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Abstract In this paper, which is motivated by the work of Roos [7] (SIAM J. Optim. 16(4):1110-1136, 2006), we examine
a new search direction derived from a family of parametric kernel functions for IIPM algorithms. The main iteration of the
algorithm is composed of one feasibility step followed by several centrality steps. The neighborhood of Newton process is
more wider using a sharper quadratic convergence results. The algorithm has polynomial complexity and matches the best
known iteration bound based on centrality steps. Furthermore, the numerical experiments demonstrate the efficiency of this
class of functions, providing increased flexibility in selecting the search direction for solving problems.
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1. Introduction
In this paper, we consider the linear optimization (LO) problem in the standard form :

(P) min {ch : Az =b, x > 0},

with its dual problem

(D) max {d'y : ATy+s=c, s>0},
where ¢, x,s € R", b,y € R™ and A € R™*" is of full row rank.

Due to the efficiency from a computational point of view, the use of Interior Point Method based on the kernel
function becomes more attractive.

Since the appearance of the Roos’s paper [7], much works regarding this special topic of Infeasible interior point
algorithms for linear optimization, has been done. These works has essentially focused on the search direction
by trying to modify the KKT system of the primal and dual problem, especially the third equation namely the
centering equation of the system below (2) and consequently analyzing the algorithm’s convergence[1],[6]. Some
works have proposed an algorithms for Infeasible Interior point method IIPM with a new search directions based
on some specific kernel functions [10],[4],[3]. Our algorithm is an extension of the original work of Roos [7] and
Liu [10] in which no line search is needed, it uses a full Newton step instead of a damped step.
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In this paper, we propose a new search direction introduced by a class of parametric kernel functions whose
parameter p belongs to the interval [0, 1], giving a more slightly wider neighborhood of quadratic convergence for
feasibility steps which guarantees that the proximity-measure will be smallest than a threshold 7 in a finite number
of iterations (do not exceed 4 in our case). The direction used in our work is more natural and better intuitively.
The analysis of the convergence and complexity of the algorithm follows. For the survey of IIPM we refer to the
introduction of Roos [7].

The paper is organized as follows. In Section 2 we present some useful properties in the analysis of feasible
IPM which will be exploited in the analysis of our IIPM. In Section 3 we present our full-Newton step IIPM. Each
main step of the method consists of a feasibility step and several centering steps. For the centering steps we exploit
a sharper quadratic convergence result which is done in a slightly wider neighborhood for the feasibility steps.
Section 4 is devoted to the analysis of our feasibility step. In Section 5 we obtain the complexity result of our
IIPM algorithm. In section 6, we present the numerical results of our algorithm. Finally we give some concluding
remarks in Section 7.

2. Feasible Newton step for IPMs

In our analysis we recall some useful properties of central path and feasible full Newton step. For more details, we
refer to [8],[9]. To solve (P) and (D), one needs to find a solution of the following system of equations.

Ax=b, x>0,
Aly+s=¢, s>0, (D
xs =0,

In these so-called optimality conditions the first two constraints represent primal and dual feasibility, whereas the
last equation is the so-called complementary condition. The nonnegativity constraints in the feasibility conditions
make the problem already nontrivial: only iterative methods can find solutions of linear systems involving
inequality constraints. The complementary condition is nonlinear, which makes it extra hard to solve this system.

2.1. Central Path

IPMs replace the complementarity condition by the so-called centering condition xs = pe, where ;. may be any
positive number. This yields the system

Ar=b, xz>0,
ATy+s:c, s> 0, 2)
T8 = pe.

Surprisingly enough, if this system has a solution for some p > 0, then a solution exists for every p > 0, and
this solution is unique. This happens if and only if problems (P) and (D) satisfy the interior-point condition (IPC);
i.e., if (P) has a feasible solution 2 > 0 and (D) has a solution (y, s) with s > 0. If the IPC is satisfied, then the
solution of (2) is denoted by (z(u), y(1), s(x)) and is called the u-center of (P) and (D). The set of all i-centers
forms a path, which is called the central path. As u goes to zero, (z(u), y(1), s(p)) converge to optimal solutions
of problems (P) and (D). Of course, the system (2) is still hard to solve, but by applying Newtons method one can
easily find approximate solutions.
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2 NEW SEARCH DIRECTION BASED ON A CLASS OF PARAMETRIC KERNEL FUNCTIONS

2.2. Properties of the Newton step

We proceed by describing Newtons method for solving (3), with p fixed. Given any primal feasible > 0, dual
feasible y and s > 0, we want to find displacements Az, Ay and As such that

Az + Az) = b,
AT (y 4+ Ay) + (s + As) = ¢,
(x 4+ Az)(s + As) = pe.

According to Newton’s method for solving nonlinear equations, we obtain the linear system in the search
directions Ax, Ay and As:

AAx =b— Az,
ATAy+As=c— ATy — s, (3)
rAs + sAx = pe — xs.

Since A has full row rank, and since the vectors x and s are positive, one may easily verify that the coefficient
matrix in the linear system (3) is nonsingular. Hence, this system uniquely defines the search directions Az, Ay
and As. These search directions are used in all existing primal-dual (feasible and infeasible) [PMs.

If  is primal feasible and (y, s) is dual feasible pair, then b — Az = 0 and ¢ — ATy — s =0, whence the above
system reduces to

AAz =0,
ATAy + As =0,
rAs + sAx = pe — xs, 4)

which gives the usual search directions for feasible primal-dual IPMs. Then The new iterates are given by

T =2+ Az,
Yt =y+ Ay,
st =s+ As.

