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Abstract A robot is a mechanical device that can perform physical tasks, either using human supervision and control,
using programs that utilize the principles of artificial intelligence. One type of robot that is widely developed today is the
Automated Guided Vehicle (AGV). One of the principles of artificial intelligence in AGV is, When AGV moves from one
place to another using path guidance located along the AGV path. The position monitoring system is the most important
part of the AGV. The navigation system of mobile vehicles can be built using a relating position sensor or using an absolute
position sensor. Some mobile vehicles in the world of robotics are already accustomed to using position estimation as their
navigation system. Starting with the preparation of a mathematical model of the AGV movement in the form of a non-linear
model, then linearization of the non-linear model is carried out with the Jacobi matrix. The linear model above is a platform
for carrying out the navigation and guidance system of the AGV. The main objective of this study is to maintain position
accuracy continuously applied trajectory estimation to AGV navigation and guidance with the trajectory estimation method,
namely the Ensemble Kalman Filter. The simulation results show that by generating 500 ensembles, the best accuracy level
is around 99.45%. Overall, from the three simulations carried out, an accuracy level of around 97.8% - 99.45% was obtained.
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system
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1. Introduction

Automated Guided Vehicles (AGVs) are of great importance in the modern industrial environment, particularly in
the framework of Industry 4.0. These vehicles considerably improve the efficiency of the intralogistics process
by automating material transportation, leading to improved quality of service and reduced human error [1], [2].
AGV are highly valued for their flexibility in adapting to changes in plant layout and production demand, making
them indispensable in Flexible Manufacturing Systems (FMS) [3]. Their applications span a wide range of sectors,
include assembly lines, warehouses, and production plants, where they contribute to increased productivity, a safer
workplace, and reduced costs [2]. The core of this operational effectiveness hinges on accurate and reliable state
estimation knowing the AGV’s precise position, velocity, and orientation in real time which is critical for effective
path planning, obstacle avoidance, and trajectory tracking.

From a systems theory perspective, an AGV is a complex, nonlinear dynamic system. Its motion is governed by
forces, friction, and inertia, leading to dynamics that are inherently nonlinear. However, due to their computational
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simplicity and analytical tractability, linearized dynamic models are frequently employed as the basis for filter
design in many practical AGV applications [4]. The classic Kalman Filter (KF) is the optimal estimator for such
linear systems under Gaussian noise. This widespread use of linear modeling, despite the underlying nonlinearity,
creates a critical research gap: the performance of these simplified models is often insufficient under aggressive
maneuvers, varying payloads, or in the presence of significant nonlinear disturbances, leading to estimation drift
and reduced navigation accuracy.

To bridge this gap between model simplicity and real-world complexity, advanced estimation algorithms are
required. The Ensemble Kalman Filter (EnKF) is particularly suited for this challenge. While our research
continues to use a computationally efficient linear model as the baseline, the EnKF does not rely on linearized
equations. Instead, it uses a Monte Carlo approach with an ensemble of state vectors to statistically represent the
system’s error covariance, making it inherently capable of handling the nonlinearities and uncertainties that a linear
model alone cannot capture [8]. This allows the EnKF to provide more accurate and robust state estimates than the
standard KF when the true system dynamics deviate from the linear assumption. By combining the linear model
and EnKF, more accurate and robust trajectory estimates can be obtained in the face of uncertainty [9].

Therefore, this research aims to investigate the synergy of a linear dynamic model with the nonlinear estimation
capabilities of the Ensemble Kalman Filter for AGV trajectory estimation. The central hypothesis is that this
combination can deliver the accuracy required for precise navigation while maintaining the computational
efficiency necessary for real-time application on embedded systems. Simulation results and a comprehensive
performance analysis will validate the effectiveness of the proposed method against conventional techniques, such
as the standard Kalman Filter [10], [11]. Thus, by demonstrating a computationally intelligent filtering solution,
this research is expected to contribute to the development of more adaptive and reliable AGV navigation systems,
supporting the implementation of more advanced industrial automation.

2. Mathemathics Modelling of Automatic Guided Vehicle (AGV)

Automated Guided Vehicles (AGVs) are used in a variety of applications, including material handling and flexible
manufacturing systems. AGV dynamics are often described by nonlinear models that combine longitudinal and
lateral behavior [7]. The AGV movement can be seen as in Figure 1 which can produce a system of AGV motion
equations [4].

