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Abstract Simulated Annealing (SA) is a well-established metaheuristic for tackling combinatorial optimization problems.
It draws inspiration from the physical process of annealing in metallurgy. In the optimization context, SA iteratively explores
the solution space by accepting not only improving solutions but also, with a temperature-dependent probability, non-
improving ones. This mechanism enables the algorithm to escape local optima, thereby enhancing its ability to approach the
global minimum of an objective function. Nevertheless, its overall performance is susceptible to the choice of the cooling
schedule and the use of fixed neighborhood structures. In this work, we include Q-learning into the SA framework to improve
its flexibility. Q-learning is a model-free, value-based method that enables an agent to learn optimal action-selection policies
by iteratively updating Q-values using rewards obtained through exploration of the environment. The suggested approach
directs the search toward more promising areas by dynamically choosing a leader solution from a predefined set of potential
solutions that are updated during iterations, using a learned Q-policy. The Q-values are updated according to the relative
improvement each leader provides over time, allowing adaptive exploitation of successful guides. Experimental results on
popular benchmark instances of the Travelling Salesman Problem (TSP) from TSPLIB95 demonstrate that the Q-learning-
guided SA achieves better solution quality compared to classical SA in most of the tested instances. These results demonstrate
how experience-driven decision-making in reinforcement learning can enhance metaheuristic performance.
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1. Introduction

Combinatorial optimization problems, such as the Traveling Salesman Problem (TSP), vehicle routing, and
scheduling, are notoriously challenging due to their vast solution spaces and the frequent presence of numerous
local optima. To address these issues, metaheuristic algorithms have gained widespread use. These methods provide
reliable, near-optimal solutions without requiring strong problem-specific assumptions [3, 4]. Among them, SA has
retained enduring popularity thanks to its conceptual simplicity, ability to probabilistically escape local minima,
and solid theoretical grounding under suitable cooling schedules [5, 7].

Despite these advantages, classical SA has well-known limitations. In complex or high-dimensional search
spaces, its reliance on exploring the neighborhood of a single solution at a time can result in insufficient exploration
and slow convergence. To overcome these limitations, researchers have increasingly explored hybridization over
the past decade to improve SA’s performance with adaptive mechanisms that more effectively balance exploration
and exploitation, especially in routing contexts [9]. One particularly promising direction is the integration of
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Reinforcement Learning (RL) techniques, which allow algorithms to dynamically adjust their behavior based
on accumulated search experience [23, 6, 10]. By leveraging feedback from past decisions, RL-enhanced
metaheuristics can guide the search toward more promising regions of the solution space and have demonstrated
competitive performance in routing and scheduling problems.

In this work, we propose Q-learning-Assisted Simulated Annealing (QLSA), a hybrid algorithm that integrates
a stateless Q-learning mechanism into the SA framework. Unlike conventional SA, which always applies the
neighborhood operator to the current solution, QLSA maintains a set of candidate solutions and employs Q-
learning to adaptively select which candidate should lead the search. This design allows the algorithm to incorporate
historical feedback into the exploration process, thereby improving its ability to escape poor-quality regions and
discover better solutions.

Our choice of Q-learning as the reinforcement learning mechanism is motivated by its simplicity, model-free
nature, and proven effectiveness in metaheuristic contexts. Q-learning is well-suited for black-box optimization
problems where state transitions are not explicitly defined, as it does not require environment modeling or gradient
computation, unlike policy-gradient or actor-critic approaches. Furthermore, Q-learning’s off-policy nature allows
it to learn an action-value function independently of the exploration policy, providing faster convergence and greater
stability in static optimization landscapes [8], in contrast to on-policy methods such as SARSA. These properties
make Q-learning particularly attractive for integration with SA, where decisions rely on accumulated experience
across diverse candidate solutions rather than explicit state modeling.

The contributions of this paper are twofold:

* We propose QLSA, a novel hybrid algorithm that combines Q-learning with SA to enable adaptive candidate
selection during the search.

* We evaluate two classical exploration policies; e-Greedy and Softmax; within QLSA, providing insights into
their impact on search performance.