An important observation is that Az lies in the null space of A, whereas As belongs to the row space of A. This
implies that Az and As are orthogonal, i.e., Az” As = 0. As a consequence, we have the important property that,
after a full-Newton step, the duality gap assumes the same value as at the u-centers, namely npu.

Lemma 1. (See [8], Lemma I1.47) After a primal-dual Newton step, one has (x+)T st = ny.

We measure proximity of iterates (z, y, s) to the u-center (x(u), y(u), s(p)) by the quantity 6(z, s; i), which is
defined as follows:
Y|, where v := s (5)

1

In the analysis of the algorithm, the effect of the proximity 6 (z, s; 1) on a full-Newton step targeting the p-center
of (P) and (D), will be essential.

We recall the following interesting Theorem which implies that the Newton process is locally quadratically
convergent. This property has been crucial in the analysis in many papers as [8], [10], [6].

Theorem 2. (See [8], Theorem I11.52) If 6(x, s; i) < 1, then

1 _
O(z,s5p) :=08(v) := §Hv —v

52

W= A

S(xt,sT;
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S. BOUALI 3

The quadratic convergence can be also obtained by using a tighter upper bound for §(z ™, s; 11), which provides
a slightly wider neighborhood for the feasibility step of our IPM. We can now deduce the following trivial corollary
which we state without proof.

Corollary 3. If 6(x, s; 1) < 1/v/2, then 6(x, st p) < 62

3. Infeasible full-Newton step for IIPM

In the case of an infeasible method, we call the triple (z, y, s) an e-optimal solution of (P) and (D) if the 2-norms
of the residual vectors b — Az and ¢ — ATy — s do not exceed ¢, and if the duality gap satisfies 27's < e. In this
section, we present an infeasible-start algorithm that generates an e-optimal solution of (P) and (D), if it exists, or
establishes that no such solution exists.

3.1. Perturbed Problems

At the beginning, we choose arbitrarily 2° > 0 and (3°, s°) with s° > 0 such that 2°s° = ;% for some positive
number £°. We denote the initial values of the primal and dual residuals r and 0 respectively as

For any v such that 0 < v < 1, we consider the following perturbed problem (P, ), defined by

(P,) min{(c—vr)Tx : Ax=b—vr), x>0},

C

and its dual problem (D, ), which is given by

(D,) max{(b—vr)Ty : ATy+s=c—vr’, s>0},

c

We note that if v = 1 then 2 = 2° yields a strictly feasible solution of (P,), and (y,s) = (y°,s°) a strictly
feasible dual pair solution of (D, ). We deduce that if v = 1 then (P,) and (D,) satisfy the IPC.

Lemma 4. (See [7], Lemma 1.1]) The original problems (P) and (D) are feasible if and only if, for each v
satisfying 0 < v < 1, the perturbed problems (P,) and (D,) satisfy the IPC.

In the sequel, we assume that (P) and (D) are feasible.

3.2. Central Path of the Perturbed Problems

Let (P) and (D) be feasible and 0 < v < 1. Then, Lemma (4) implies that the perturbed problems (P,) and (D,)
satisfy the IPC; hence, their central paths exist. This means that the system

Az =b—vr), x>0, (6)
ATy+s:c—VrS, s >0, @)
T8 = ue,

has a unique solution for every p > 0. This unique solution is denoted by (z(u, V), y(u,v), s(p, v)) and is the
u-center of the perturbed problems (P, ) and (D,). In the sequel, the parameters 1 and v always satisfy the relation
— 0
L=,
Note that since 2°s° = 1%, 2° is the ;°-center of the perturbed problem (P;) and (y°, s%) the u®-center of (Dy).
In other words, (z(u°, 1), y(u°,1),s(u’, 1)) = (2°,4°, s°).

0

Stat., Optim. Inf. Comput. Vol. x, Month 202x



4 NEW SEARCH DIRECTION BASED ON A CLASS OF PARAMETRIC KERNEL FUNCTIONS

3.3. Description of the Algorithm

It is well known that the efficiency of algorithm is measured by the total number of inner iterations which is referred
to as the iteration complexity of the algorithm. The best known iteration bound for IIPMs was first obtained by
Mizuno [5]

0\T .0 _ 0 _ AT, 0 _ 0
o<nlogmax{<“ 0, b= Az, e = ATy s}>,

€

Up to a constant, this bound was slightly improved by Roos [7] and then by Gu et al. [6].
At the beginning, we specify our initial iterate (z°,3°, s°). As usual in infeasible IPMs, we assume that the initial
iterates are designed as follows :
= =ce, °=0, u°=c2

where e is the all-one vector of length n, 1 is the initial dual gap and ¢ > 0 is such that
27 + 5% loo <G,