Figure 1. Trajectory tracking model [4]
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2 TRAJECTORY ESTIMATION OF AUTOMATED GUIDED VEHICLE

Here is the equation of the AGV motion system [4]

a11vy + a12r + b1δf (1)
v̇y = a11vy + a12r + b2c
ṙ = a21vy + a22r + b2δf
ėy = vx sin eω + vy cos eω
ėφ = r
ėv = rvy + Fx

m

(2)

with
a11 = −Cf+Cr

mvr
, a12 = −vx − Cf lf−Crlr

mvx
, b1 =

Cf

m

a21 = −Cf lf−Crlr
Izvx

, a22 = − l2fCf+l2rCr

Izvx
, b2 =

lfCf

Iz

Parameters Definition
lf Distance from CG to the front axle (m)
lr Distance from CG to the rear axle (m)
Cf Cornering Stiffness of front wheel (N/rad)
Cr Cornering Stiffness of rear wheel (N/rad)
m Mass (Kg)
Iz Yaw Moment of inertia of the vehicle (kg m2)
vx Longitudinal Velocity (m/s)
Fx Longitudinal Force (N)
δf Steering angle (rad)

Table 1. Explanation of AGV Motion System [4]

Linearization of AGV System

Linearized State-Space Model

State and Input Variables

x =


vy
r
ey
eφ
ev

 , u = δf

State Equation
ẋ = Ax+Bu

where:

A =


a11 a12 0 0 0
a21 a22 0 0 0
1 0 0 vx 0
0 1 0 0 0
0 0 0 0 0

 , B =


b1
b2
0
0
0


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Output Equation
y = Cx+Du

with output:

y =

eyeφ
ev


and matrices:

C =

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , D =

00
0


Numerical Parameters

After parameter substitution:

a11 = −2, a12 = −39.275, a21 = 0.435, a22 = −2.3295

b1 = 36.6667, b2 = 24.2, vx = 40

Complete Linearized Model with Numerical Values

State Equation with Numerical Values
v̇y
ṙ
ėy
ėφ
ėv

 =


−2 −39.275 0 0 0
0.435 −2.3295 0 0 0
1 0 0 40 0
0 1 0 0 0
0 0 0 0 0



vy
r
ey
eφ
ev

+


36.6667
24.2
0
0
0

 δf

Output Equation with Numerical Values

eyeφ
ev

 =

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



vy
r
ey
eφ
ev


To simplify equation (2), it can be converted into the following linear state space equation, which can be

represented as: {
ẋ(t) = A(t)x(t) +B(t)u(t)
y(t) = C(t)x(t) +D(t)u(t)

(3)

with

A(t) =


a11 a12 0 0 0
a21 a22 0 0 0
1 0 0 vx 0
0 1 0 0 0
r vy 0 0 0

 , B(t) =


b1
b2
0
0
0

 , C(t) =

 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , D(t) =

 0
0
0

 (4)

where the state variables is x(t) = [vy, r, ey, eφ, ev]
T and the output variables is y(t) = [vy, r, ey, eφ, ev]

T . The
control input is the front wheel steering angle δf and the generalized longitudinal tire force Fx namely, u(t) =
[Fx, δf ] and D(t) is disturbance.
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3. Methodology

3.1. System Dynamics and State-Space Model

To enable state estimation, a discrete-time linear kinematic model was adopted for the AGV. This model provides
a balance between physical representativeness and computational efficiency, making it suitable for real-time
applications. The state vector at time k is defined as xk = [px, py, vx, vy]

T
k , representing the position and velocity

in a two-dimensional plane.
The state transition is governed by the linear constant-velocity (CV) model:

xk = Fxk−1 +wk (5)

where F is the state transition matrix, and wk ∼ N (0,Q) is the process noise, assumed to be zero-mean Gaussian
white noise with covariance Q.

The state transition matrix F is defined as:

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 (6)

where ∆t is the sampling time, set to 0.1 seconds for this study.
The process noise covariance matrix Q is given by:

Q =


∆t4

4 0 ∆t3

2 0

0 ∆t4

4 0 ∆t3

2
∆t3

2 0 ∆t2 0

0 ∆t3

2 0 ∆t2

 · σ2
v (7)

where σ2
v = 0.1 m2/s3 is the variance of the acceleration noise, modeling unknown maneuvers and disturbances.

