLAB† environment, on 57 problems belonging to the Netlib

†https://www.mathworks.com/
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Figure 1. The curves of the four chosen kernel functions ψ1, ψ2, ψ3 and ψ4

Standard Library for linear programming‡.

By comparing these 4 functions with respect to each problem, we notice that overall the number of iterations
increases when the value of the parameter p decreases. Despite the performance of the function ψ1, which generally
recorded the best score in terms of number of iterations, we observed that the function ψ4, whose parameter
p = 0.2, outperforms the other test functions for the problems: GREENBEB, BORE3D, RECIPELP, even though
its parameter approaches zero. Furthermore, the number of iterations of the ψ4 function is greater than or equal
to that recorded by ψ2 and ψ3 for the problems AGG3, CZPROB, ISRAEL, MAROS, SCORPION, SCTAP1,
SCTAP2, SHARE1B, SHARE2B, SHELL, SHIP08S, and SHIP12L, as shown in Table 6. These numerical
results show that the selection of the function relative to its parameter p could be beneficial for certain problems.
This choice is, of course, legitimate, since the work presented in this article theoretically proves convergence for
a spectrum of parametric functions where the parameter p continuously ranges over the interval ]0, 1] (excluding 0).

Although the performance of the MATLAB code for this algorithm, whether in number of iterations or in resolution
time, approaches that recorded by LIPSOL solver [11], for the majority of LP problems, we observed some
limitations of our implementation in solving certain problems. As an example, for the BOEING1 problem, the
best value reached is approximately −3.344605e+02 for p = 1, with a primal residual of 4.38e-07 while the dual
residual is 7.08e+01. This gap between the residuals directly impacts the convergence to the final solution, which
equals −3.3521356751e+02. In principle, our code should simultaneously monitor the calculation errors of both
primal and dual residuals to ensure a cautious displacement for such problems, whose conditioning requires specific
pre-processing. This also applies to the problems: BOEING2, CAPRI, and DFL001.

‡Linear programming test problems can be found at https://www.netlib.org/lp/data
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LP Problem ψ1 (p = 1) ψ2 (p = 0.85) ψ3 (p = 0.5) ψ4 (p = 0.2)

iter cpu-time iter cpu-time iter cpu-time iter cpu-time

25FV47 28 0.74 35 0.92 39 1.03 39 1.08
80BAU3B 90 5.26 83 5.13 86 5.21 89 5.78
adlittle 14 0.15 34 0.22 36 0.29 38 0.32
AFIRO 8 0.09 30 0.26 33 0.28 33 0.27
AGG 22 0.46 55 1.08 59 1.10 59 1.07
AGG2 20 0.41 39 0.80 50 0.96 51 1.06
AGG3 22 0.52 40 0.87 49 1.13 29 0.38
BANDM 20 0.30 29 0.36 32 0.33 34 0.38
BLEND 14 0.12 25 0.21 31 0.25 28 0.18
BNL1 30 0.48 41 0.73 45 0.80 47 0.89
BNL2 36 1.56 45 2.04 48 2.18 50 2.28
BOEING1 ! ! ! ! ! ! ! !
BOEING2 ! ! ! ! ! ! ! !
BORE3D 64 0.19 49 0.13 52 0.15 37 0.07
BRANDY 20 0.27 32 0.43 38 0.48 39 0.49
CAPRI ! ! ! ! ! ! ! !
CZPROB 41 0.19 66 1.31 69 1.47 48 1.15
D2Q06C 36 3.01 47 3.87 49 4.10 50 4.14
D6CUBE 31 1.36 69 3.24 41 1.93 70 3.32
DEGEN2 19 0.38 69 1.46 88 1.91 96 2.05
DEGEN3 58 4.69 85 6.51 100 7.80 120 9.26
DFL001 ! ! ! ! ! ! ! !
E226 24 0.40 35 0.48 39 0.57 40 0.60
ETAMACRO ! ! ! ! ! ! ! !
FFFFF800 29 0.57 35 0.80 41 0.95 46 1.09
FINNIS ! ! ! ! ! ! ! !
FIT1D 35 0.86 32 0.80 55 1.36 53 1.11
FORPLAN 37 0.64 36 0.62 41 0.70 43 0.72
GANGES 70 1.75 67 1.69 54 1.36 50 1.24
GREENBEB 85 4.79 77 4.64 66 3.87 59 3.54
ISRAEL 28 0.44 38 0.70 50 0.71 32 0.47
LOTFI 23 0.21 32 0.29 40 0.42 42 0.46
MAROS 34 0.86 53 1.34 54 1.37 52 1.34
RECIPELP 73 0.66 54 0.51 47 0.43 45 0.40
SCORPION 19 0.16 41 0.48 39 0.42 30 0.31
SCTAP1 18 0.25 35 0.44 35 0.45 27 0.35
SCTAP2 20 0.42 34 0.69 40 0.82 34 0.71
SCTAP3 22 0.38 35 0.84 40 0.92 44 1.03
SHARE1B 22 0.29 40 0.40 38 0.38 36 0.34
SHARE2B 14 0.16 27 0.23 29 0.26 22 0.23
SHELL 78 1.47 73 1.38 60 1.06 56 0.96
SHIP04l 16 0.33 35 0.63 34 0.58 44 0.78
SHIP04S 18 0.27 30 0.48 37 0.60 42 0.66
SHIP08L 16 0.48 35 0.95 41 1.05 42 1.07
SHIP08S 18 0.36 39 0.77 43 0.79 39 0.74
SHIP12L 24 0.61 35 0.90 37 0.98 37 0.95
SHIP12S 20 0.38 36 0.65 32 0.58 39 0.74
SIERRA 60 1.69 65 1.97 63 1.75 64 1.81
STAIR ! ! 51 1.06 45 0.89 47 0.95
STANDATA 52 0.78 55 0.99 58 1.00 59 1.13
STANDGUB 44 0.62 51 0.98 52 0.94 55 0.99
STANDMPS 42 0.78 40 0.63 46 0.80 47 0.85
STOCFOR1 16 0.13 30 0.23 33 0.26 33 0.29
STOCFOR2 25 0.65 38 1.11 38 1.09 39 1.11
TRUSS 21 0.85 33 1.28 33 1.34 32 1.30
WOOD1P 28 1.19 41 1.67 42 1.69 39 1.55
WOODW 34 1.38 42 1.90 45 2.06 46 2.09

Table 1. Number of iterations (iter) and CPU-time in seconds
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20 NEW SEARCH DIRECTION BASED ON A CLASS OF PARAMETRIC KERNEL FUNCTIONS

7. Concluding Remarks

In this paper we propose a new search direction based on a class of kernel function depending on the parameter
p ∈]0, 1] to generate the infeasible interior-point algorithm with full-Newton steps for linear optimization. We
benefits the nice property of a sharper quadratic convergence which results in a wider neighborhood for the
feasibility steps, making algorithm more stable. The iteration bound coincides with the currently best known bound
for IIPMs. Future research might focuses firstly on the analysis of this class of kernel functions with the parameter
p ≥ 1 to provide more extension of the interval ]0, 1] and also on the generalization to other classes of optimization
problems, as second-order cone optimization, semi-definite optimization, and also P∗-matrix LCP.
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