for some optimal solution (z*,y*, s*) of (P) and (D).
At the start of the algorithm, we have initially §(x, s; 1) = 0, since if v = 1 and p = u°, then z = 29 is the p-center
of the perturbed problem (P,) and (y,s) = (y°, s") is the p-center of the perturbed problem (D,,). In the sequel,
we assume that, at the start of each iteration, just before the feasibility step, d(z, s; 1+) is smaller than or equal to a
threshold value 7 > 0 which is ensured for the first iteration.
Now, we describe one (main) iteration of our algorithm. Suppose that, for some u € (0, u°], we have (z,y, s)
satisfying the feasibility conditions (6) and (7) with v = u/u® and such that z7's = ny and 6(z, s; ) < 7. We
reduce p to pt = (1 — @), with 6 € (0,1), and find a new iterate (x+,y™, s) that satisfies (6) and (7), with v
replaced by v+ = (1 — 0)v = T /u°, and such that (z7)7st = nut and §(a*,sT; ) < 7.
To be more precise, this is achieved as follows. Each main iteration consists of a feasibility step and a few
centering steps. The feasibility step serves to get an iterate (z/, y/, s/) that is strictly feasible for (P,+) and (D,,+)
and close to their p*-center (z(v1),y(vt),s(v™)). In fact, the feasibility step is designed in such a way that
S(xf st pf) < 1/v/2,ie., (zf,yf, s/) belongs to the quadratic convergence neighborhood with respect to the -
center of (P,+) and (D,+). Then we can easily get an iterate (z*,y™, s*) that is strictly feasible for (P,+) and
(D,+) and such that (z)Ts™ = nu™ and §(x*,sT; ) < 7, just by performing a few centering steps starting
from (zf,y7, s¥) and targeting the 1 -center of (P,+) and (D, + ).
In what follows, we describe the feasibility step in more detail. Suppose that we have a strictly feasible iterate
(z,y,s) for (P,) and (D,). This means that (z,y, s) satisfies (6) and (7), with v = 11/u°. We need displacements
Afz, ATy, Afs such that

=+ Aa,
y' =y+Aly,
sf =s+ Afs,

are feasible for (P,+) and (D,+). One may verify easily that (zf,y7, s/) satisfies (6) and (7), with v replaced
by v = (1 — 0)v, only if the first two equations in the following system are satisfied:

AN 2 = Qurd), (®)
ATAT Yy + A s = 0ur?, )
sA 2+ A s = pue — xs, (10)

We conclude that, after the feasibility step, the iterate satisfies the affine equations (6) and (7), with v = v,
The hard part in the analysis is to guarantee that x/ and s/ are positive and satisfy §(zf,s; ut) < 1/v/2.
After the feasibility step, we perform a few centering steps in order to get iterate (z,y™, s™) which satisfies
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(xH)Tst =nut and 6(2zt,st; ut) < 7. By using Corollary (3), the required number of centering steps can
be obtained easily. Indeed, assuming ¢ = (5(mf , st ;ﬁ) <1/ V2, after k centering steps we will have iterates
(zt,y™, sT) that are still feasible for (P,+) and (D, + ) and satisfy

21\:
5l st ut) < (\1@) .

From this, one deduces easily that §(z ", sT; u™) < 7 holds after at most

24 [logQ <10g2 iﬂ (11)

We give below a more formal description of the algorithm as follows

centering steps.

Input :
parameter p in [0, 1] ;
bound parameter ( ;
threshold parameter 7 > 0;
accuracy parameter € > 0;
barrier update parameter 6 in |0, 1[.
begin
z:=(e;y:=0;5:=C(e;v:=1;
while max{zT's, ||b — Az, ||c — ATy — 5|} > edo
begin
feasibility step (z,v, s) := (x,y, s) + (Afz, Afy, Afs);
p-update: = (1 — 0)u;
centrality steps:
while 0(z, s; 1) > 7 do
(z,y,s) = (z,y,s) + (Az, Ay, As);
end while
end
end while
end

Algorithm 1: Primal-Dual Infeasible IPMs Algorithm

Now we introduce the definition of a kernel function.

Definition 5. We call ¢ : (0,00) — [0, 00) a kernel function if ¢ is twice differentiable and the following conditions
are satisfied

(i) ¥'(1) = (1) =0,
(ii) " (t) > 0 forallt > 0,

‘We define B
A=AVIX, V =diag(v), X = diag(x),
f f
d£ _ vA :c7 d£ _ vAls (12)
X S
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6 NEW SEARCH DIRECTION BASED ON A CLASS OF PARAMETRIC KERNEL FUNCTIONS

The system (8)-(10) which defines the search directions Az, Afy and Afs, can be expressed in terms of the
scaled directions dZ and df as follows:

Adf = ovry,

_7AS
A=Yy d! = Gvvs—1rY
]

c?

dl +df =vt —v, (13)

It is clear that the right-hand side of the equation (13) is the negative gradient direction of the logarithmic barrier
function :
X;S;

I

U(v) = Zd)(vi), vi =

whose kernel function is )
t“ —1
b(t) = —5— —log(t).
In this paper we make a slight modification of the standard Newton direction. The new system is then defined as
follows

Ad! = Gur),

oA
A=Yy d! = Gvvs™1rY
1

dl +df = -V (v). (14)

where our kernel function of W is given by

%(t):{;ﬁ},ijgfﬁ pa Il et as)
2 p=1
According to the definition (5), ¢(t) is obviously a kernel function.
Since z/);(t) = tP — t79, equation (14) can be rewritten as
df +df =v=7 — P, (16)

In the sequel, the feasibility step will be based on the last equation. we can now define the following proximity
measure induced by our kernel function

1 1
o(v) == 3 V¥ (v)| = 3 lv? =" (17)

In fact we observe that o(v) = 0 if and only if v = e, thus o(v) = 0 is also an appropriate proximity measure.
Later we prove that this proximity is smaller than the one induced by the classical logarithmic barrier function (5).

3.4. Some technical lemmas

The following lemmas will be useful for our analysis.