3.2. Measurement Model

The AGV is equipped with a GPS receiver and wheel odometry sensors. The measurement vector is zk =
[pGPS

x , pGPS
y , vodo

x , vodo
y ]Tk .

ulThe relationship between the state and the measurements is linear:

zk = Hxk + vk (8)

where H is the observation matrix and vk ∼ N (0,R) is the measurement noise with covariance R.
The observation matrix H is an identity matrix I4×4, as we directly observe all states. The measurement noise

covariance R is a diagonal matrix, defined as:

R = diag(σ2
GPS, σ

2
GPS, σ

2
odo, σ

2
odo) (9)

where σGPS = 0.5 m is the standard deviation of the GPS position error, and σodo = 0.05 m/s is the standard
deviation of the odometry-based velocity error.

3.3. Ensemble Kalman Filter (EnKF) Implementation

The Ensemble Kalman Filter (EnKF) is a powerful data assimilation technique that combines a dynamical model
with observational data to estimate the state of a system sequentially over time. It is particularly useful for high-
dimensional, nonlinear, and non-Gaussian state estimation problems [5]. The EnKF uses an ensemble of forecasts
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System Model and Measurement Model
xk+1 = fk,xk

+ wk

zk = Hkxk + vk
x0 ∼ N(x̄0, Px0);wk ∼ N(0, Qk); vk ∼ N(0, Rk)

Initialization
Initialize the N ensemble according to the initial estimate x̂0

x0,i = [x0,1 x0,2 x0,3, . . . , x0,Ne]

Determine the initial value : x̂0 = 1
Ne

∑N
i=1 x0,i

Prediction Stage
x̂−
k,i = f(x̂k−1,i, uk−1,i) + wk,i with wk,i ∼ N(0, Qk)

Estimation : x̂−
k = 1

Ne

N∑
i=1

x̂−
k,i

Covariance error: P−
k = 1

Ne−1

N∑
i=1

(x̂−
k,i − x̂−

k )(x̂
−
k,i − x̂−

k )
T

Correction Stage
zk,i = zk + vk,i with vk,i ∼ N(0, Rk)

Kalman Gain : Kk = P−
k HT (HP−

k HT +Rk)
−1

Estimation : x̂k,i = x̂−
k,i +Kk(zk,i −Hx̂−

k,i)

x̂k = 1
Ne

∑N
i=1 x̂

−
k,i

Covariance error : Pk = [I −KkH ]P−
k

Table 2. The Ensemble Kalman Filter Algorithms

to represent the probability density of the state, updating the ensemble members based on new data to avoid the
degeneracy problems associated with reweighting-based algorithms [6].

The Ensemble Kalman Filter algorithms are summarized in Table 2.
Step 1: Initialization

An initial ensemble of N = 100 state vectors is generated by sampling from a Gaussian distribution:

x
(i)
0 ∼ N (x̂0,P0), for i = 1, . . . , N (10)

where the initial state estimate is x̂0 = [0, 0, 0, 0]T and the initial error covariance is P0 = diag(1, 1, 0.5, 0.5).
Step 2: Forecast Step

For each ensemble member i, a forecast is produced by propagating the dynamic model forward:

x
f,(i)
k = Fx

a,(i)
k−1 +w

(i)
k (11)

where w
(i)
k ∼ N (0,Q) is a randomly sampled process noise vector.

Step 3: Analysis Step
Upon the arrival of a new measurement zk, each ensemble member is updated individually.

1. A perturbed observation is generated for each member: z(i)k = zk + v
(i)
k , where v

(i)
k ∼ N (0,R).

2. The Kalman gain is computed using the ensemble statistics. The sample covariance matrix Pf
k is estimated

from the forecast ensemble {xf,(i)
k }.

3. The analysis update for each member is:

x
a,(i)
k = x

f,(i)
k +Kk

(
z
(i)
k −Hx

f,(i)
k

)
(12)

The final state estimate x̂k at time k is the mean of the analysis ensemble {xa,(i)
k }.
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6 TRAJECTORY ESTIMATION OF AUTOMATED GUIDED VEHICLE

4. Extended Kalman Filter (EKF) Method

The Extended Kalman Filter (EKF) algorithm can be seen in:

1. System and measurement models.

xk+1 = Akxk +Bkuk +Gkwk (13)

zk = Hkxk + vk (14)

x0 ∼ N(x̄0, Px0);wk ∼ N(0, Qk); vk ∼ N(0, Rk) (15)