The remainder of this paper is organized as follows. Section 2 reviews related work on hybrid metaheuristics
and reinforcement learning-assisted optimization. Sections 3 and 4 define the TSP and detail the proposed QLSA
algorithm, respectively. Section 5 presents the experimental setup and results. Finally, Section 6 summarizes our
contributions and discusses future research directions.

2. Related work

The Traveling Salesman Problem (TSP) has long been regarded as a cornerstone of operations research and
combinatorial optimization. First introduced by Dantzig in 1959 [25], it has continued to draw great interest
thanks to its challenging nature and real-world relevance. Renowned for its computational complexity and practical
relevance, the TSP is extensively used as a benchmark for evaluating the performance of discrete optimization
methods and advancing the limits of existing approaches.

Methods for solving the TSP generally fall into two categories: exact and approximate. Exact approaches
guarantee the optimal solution but typically require considerable computational resources and time, making them
impractical for large instances. In contrast, approximate methods aim for near-optimal solutions within a reasonable
computational effort, often in polynomial time.

Among these approximate approaches, metaheuristics play a particularly prominent role. These high-level
strategies are designed to guide the search process through complex solution spaces, often inspired by natural
processes or adaptive behaviors. One of their key advantages is their problem-independent nature, allowing them
to be applied across a wide range of optimization contexts.

Metaheuristics can be categorized into single-solution and population-based methods. Single solution
approaches iteratively refine a single candidate solution, as seen in algorithms like Tabu Search (TS) [26] and
Simulated Annealing (SA) [2]. Population-based approaches, on the other hand, explore multiple candidate
solutions simultaneously, leveraging collective behaviors for improved search performance. Particle Swarm
Optimization (PSO) [27] is a well-known example of this category.
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SA represents a popular choice among single-based methods, due to its simplicity, robustness, and its distinctive
ability to escape local optima. Over the years, researchers have enhanced SA and hybridized it with other algorithms
to boost its efficiency and adaptability. For instance, Zhong et al. [11] incorporated the Metropolis acceptance
criterion into a discrete Pigeon-Inspired Optimization algorithm, enabling the pigeons to enhance the algorithm’s
ability to escape from premature convergence, resulting in strong performance on large-scale TSP instances.
Similarly, Ezugwu et al. [12] hybridized SA with Symbiotic Organisms Search, and Zhou et al. [13] used SA
to diversify the population of a Gene Expression Programming approach, both studies demonstrating how SA
can significantly improve the search dynamics of other metaheuristics. Wu et al. [16] embedded Ant Colony
Optimization (ACO) as a search strategy into SA, aiming to solve its problem of slow convergence speed and
easily getting stuck in local optimal solutions, achieving faster convergence and superior performance compared
with the original ACO and SA algorithms.

Complementing these hybridizations, Zhan et al. [14] introduced a List-Based SA (LBSA) with an adaptive
cooling schedule, simplifying parameter tuning and proving highly competitive across standard TSP benchmarks.
This ability of being insensitive to the parameter values made the introduced mechanism very attractive and was
used in other works. Another interesting work, by Adil and Lakhbab [15], explored the advantage of population-
based methods of sharing information of the search space among a population of swarm agents, and proposed a New
Improved SA (NISA), which integrates a population-based improvement phase after the Metropolis acceptance
step, leveraging social behaviors among candidate solutions to accelerate convergence and improve tour quality.

Parallel to SA-focused enhancements, researchers have explored other advanced metaheuristic frameworks.
Recent interesting works include Su et al. [17], where they proposed IDINFO, a discrete variant of the INFO
metaheuristic integrated with multi-strategy search and threshold-based 2-opt/3-opt refinements, outperforming
GWO, PSO, and AGA on TSPLIB and real-world routing tasks. Another work by Tian et al. [18] introduced a
bioinspired two-stage surrogate-assisted algorithm combining clustering and Pigeon-Inspired Optimization that
offers effective solutions for high-dimensional TSP instances.