Lemma 6. For anyt > 0, one has

< ct—t

, pelo1].
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S. BOUALI 7

Proof
For ¢ in [0, 1], and by defining the following functions :

-1

yd t p
p(t,p) == - +t2 and o(t,p) = 3 +t7 2,

we get
1 P

5 [t —¢| - ’t’f — 3] = % (tt—t) - (t*% —t%) = p(t,p) — o(t, p).

The right term in the last equation will be positive if the following statement is true :

min{p(t,p) : p € [0,1]} > maz{o(t,p) : p € [0,1]}. (18)
Firstly, the derivative of o(¢, p) with respect to the p variable is positive :

dQ 1 _2
—(t,p) = —<log(t)t™2 > 0.
g (00) =~ loa(t)t 5 >0

Which means that the function p is increasing in p. So its maximum is reached forp =1, i.e :

maz{o(t,p) : p € [0,1]} = o(t,1) = % +t73,

Secondly, the derivative of the function p(¢, p) with repsect to the p variable is negative :

dp

L (t,p) = 5 los()t

<0
dp =

which means that the function p is decreasing in p. So its minimum is reached forp = 1, i.e :

1
min{p(t,p) : p € [0,1]} = p(t. 1) = - +1%.
We can now deduce that the statement (18) is true. Indeed :
= t . Vi1 —t?)
1) —o(t, 1) = —+t2 — [ =4t72 ) =22 >0
p(t.1) = oft,1) = 5 (5+0%) = Vor

For the case where ¢ > 1 and by redefining the following functions as :

t p T
p(t,p) == 3 +t72 and o(t,p):= -5 +12,

we can get :

1 1 P _z

=5 (=t - (“ —t 2) = p(t;p) = o(t,p).

By the same arguments above, we can easily verify that the statement (18) remain true for ¢ > 0. The derivatives
of the last functions with respect to p can be easily obtained as follows :

% [t —t| - ’t’% — 3

do t dp 1 _r
dp(t,p) 5 log(t)t2 20 and dp(t,p) 5 log(t)t™= <0

It means that the function o(¢, p) is increasing whence the p(t, p) function is decreasing with respect to p. Then :

13,

maz{o(t,p) : p € [0,1]} = o(¢t,1) = %

Stat., Optim. Inf. Comput. Vol. x, Month 202x



8 NEW SEARCH DIRECTION BASED ON A CLASS OF PARAMETRIC KERNEL FUNCTIONS

and y
min{p(t,p) :p € [0.1]} = p(t.1) = 5+ 2.
Once again we easily ensure that the statement (18) is verified. Indeed :

1 1

p(t’l)_g(t’l):%“Lf%— <2+t2> _ Ve

0,
26Vt
and the lemma follows. O
We can now derive the following result.

Corollary 7. For any vector v > 0, one has

Proof
Due to the lemma (6) and by developing the left term in the last inequality, one can obviously get :

n _p 2 "1 _ 1, _
:Z<vi2_vi2) SZE(”il_vi)QZZHU 1_UHQ‘

i= =1

And the Lemma follows. O

p P
2

Hv‘? —v

Furthermore, according to (5), we obtain:
P 1
5 (v§> < 50(0). (19)

Lemma 8. Foranyt > 0, one has : |t~ — t?| < |t’1 — t| YV p,q€0,1].

Proof
For ¢ in [0, 1], we have by removing the absolute value and grouping terms in the following equation :

=t ==t = () - (=) = () + (P — 1)
=t (A=) 4P (1—7P) > 0.
For t > 1, we obtain by the same arguments :
e e L e e e e (e e I (R L S A
=P (t"P 1)+t (1) > 0.
Which complete the proof. O

We can now deduce the following relation between our proximity measure already mentioned in (17) and the
proximity measure defined by (5).

Corollary 9. For any vector v > 0, we have : o(v) < §(v).

Proof
The result is obviously derived from the last lemma. Indeed :

n

o) = 2 lot — o = | > (oot
1 -1 2 2
< - (v; ' =) =6%(v)
=1
And the Corollary follows. O
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Thus the result is obtained

Lemma 10. Fort > 0 and p in [0, 1], one has the following two statements :

1 1 1 1
(SE T e 20
1 1
P + P — ¢pt1 @D
Proof
Since we have forany ¢ > 0 :
_ _ -1
o111 -p@-eh) o
2t ottt ¢ tpt1 -
the first inequality (20) is then verified.
To prove the second inequality (21), we observe that the right hand side of the following equation :
1 1 - (-t
t 24t —rtl 2 4 — L
is always positive for any ¢ > 0. Thus the lemma follows. O

We can now state the following result which will play an important role regarding the feasibility analysis
discussed in the next section.