2. Initialization
x̂0 = x0 (16)

p0 = px0 (17)

3. Time Update
Estimation :

x̂−
k+1 = Akx̂+Bkuk (18)

Error covariance:
P−
k = AkPkA

T
k +GkQkG

T
k (19)

4. Measurement Update
Kalman gain :

Kk+1 = PT
k+1H

T
k+1

(
Hk+1P

−
k+1H

T
k+1 +Rk+1

)−1
(20)

Estimation :
x̂k+1 = x̂−

k+1 +Kk+1

(
zk+1 −Hk+1x̂

−
k+1

)
(21)

Error covariance
Pk+1 =

[
I −Kk+1H

−
k+1

]
P−
k+1 (22)

4.1. Data Source and Experimental Setup

The performance of the EnKF was validated using a simulated AGV trajectory. The ground truth data was generated
by simulating the CV model along a rectangular path of 20m × 10m for a total duration of 100 seconds. To simulate
real-world conditions, the synthetic ground truth was corrupted with:

• Process Noise: Added during simulation with σv = 0.1 m/s2.
• Sensor Noise: Gaussian noise was added to the ground truth to create the measurements zk, using the

standard deviations defined for R (σGPS = 0.5 m, σodo = 0.05 m/s).

5. Simulation Result and Discussion

In this study, the AGV navigation and guidance system uses the EnKF method by generating 300, 400, and 500
ensembles. The initial state for all simulations was set to x(0) = [0, 0, 0, 0]T . In the first simulation, the results of
the trajectory estimation in the XY plane using EnKF with 300 ensembles are shown in Figure 2. Figure 2 presents
the results of the trajectory estimation in the XY plane using the EnKF with 300 ensembles. The figure plots three
key lines:

• The Ground Truth Trajectory (solid black line), representing the actual, noise-free path of the AGV.
• The Noisy Measurements (faint grey dots), showing the raw sensor data that the filter receives as input.
• The EnKF Estimated Trajectory (solid red line), showing the filter’s output.
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Figure 2. The results of the AGV motion estimation in X, Y and XY planes using EnKF methods with 300 ensembles

Figure 2 shows that the movement of the AGV using the EnKF method follows the predetermined trajectory in
the X and Y planes, indicating that the trajectory estimation results using the EnKF method have high accuracy with
a position error of less than 5%. The error obtained by the EnKF method is 0.489% for the X position and 0.476%
for the Y position. The EnKF-estimated trajectory (red) closely follows the ground truth (black), demonstrating
the filter’s effectiveness. While the raw measurements (grey) are scattered due to noise, the EnKF successfully
smooths this data and produces a coherent and accurate path. Visually, the estimated trajectory shows a significant
correction away from the noisy measurements and towards the true path.

Figure 3. The results of the AGV motion estimation in X, Y and XY planes using EnKF methods with 400 ensembles

This performance is quantified in Figure 3, which shows the position error over time for the simulation with 300
ensembles. The error is calculated as the absolute difference between the estimated position and the ground truth.
The plot reveals that:

• The error in both the X and Y directions remains bounded and small throughout the simulation.
• The error does not diverge, indicating the stability of the filter.
• The peak errors often correspond to points of high maneuver, such as turns on the rectangular path.

Figure 3 shows that the movement of the AGV using the EnKF method follows the predetermined trajectory in
the X and Y planes, indicating that the trajectory estimation results using the EnKF method have high accuracy
with a position error of less than 5%. The error obtained by the EnKF method is 0.442% for the X position and
0.416% for the Y position.

Figure 4 shows that the movement of the AGV using the EnKF method follows the predetermined trajectory in
the X and Y planes, indicating that the trajectory estimation results using the EnKF method have high accuracy
with a position error of less than 5%. The error obtained by the EnKF method is 0.385% for the X position and
0.336% for the Y position.