In recent years, Reinforcement Learning (RL) has emerged as a promising paradigm for improving
metaheuristics by incorporating adaptive decision-making based on accumulated search experience. Sutton and
Barto [23] laid the foundation for Q-learning and other value-based RL methods, which have since been applied
to metaheuristic operator selection and parameter tuning. RL-based operator selection enables metaheuristics to
learn which neighborhood moves or search strategies are most effective in different phases of the search [24].
Some notable advances include attention-based learning integrated with 2-opt local search [19], learning-guided
local search for asymmetric TSP [20]. Reinforcement learning has also been increasingly incorporated into
metaheuristics, such as in Q-learning-guided search hybrids [21] and dynamic Q-learning approaches for adaptive
annealing [22], enhancing decision-making in complex search spaces.

Collectively, these works illustrate a clear trend: state-of-the-art TSP solvers are increasingly hybrid, adaptive,
and learning-guided; an evolution that forms the foundation for our proposed Q-learning-assisted SA.

3. Traveling salesman problem

The Traveling Salesman Problem (TSP) is one of the most prominent and widely studied problems in combinatorial
optimization. First formalized by Dantzig and colleagues in 1959 [25], it has attracted significant attention over the
years and remains a challenging and highly relevant topic in operations research and computer science. Classified
as NP-complete [28], the problem seeks the shortest possible route that visits each of N cities exactly once and
returns to the starting point (Hamiltonian cycle). Formally, let G = (V, E) represent a complete graph, where V' is
the set of cities and £ = {(c;,¢;) | ¢;,¢; € V,i # j} denotes the set of edges connecting them. Each edge (¢, j)
has an associated travel cost d;;.

An illustrative example of the Traveling Salesman Problem is provided in Figure 1. The left panel shows a
Hamiltonian cycle over six cities ¢, co, ..., cg, Where each city is visited exactly once before returning to the
starting point.

The right panel represents the same instance as a complete weighted graph, with edge labels indicating the travel
costs d;;, the selected tour highlighted in solid black, and non-selected edges shown as dashed lines. The tour
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sequence and its total cost are explicitly indicated for clarity. This schematic captures the essential structure of the
TSP as a combinatorial optimization problem on a complete weighted graph.
G' =TSP tour

. . =lc1, 2, ¢3, Ca, G5, Co, C1]
G = Hamiltonian cycle Cost = 28

Figure 1. Example of TSP Tour

The TSP can be formulated mathematically as follows:

N N
minimize f(x) = szij Tij (1
i=1 j=1
J#i
N
subject to wa =1, Vie{l,...,N}, )
=1
2
N
> wy =1, vje{l,...,N}, 3)
=3
ZZ%SISI—L VScCV, S#a, 4)
i€S jes
xi; € {0,1}, Vi, je{l,...,N}. (5)

Here, X represents the search space, x;; is a binary decision variable that equals 1 if edge (3, j) is part of the tour
and 0 otherwise. The objective function (1) minimizes the total cost of the route. Constraints (2) and (3) guarantee
that each city is visited exactly once, while constraint (4) eliminates the possibility of subtours, ensuring a single
continuous tour.

4. Q-learning-Assisted Simulated Annealing

This section describes the proposed hybrid algorithm that integrates Q-learning into the SA framework. After
providing a brief introduction to the fundamentals of SA metaheuristic, we proceed to describe the Q-learning
mechanism. Lastly, we explain the proposed hybrid method QLSA and its extended version, which allows Q-
learning to dynamically guide the search process in SA.