Corollary 11. Fort > 0 and p in [0, 1], one has :

1 < 1 1 1
T e TR T
Proof
The result is consequently derived by combining the two inequalities in the lemma (10) where the function
t — 1/t played the intermediate role between its upper bound and the lower one. O

Lemma 12. According to the result of Lemma (1), for any p € [0, 1] one has

|o#]| < v

P
V2

Proof
By applying Holder’s inequality, we obtain :

o112 n Py 2
‘ v2|| = Z (vf) =)
=1 1=1
n D 2
£ 2P
=3t W
i=1
P 2—p
n 2 n 2
i=1 i=1
P 2—p
=n2.n 2z =n
Thus the result is obtained. O
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10 NEW SEARCH DIRECTION BASED ON A CLASS OF PARAMETRIC KERNEL FUNCTIONS

Lemma 13. For any vector v > and p € [0, 1], one has

\/1—91}—%—i < (1—-6)8%(v) on
Vv1i-0| — 1—46
and
v 2 6%n
1—0v - ——| <4(1-0)6° :
i Vi - St <aa -
Proof
By applying the lemma (12) and (19), we obtain
vt v |
1_ -z P
=it i = o (s 15)
2 2
(1-0) *%w%ﬂ%flvje
2 p b ya T b
(1- HU 2 —p2 170 v2 —29( 2 112) v2
» 6%n
4(1—0)52(v2)+ ;
0%n
2
(1-0)8(0) + 7
The second statement can be checked by following the same previous steps. Thus the lemma follows. O

Lemma 14. (See [1], Lemma A.l1) For i = 1,...,m, let f; : Ry — R denote a convex function. Then, for any
nonzero z € R'!, the following inequality

3

Zfzzz ST f]€Z+Zfz

j=1 i#]

holds.

4. Analysis of the feasibility step

Let z, y and s denote the iterates at the start of an iteration, and assume that xTs = nu and §(v) < 7 which is true
at the first iteration since §(v°) = 0, according to the choice of (2, s°) stated in Sect.(3.3).

4.1. Feasibility step

As we established in Sect.(3.3), the feasibility step generates new iterate (z/,y/, s/) that satisfies the feasibility
conditions for (P,+) and (D,+ ), except possibly the nonnegativity constraints. A crucial element in the analysis
is to show that, after the feasibility step, we get §(zf,s/;ut) < 1/v/2, i.e., the new iterates (27,7, sf) are
positive and within the neighborhood where the Newton process targeting the p+-center of (P,+) and (D,+) is
quadratically convergent.
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Note that (16) can be rewritten as

1+q 1—gq 1—p 1+p

sAx+xAs=p"2 (£8) 2 —pu = (xs) 2z

:uz%p(xs)%—ulgp(xs ITP, since g=1—p
P 1 1+p
=plTEpzeP — o ot
= p (vP — 0Pt (22)

Using xs = pv? and AfzAls = pdfdf, we obtain

wfsh = a5+ (sATx + 2ATs) + ATzATs
= po® 4 poP (e — v) + pdld]
=p(v? + 0P — Pt aldl). (23)

The feasibility condition can now be stated in the following Lemma.

Lemma 15. The iterates (xf,yf, s') are strictly feasible if and only if
v? P — Pt 4 dfdl >0 Vpe|o,1].

Proof

If »/ and s/ are positive then (23) makes clear that v? + v? — vP*! + dfdf > 0, proving the only if part of
the lemma. For the proof of the converse implication, we introduce a steplength « € [0,1] and we define
2% =2+ aAfrand s* = s + aA/ls.

We then have 2° = z, 2! = 2/ and similar relations for s. Hence we have x
and AfzAfs = pdfdf, we may write:

050 = x5 > 0. Using (22), x5 = pv?

%% = (z 4+ aAT ) (s + aATs)
= x5+ a(sAfx + AT s) + a2 ATz AT s
= v +apu (vp — vp+1) + o2 pdld!
>p(l—a) (v®+a(v®+oP =P,

The right hand-side of the last inequality is nonnegative. Indeed, if the ith coordinate v; belongs to the interval [0, 1]
the term

1
v? P — Pt

i 4 :U1'2+Uf(1_vi)

is obviously non negative.
For the case v; > 1, the quantity

2 P p+1 _ p+l( 1—p P
v ol — o7 =0 (0,77 = 1) + 0

stills also non negative.

It follows that 2*s* > 0 for « € [0, 1]. Hence, none of the entries of = and s* vanishes for 0 < « < 1. Since 20
and s° are positive, and z® and s* depend linearly on «, this implies that 2% > 0 and s* > 0 for any « in the
interval [0, 1]. Hence, x! and s' must be positive, proving the ’if” part of the statement in the lemma. O

We define
0= 0% 40P —oPtL 24)
Because we need a lower bound to the vector 0, we recall the following Lemma stated in Roos’s book [2].
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12 NEW SEARCH DIRECTION BASED ON A CLASS OF PARAMETRIC KERNEL FUNCTIONS

Lemma 16. (See Lemma I1.60 in [2]) Let p(8) := 6 + /1 + 62, which is simply denoted later by p := p(§). Then

1
—— <v; <pd), 1<i<n.

p(9)
By using the previous Lemma, we can easily derive the following bounds of v;
1 1 1
4 _ ptl 3. 2 -
R L Y s (25)

We denote j := p~2 + p~P — pP*1, which means that § < v;.
Instead of p, we can define and take the following value

Py(p) == 2p72 = pP*t, (26)

as a lower bound to ©; since obviously 5, (p) < p because by definition p > 1.

Furthermore the function ¢ — 2¢t—2 — t?*! where t > 1 is decreasing and it vanishes in t;; = Qﬁ which
obviously depends on p.
We are so interested in the minimum value of 7 with respect to the variable p. In fact, the function p — 2743 is
decreasing since its derivative

—27 g2
(32
is negative, involving
min{t} /p € [0,1]} =#; = V2= 1.19, 27

which yields without any more proof the following result

Lemma 17. For any p in [0,1], the lower bound p,,(p) of U; is positive if

pell Ve (28)
In the sequel we denote
1
wi = wi(v) = 34/ |d, [ + [d] %,

and w := w(v) := [|(wi, ..., wn)|. This implies
1
(@)"d] < lldLllddll < Skl + Nl ]1%) = 27,
1
jdf,dli| = | ]|dl;| < §(|d£¢‘2 P =20? <2w? 1<i<n.