The quantitative results for all ensemble sizes are summarized in Table 3.
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8 TRAJECTORY ESTIMATION OF AUTOMATED GUIDED VEHICLE

Figure 4. The results of the AGV motion estimation in X, Y and XY planes using EnKF methods with 500 ensembles

Metric EnKF with EnKF with EnKF with
300 ensembles 400 ensembles 500 ensembles

Position X RMSE 0.489% 0.442% 0.385%
Position Y RMSE 0.476% 0.416% 0.336%
Simulation Time 1.9531 s 3.7969 s 3.9063 s

Table 3. Average RMSE and Computational Time for AGV Motion Estimation using the EnKF Method

Track 1 Track 1
RMSE Accuracy RMSE Accuracy

X 0.39655 m 99.60345% 0.39874 m 99.60126%
Y 0.41986 m 99.58014% 0.42395 m 99.57605%
XY 0.0060052 m 99.99142% 0.006313 m 99.98947%
Time 5.1250s 5.2031 s

Table 4. Comparison of the values of RMSE using Extended Kalman Filter based on the iteration of 200 and 300 iterations

The table clearly demonstrates the trade-off between estimation accuracy and computational cost. As the number
of ensembles increases from 300 to 500, the Root Mean Square Error (RMSE) for both the X and Y positions
consistently decreases. This confirms the theoretical expectation that a larger ensemble better represents the
underlying probability distribution, leading to more accurate state estimates. Specifically, the RMSE for the Y
position improves by over 29% when increasing the ensemble size from 300 to 500.

However, this improvement in accuracy comes at a computational cost. The simulation time increases with the
ensemble size, as a larger number of state vectors must be propagated and updated at each time step. The results
indicate that using 500 ensembles provides the highest accuracy, making it the preferred choice for applications
where precision is critical and computational resources are sufficient. For real-time systems with stricter timing
constraints, 400 ensembles may offer a more balanced compromise, providing significantly better accuracy than
300 ensembles with only a moderate increase in computation time.

For Ultimate Accuracy: Both filters are excellent choices, with accuracy so high that the difference is likely not
meaningful for practical AGV applications. The choice cannot be based on accuracy alone.

For Efficiency and Ease of Use: The Ensemble Kalman Filter (EnKF) is the superior choice in this case. It
achieved comparable (or slightly better) accuracy in less computation time. Furthermore, it is easier to implement
and maintain because it eliminates the need for deriving and programming complex Jacobian matrices.

This comparison effectively demonstrates why the EnKF has become so popular: it delivers performance on par
with the EKF while being more computationally efficient and much simpler to implement for complex models.
This makes it a very compelling option for practical applications in robotics and automation.
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6. Conclusion

Based on AGV motion estimation using the Ensemble Kalman Filter (EnKF) method, this method is effective when
applied as a navigation and guidance system with trajectory estimation in the X and Y planes with a position error
of less than 5%. In terms of the number of ensemble generations, generating 500 ensembles yields higher accuracy
compared to generating 400 or 300 ensembles. The EnKF method proved highly effective for AGV trajectory
estimation. Across all experiments, the position error was consistently below 1%, significantly outperforming
the initial target of 5% and achieving an overall accuracy of up to 99.45%. A direct correlation was observed
between the number of ensembles and estimation accuracy. The largest ensemble size of 500 yielded the highest
accuracy, with RMSE values of 0.385% for the X-position and 0.336% for the Y-position. This confirms that
a larger ensemble provides a better statistical representation of the state distribution. Therefore, it is conclusively
demonstrated that the Ensemble Kalman Filter, even when paired with a simple linear dynamic model, is a powerful
and viable solution for high-precision AGV state estimation.

A comparative study pitting the EnKF against other nonlinear filters like the Unscented Kalman Filter (UKF)
or Particle Filters (PF) under identical conditions would provide deeper insights into their relative strengths and
weaknesses for this specific application. Future work could focus on tightly integrating the accurate state estimates
from the EnKF with a dynamic path planning and obstacle avoidance system to create a fully autonomous and
intelligent navigation stack.
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1. A. Grilo, R. Costa, P. Figueras, and R. J. Gonçalves, Analysis of AGV Indoor Tracking Supported by IMU Sensors in Intra-Logistics
Process in Automotive Industry, IEEE International Conference on Engineering, Technology and Innovation, ICE/ITMC 2021 -
Proceedings. (2021).

2. L. Schulze, and L. Zhao, Worldwide Development and Application of Automated Guided Vehicle Systems, Int. J. Services Operations
and Informatics, vol. 2 (2) (2007).

3. M. Farina, W. K. Shaker, A. M. Ali, S. A. Hussein, and F. S. Dalang, Automated Guided Vehicles with a Mounted Serial Manipulator:
a Systematic Literature Review, Heliyon, vol. 9, (2023).