4.1. Simulated Annealing Metaheuristic

SA, first introduced by Kirkpatrick et al. [2], is a widely used probabilistic metaheuristic for solving complex
combinatorial optimization problems. The method takes inspiration from the annealing process in metallurgy,
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where a material is heated and then cooled slowly to minimize imperfections and reach a stable crystalline state.
In an optimization context, this analogy translates into iteratively exploring the solution space while occasionally
accepting worse solutions, which helps the algorithm avoid becoming trapped in poor-quality local optima.
Formally, let S denote the search space and f : S — R the objective function to be minimized.
Starting from an initial solution s € S, the algorithm generates a candidate solution s’ € N'(s) from its
neighborhood. The change in cost is then computed as A f = f(s’) — f(s), and the candidate solution is accepted
according to the Metropolis criterion defined as follows:

PALT) 1 if Af <0, ;
T) = (6)
exp(— 2L) ifAf>0

Where T' is the current temperature. The temperature is gradually decreased according to a cooling schedule
T + ¢(T). This mechanism balances exploration (at higher temperatures) and exploitation (as 7' decreases),
enabling SA to gradually refine solutions while preserving search diversity.

In the context of the Traveling Salesman Problem (TSP), the search space S consists of all possible tours visiting
each city exactly once, and the objective function f(s) is the total length of the tour. Neighborhoods are typically
generated using 2-opt or 3-opt operators, which swap edges or subsequences of the tour. While SA is valued for its
ease of use and adaptability, its performance is highly dependent on parameters like the starting temperature, the
cooling schedule, and the use of fixed neighborhood operators, which may restrict its flexibility.

In our work, we employ the 2-opt Metropolis operator, a variant of the classical 2-opt heuristic in which the
Metropolis acceptance criterion is incorporated. This modification allows swap moves to be accepted even when
they do not yield an immediate improvement, thereby enhancing exploration. The acceptance probability of a swap
move is given by the Metropolis criterion 7.

P = exp<—?/> (7)

Where T” is the current temperature and A represents the change in cost induced by the 2-opt swap. For a swap
between edges (z;, z;41) and (z;, z;11), the cost difference is computed as:

A= [d(l‘i, IEj) + d(ZEH_l, [Ej+1)] — [d(ibi, IL’Z'+1) + d(l‘j, $j+1)] (8)

where d(a, b) denotes the weight (or distance) between nodes a and b.

To enhance its effect, the 2-opt Metropolis operator is applied V' times at each iteration, where V' is determined
as the Hamming distance between the current solution x and the global best solution =*. This adaptive application
strategy increases the intensity of local search when the current solution significantly differs from the global best,
while reducing it when the solutions become similar.

The pseudocode for the 2-opt Metropolis operator is given in Algorithm 1.
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Algorithme 1: 2-opt Metropolis Operator

Input: Current solution z, global best solution x*, temperature T’, Number of cities n
Output: New solution z’

Compute Hamming distance: V' <+ dg (z,2");

forv < 1toV do

Randomly select an index p;

fori < pton —1do

forj < i+2ton—1do

Compute cost change:

A [d(zi, 25) + d(wip1, zj41)] — [d(zi, zig1) + d(zj, 2j11)]

if A < 0 then
| Accept swap and update x by reversing segment (¢ + 1, 5);
end
else
Accept swap with probability P = exp(—A/T");
if Accepted then
| Update = by reversing segment (i + 1, j);
end
end

end

end
end
return z’ (updated solution);

When integrated into the SA framework, this operator naturally produces both improving (A < 0) and non-
improving (A > 0) solutions, aligning well with the algorithm’s search strategy. Moreover, as the acceptance
decision depends on the temperature parameter that decreases over iterations, the operator progressively shifts
the search toward exploitation in the later stages.

The pseudocode for the SA method is given in Algorithm 2.

Algorithme 2: Classical SA with 2-opt Metropolis

Input: Initial solution x, initial temperature Tp, cooling rate « € (0, 1), stopping temperature Tpin
Output: Best-found solution z*
Initialize best solution: x* < x;
Set current temperature: T <— Tp;
while 7" > Tyin do
Generate a neighbor z’ by applying a 2-opt Metropolis move to ;
Compute cost difference: A + f(z') — f(z);
if A < 0 then
‘ Accept neighbor: <+ z’;

end
else

Accept neighbor with probability P = exp(—A/T);

if Accepted then

| z+ 2,

end
end
if f(z) < f(z™) then

| Update best solution: z* <— x;

end
Update temperature: 1" <— « - T}

end
return z”*;
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4.2. Q-learning Mechanism

Q-learning (QL) [8, 29] is a model-free reinforcement learning algorithm that learns an optimal policy for selecting
actions in a Markov Decision Process (MDP) by iteratively refining an action-value function, or Q-function. Unlike
model-based methods, it does not require prior knowledge of state transition probabilities, making it particularly
suitable for guiding metaheuristics, where problem dynamics are often complex and unpredictable.