We proceed by deriving an upper bound for §(x/, s7; ™). According to definition (5), one has

ofst
pt

5ot f %) = 5 [[of = )7, where of := 29)

In the sequel, we denote 6(z/, s/; uT) by §(v/) and we have the following result.
Lemma 18. Assuming v? + vP — vP*! 4+ dfd! > 0, one has

20%n  2w? (1—0)2w?
462 (v1) < 5(1 - 0) 62 ,
() £50-080) + 75+ 7o =

|
I

where p,, :

»(P)-
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Proof
According to (29) and (23), one has

(vf)2 _oalst PP — Pt dfdl o+ dld]

Cop(l—-0) 1-6 o 1-6

and

For each i we define the function

+ — —
1-6 Vi — Z;

fi(zi) =

One can easily verify that if 6; — z; > 0 then f;(z;) is convex in z;. By taking z; = 2%‘2’ we can require
U — 2w? > 0.
By using (25) and (26), this holds if
22 <7, (30)

Furthermore, we can use Lemma (14) to get

46% (v Zfa w;) —2 222w fi(2w? +Zfl

i#]

1< o[ (G2 1-6
N (e R R L

Jj=1 i#]
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14 NEW SEARCH DIRECTION BASED ON A CLASS OF PARAMETRIC KERNEL FUNCTIONS

Using Corollory (11) and Lemma (13) we obtain

(

1-0
v2 4 vP — pPtl

)
-

1-6

pp+1

v? + P — P Tt
1-46

n

D

i=1

1-46

U5
1-06

n

D

i=1
n

->

i=1

)

i

1—9+

v 4P — pP Tt
02

1-0
s n
=22
i=1

1—-46
-

1—-46
vP

<

(
(

2 1

v
1—

1

+

N P _
_ P

0 1

%

- H\/1 —Gv™% —

U])+1

)

2
v

V1—16

e

2
v

Vv1—90
20%n

1-6’

- H\/1 —Gv™% —

V1—16

V1—6v!—

<

<5(1—6)6%(v) +

=
- 1%

<5(1—-0)6*(v) +

which implies
U;

_9+

> R0 =)

i#j

n

2

i=1

U5

1-96

Then

20%n
1—-6
U; + 2w?
1-6

46% (vf) <5(1-0) 6% (v) +

1 & s
JrﬁZij <
i=j

Uj
1-46

1-6 1-—

v — 2w?

+

(e 529

5(1 —6)6%(v) +

20%n
_ b
Uj
(1 —0)2w?
(

U5 (0 — 2w?)”
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Since the last term in the right hand side is decreasing with respect to v; and by using again (25) and (26), we
deduce

20%n  2w? (1—0)2w?

2 ( f _ 2
(o) S5U-OFW+ g+ gt e

which completes the proof of the lemma. O

‘We choose now

= = —— 0<a<l. (31)

Because we need to have §(v7) < 1/+/2, it follows from Lemma (18) that it suffices if

2 2 _ 2
20°n 2w (1-10)2w <23, (32)

5(1—6)82
1=60)8W + =5 +13 7 G —27)

Once again, since the function p,, — is decreasing, we need a lower bound of p,,, which depends on

1
Pp (ﬁp —2w? )
p and p, in order to maximize the last term in the left hand side of inequality (32). One can easily check that p,, is
decreasing with respect to the p variable since its derivative

—p" 1 logp

is negative where p > 1. So the minimum value of p,, is reached for p = 1

min{p,} =p, =2p~? — p’.

On the other hand, the function p,, is also decreasing with respect to p variable. So its minimum value is reached
for the following value of p denoted by

1 1\* _
pr=qgT\1H (g5) =10645, (33)

since § < 7. In addition, the condition (28) is satisfied because p < /2, which guarantees that Py remains positive.
Thus by replacing the value p into the function p,,, we can easily deduce

min {ﬁp such that p € [0,1] and p € [1, \75[} =2(p) "% = (p)°
=~ 0.6321 . (34)

Furthermore one can check that the left-hand side of (32) is monotonically increasing with respect to w?. By some
elementary calculations, for n > 1 and 6(v) < 7, we obtain

1
< —.
_\4/5

We note that with the previous choice of w, the condition (30) still satisfied. Later in this paper, we will give a
precise value of «.

w < 0.3735 = 5(vf) (35)
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16 NEW SEARCH DIRECTION BASED ON A CLASS OF PARAMETRIC KERNEL FUNCTIONS

4.2. Upper Bound for w(v)
Let us denote the null space of the matrix A as L. So
L:={£eR" : A¢ =0}.

Then the affine space {£ € R : A¢ = Ouvr)} equals d, + £. Note that the row space of A equals the orthogonal
complement £+ of £, and d! € fvvs~1r0 + L. We recall the following result from Roos [7].

Lemma 19. (See Lemma 4.6 in [7]) Let q be the (unique) point in the intersection of the affine spaces d,, + L and
ds + L1, Then

o) < /llall® + (llall + 20(0))*

Note that (35) implies that we must have w < 0.3735 to guarantee 6(v/) < 1/+v/2. Due to Lemma (19) this will
certainly hold if ||¢|| satisfies
lgl* + (llgll +26(v))* < 4 (0.3735)>. (36)

Furthermore from Ross [7], we can have

Vil < ovcyfet (£ 42). (37)

X

In what follows, we give bounds for the rate vectors x/s and s/x.