4. B. A. Iza, Q. A. Fiddina, H. N. Fadhilah, H. N. Arif, and M. Mardlijah, Automatic Guided Vehicle (AGV) Tracking Model Estimation
with Ensemble Kalman Filter, 7th International Conference on Mathematics: Pure, Applied and Computation, AIP Conf. Proc, vol.
2641, no. 030019, (2022) 1–11.

5. M. Katzfuss, J. R. Stroud, and C. K. Wikle, Understanding the Ensemble Kalman Filter, The American Statistician, (2016).
6. T. Herlambang, F. A. Susanto, D. Adzkiya, A. Suryowinoto, and K. Oktafianto, Design of Navigation and Guidance Control System of

Mobile Robot with Position Estimation Using Ensemble Kalman Filter (EnKF) and Square Root Ensemble Kalman Filter (SR-EnKF),
Nonlinear Dynamics and Systems Theory, 22 (4) (2022) 390–399.

7. L. Beji, and Y. Bestaoui, Motion Generation and Adaptive Control Method of Automated Guided Vehicles in Road Following, IEEE
Transactions on Intelligent Transportation Systems, 6 (1) (2005) 113–123.

8. A. Suryowinoto, T. Herlambang, I. Kurniastuti, M. S. Baital, K. Oktafianto, and I. W. Farid, A Remotely Operated Vehicle Tracking
Model Estimation Using Square Root Ensemble Kalman Filter and Particle Filter, Nonlinear Dynamics and Systems Theory, 24 (5)
(2024) 517–525.

9. T. Herlambang, H. Nurhadi, A. Suryowinoto, D. Rahmalia, and K. Oktafianto. Motion Estimation of Third Finger Using Ensemble
and Unscented Kalman Filter for Inverse-Kinematic of Assistance Finger Arm Robot, Nonlinear Dynamics and Systems Theory, 23 (4)
(2023) 456–467.

10. T. Herlambang, et al. Square Root Ensemble Kalman Filter for Forefinger Motion Estimation as Post-Stroke Patients Medical
Rehabilitation, Nonlinear Dynamics and Systems Theory, 24 (4) (2024) 389–401.

11. N. Ngatini, E. Apriliani, and H. Nurhadi, Ensemble and Fuzzy Kalman Filter for position estimation of an autonomous underwater
vehicle based on dynamical system of AUV motion, Expert Systems with Applications, 68 (2017) 29–35.

12. A. Beck, and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging
Sciences, vol. 2, no. 1, pp. 183–202, 2009.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



10 TRAJECTORY ESTIMATION OF AUTOMATED GUIDED VEHICLE

13. J. Bioucas-Dias, and M. Figueiredo, A new TwIST: Two-step iterative thresholding algorithm for image restoration, IEEE Transactions
on Image Processing, vol. 16, no. 12, pp. 2992–3004, 2007.

14. E. Candés, and Y. Plan, Near-ideal model selection by L1 minimization, Annals of Statistics, vol. 37, pp. 2145–2177, 2008.
15. E. Candés, and J. Romberg, Practical signal recovery from random projections, Wavelet Applications in Signal and Image Processing

XI, Proc. SPIE Conf. 5914, 2004.
16. E. Candés, J. Romberg, and T. Tao, Robust uncertainty rinciples: Exact signal reconstruction from highly incomplete frequency

information, IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006.
17. A. Chambolle, and P. L. Lions, Image recovery via total variation minimization and related problems, Numerische Mathematik, vol.

76, pp. 167–188, 1997.
18. T. F. Chan, and S. Esedoglu, Aspects of total variation regularized ℓ1 function approximation, SIAM Journal on Applied Mathematics,

vol. 65, pp. 1817–1837, 2005.
19. T. F. Chan, S. Esedoglu, F. Park, and A. Yip, Total variation image restoration: Overview and recent developments, in Handbook of

Mathematical Models in Computer Vision, edited by N. Paragios, Y. Chen, and O. Faugeras, Springer-Verlag, New York, pp. 17–31,
2006.

20. D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

Stat., Optim. Inf. Comput. Vol. x, Month 202x


	1 Introduction
	2 Mathemathics Modelling of Automatic Guided Vehicle (AGV)
	3 Methodology
	3.1 System Dynamics and State-Space Model
	3.2 Measurement Model
	3.3 Ensemble Kalman Filter (EnKF) Implementation

	4 Extended Kalman Filter (EKF) Method
	4.1 Data Source and Experimental Setup

	5 Simulation Result and Discussion
	6 Conclusion