4.3. Bounds for x/s and s/x

Note that z is feasible for P, and (y,s) for D, and moreover d(x, s; ) < 7, i.e., these iterates are close to the
u-centers of P, and D,,. Based on this information we need to estimate the sizes of the entries of the vectors z/s
1

and s/x. We recall now a useful result from Roos [7], which is still available for our choice of 7 = i

Corollary 20. Let 7 = - and 6(v) < 7. Then

\/> <\f \/> <22 “ . (38)
Proof

Following the same notations as in the Appendix of Roos ([7] Corollary A.10 and Theorem A.9), and by some
elementary calculations, one may easily verify that if 7 = E’ then 7/ = 0.0041, o(7’) = 1.0645 and x(7') =
0.9369, which gives

~ 1.1362 < V2 (= 1.4142).

Thus the result follows. O

Using (38) and substituting into (37) yields

x(u, )2 s(p,v
Villall < 9u<\/2eT ( CLIIC )>. (39)
[t I

This gives
pllall < V20u¢\/ N (u, v) 12 + (s, v)] 12 (40)
By substitution of 1 = v = (?v = and 6 = f into (40), we obtain the following upper bound for the norm

of [lq|
lall < [l (s )12 + [ s (s, )2 C3Y)
= C¢

Stat., Optim. Inf. Comput. Vol. x, Month 202x



S. BOUALI 17

‘We define \/
|2 (e V) [12 + lls(p, )12 0
k(C,v) = , O<v<l, u=pv,

(¢ v) o L= p

and
R(C) = 0@3@%((#%
we obtain so
lqll < a®(C).

Because we are looking for the value that we do not allow w to exceed and in order to guarantee that
&7 (v) < 1/+/2, (36) holds if ||q| satisfies [|g]* + (||ql + g)Q < 4% (0.3735)2, since 6(v) < 1/16. This will be
certainly satisfied if ||¢|| < 0.462. We may now deduce the value of a:
~0.462

E(¢)
which guarantee that 5f (v) <1 /\4@ holds. Furthermore, following Sect.4.6 in Roos [7], we can prove that
®(¢) = v2n. We then conclude by substitution into (42) that

o — 0.462
N 2\/5 n

o (42)

(43)

5. Iteration Bound

In the previous sections, we have found that, if at the start of an iteration the iterates satisfy d(z, s; ) < 7, with
7 = 1/16, then after the feasibility step, with 6 as defined in (43), the feasible iterates satisfy §(z/, s/; ut) < 1/v/2.

According to (11), so each main iteration consists of at most

2+ ’VIOg2 <log2 71_>-‘ =4

so-called inner iterations, in each of which we need to compute a new search direction to get the iterate (z, s™; u™)
that satisfies (z ™, s*; u™) < 7. In each main iteration both the duality gap and the norms of the residual vectors
are reduced by the factor 1 — 6 . Hence, using (xO)Tso = n(?, the total number of main iterations is bounded above
by

Lo mas(n® g1 I}
0 €
By using (43), the total number of inner iterations is so bounded above by

2 0 0
172 log MG Il 1201}
g

6. Numerical results
To carry out the numerical tests, we chose four kernel functions 1, 12, 13, 14, according to the definition (15),
that correspond respectively to the following parameters : 1,0.85,0.5 and 0.2. The Figure 1 displays the curves of

the four kernel functions used in the numerical tests to provide a geometric illustration of their behavior. For each
of these functions, we performed tests under the MATLAB' environment, on 57 problems belonging to the Netlib

Thttps://www.mathworks.com/
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Figure 1. The curves of the four chosen kernel functions 1, 92, 13 and 4

Standard Library for linear programming®.

By comparing these 4 functions with respect to each problem, we notice that overall the number of iterations
increases when the value of the parameter p decreases. Despite the performance of the function 1, which generally
recorded the best score in terms of number of iterations, we observed that the function ¢4, whose parameter
p = 0.2, outperforms the other test functions for the problems: GREENBEB, BORE3D, RECIPELP, even though
its parameter approaches zero. Furthermore, the number of iterations of the v, function is greater than or equal
to that recorded by 5 and 13 for the problems AGG3, CZPROB, ISRAEL, MAROS, SCORPION, SCTAPI,
SCTAP2, SHAREIB, SHARE2B, SHELL, SHIPO8S, and SHIP12L, as shown in Table 6. These numerical
results show that the selection of the function relative to its parameter p could be beneficial for certain problems.
This choice is, of course, legitimate, since the work presented in this article theoretically proves convergence for
a spectrum of parametric functions where the parameter p continuously ranges over the interval 0, 1] (excluding 0).

Although the performance of the MATLAB code for this algorithm, whether in number of iterations or in resolution
time, approaches that recorded by LIPSOL solver [11], for the majority of LP problems, we observed some
limitations of our implementation in solving certain problems. As an example, for the BOEINGI1 problem, the
best value reached is approximately —3.344605e+02 for p = 1, with a primal residual of 4.38e-07 while the dual
residual is 7.08e+01. This gap between the residuals directly impacts the convergence to the final solution, which
equals —3.3521356751e+02. In principle, our code should simultaneously monitor the calculation errors of both
primal and dual residuals to ensure a cautious displacement for such problems, whose conditioning requires specific
pre-processing. This also applies to the problems: BOEING2, CAPRI, and DFL0O01.

Linear programming test problems can be found at https://www.netlib.org/lp/data
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LP Problem Y1 (p = 1) P2 (p = 0~85) P3 (p = 0~5) U (p = 02)
iter cpu-time iter cpu-time iter cpu-time iter cpu-time

25FV47 28 0.74 35 0.92 39 1.03 39 1.08
80BAU3B 90 5.26 83 5.13 86 5.21 89 5.78
adlittle 14 0.15 34 0.22 36 0.29 38 0.32
AFIRO 8 0.09 30 0.26 33 0.28 33 0.27
AGG 22 0.46 55 1.08 59 1.10 59 1.07
AGG2 20 0.41 39 0.80 50 0.96 51 1.06
AGG3 22 0.52 40 0.87 49 1.13 29 0.38
BANDM 20 0.30 29 0.36 32 0.33 34 0.38
BLEND 14 0.12 25 0.21 31 0.25 28 0.18
BNLI1 30 0.48 41 0.73 45 0.80 47 0.89
BNL2 36 1.56 45 2.04 48 2.18 50 2.28
BOEING1 ! ! ! ! ! ! ! !

BOEING2 ! ! ! ! ! ! ! !

BORE3D 64 0.19 49 0.13 52 0.15 37 0.07
BRANDY 20 0.27 32 0.43 38 0.48 39 0.49
CAPRI ! ! ! ! ! ! ! !

CZPROB 41 0.19 66 1.31 69 1.47 48 1.15
D2Q06C 36 3.01 47 3.87 49 4.10 50 4.14
D6CUBE 31 1.36 69 3.24 41 1.93 70 3.32
DEGEN?2 19 0.38 69 1.46 88 1.91 96 2.05
DEGEN3 58 4.69 85 6.51 100 7.80 120 9.26
DFL001 ! ! ! ! ! ! ! !

E226 24 0.40 35 0.48 39 0.57 40 0.60
ETAMACRO ! ! ! ! ! ! ! !

FFFFF800 29 0.57 35 0.80 41 0.95 46 1.09
FINNIS ! ! ! ! ! ! ! !

FIT1D 35 0.86 32 0.80 55 1.36 53 1.11
FORPLAN 37 0.64 36 0.62 41 0.70 43 0.72
GANGES 70 1.75 67 1.69 54 1.36 50 1.24
GREENBEB 85 4.79 77 4.64 66 3.87 59 3.54
ISRAEL 28 0.44 38 0.70 50 0.71 32 0.47
LOTFI 23 0.21 32 0.29 40 0.42 42 0.46
MAROS 34 0.86 53 1.34 54 1.37 52 1.34
RECIPELP 73 0.66 54 0.51 47 0.43 45 0.40
SCORPION 19 0.16 41 0.48 39 0.42 30 0.31
SCTAP1 18 0.25 35 0.44 35 0.45 27 0.35
SCTAP2 20 0.42 34 0.69 40 0.82 34 0.71
SCTAP3 22 0.38 35 0.84 40 0.92 44 1.03
SHAREIB 22 0.29 40 0.40 38 0.38 36 0.34
SHARE2B 14 0.16 27 0.23 29 0.26 22 0.23
SHELL 78 1.47 73 1.38 60 1.06 56 0.96
SHIP0O41 16 0.33 35 0.63 34 0.58 44 0.78
SHIP04S 18 0.27 30 0.48 37 0.60 42 0.66
SHIPOSL 16 0.48 35 0.95 41 1.05 42 1.07
SHIPOSS 18 0.36 39 0.77 43 0.79 39 0.74
SHIP12L 24 0.61 35 0.90 37 0.98 37 0.95
SHIP12S 20 0.38 36 0.65 32 0.58 39 0.74
SIERRA 60 1.69 65 1.97 63 1.75 64 1.81
STAIR ! ! 51 1.06 45 0.89 47 0.95
STANDATA 52 0.78 55 0.99 58 1.00 59 1.13
STANDGUB 44 0.62 51 0.98 52 0.94 55 0.99
STANDMPS 42 0.78 40 0.63 46 0.80 47 0.85
STOCFORI1 16 0.13 30 0.23 33 0.26 33 0.29
STOCFOR2 25 0.65 38 1.11 38 1.09 39 1.11
TRUSS 21 0.85 33 1.28 33 1.34 32 1.30
WOODI1P 28 1.19 41 1.67 42 1.69 39 1.55
WOODW 34 1.38 42 1.90 45 2.06 46 2.09

Table 1. Number of iterations (iter) and CPU-time in seconds
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NEW SEARCH DIRECTION BASED ON A CLASS OF PARAMETRIC KERNEL FUNCTIONS

Concluding Remarks

In this paper we propose a new search direction based on a class of kernel function depending on the parameter
p €]0,1] to generate the infeasible interior-point algorithm with full-Newton steps for linear optimization. We
benefits the nice property of a sharper quadratic convergence which results in a wider neighborhood for the
feasibility steps, making algorithm more stable. The iteration bound coincides with the currently best known bound

for

[TPMs. Future research might focuses firstly on the analysis of this class of kernel functions with the parameter

p > 1 to provide more extension of the interval ]0, 1] and also on the generalization to other classes of optimization
problems, as second-order cone optimization, semi-definite optimization, and also P,-matrix LCP.

AN L

—_
SO 0
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