The Q-value for a state-action pair (s, a) is updated according to the Bellman equation:

Q(s,0) < Q(s,0) + a[r + ymaxQ(s', a') — Q(s, a)] ©

where o € (0, 1] is the learning rate, v € [0, 1] is the discount factor, 7 is the immediate reward after taking action
a in state s, and s’ is the resulting next state. In this framework, the components of the Q-learning algorithms are:

* States (5): Represent features of the search process, such as current solution quality, temperature level, or
iteration stage.

¢ Actions (A): Define decisions available to the agent, such as selecting a specific neighborhood operator
(2-opt, 3-opt) or adjusting algorithm parameters like the cooling rate.

* Reward (R): Provides feedback based on the change in the objective value.

¢ Policy (7): Determines how actions are selected.

Initialize

Choose an Perform Measure Update Q-
Action Action Reward Table

Q-table

Q

Figure 2. Q-learning process

Figure 2 represents the Q-learning process. This iterative learning process allows the algorithm to identify which
actions are most advantageous in different search contexts, adapting its strategy as optimization progresses.

4.3. The Hybrid Approach: Stateless QLSA

The proposed QLSA algorithm integrates a stateless Q-learning mechanism into the classical SA framework,
thereby enhancing the adaptivity of the search process. Unlike conventional SA, which explores the neighborhood
of a single, fixed solution, QLSA employs Q-learning to dynamically select the most promising candidate solution
(action) from a predefined set, based solely on accumulated rewards from previous selections. Once a leader
solution is selected, a neighborhood operator is applied. In our implementation, the 2-opt Metropolis move is
applied.

This design choice represents a deliberate trade-off between model expressiveness and algorithmic simplicity.
The stateless formulation significantly reduces learning complexity and avoids the need for state discretization.
Moreover, by learning action utilities aggregated over the entire search trajectory, the proposed approach provides
a robust and lightweight adaptive control mechanism that integrates seamlessly into the Simulated Annealing
framework without introducing additional hyperparameters or structural dependencies.

Nevertheless, this simplification inherently limits the algorithm’s ability to learn context-dependent policies. In
particular, the relative usefulness of candidate solutions may vary across different phases of the annealing process
(e.g., high-temperature exploration versus low-temperature exploitation), which cannot be explicitly captured by a
stateless policy. As such, the proposed QLSA should be viewed as a first-order adaptive mechanism.

In the next section, we will propose a basic stateful version that extends this version.

Let C = {c1, 2, c3, ¢4} denote the set of candidate actions available for selection at each iteration:
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¢ ¢y: the current solution,

* co: the global best solution,

* c3: arandomly generated solution at each iteration that can be seen as a diversity agent,
* c4: a new solution generated using the double bridge kick operator.

The double-bridge kick consists of selecting four non-adjacent edges in the current tour and reconnecting the
resulting segments in a different order, thereby producing a new tour that lies outside the basin of attraction
of the current local optimum. Unlike small neighborhood moves, this operator performs a substantial structural
modification of the solution while preserving tour feasibility. It was originally introduced in the context of large-
step Markov chains for the TSP [31] and later became a standard diversification mechanism with its ability to
induce long-range transitions in the solution space while maintaining computational efficiency.

In this stateless formulation, each action a € C' maintains an associated Q-value )(a), which is iteratively
updated according to the following formula:

Qar) « Qar) + afry — Q(ay)] (10)

Where « is the learning rate and r, denotes the immediate reward, defined as the improvement in objective value
(i.e., cost reduction) obtained after applying the neighborhood operator to the selected action a;.
We experiment with two classical policies to resolve the exploration—exploitation dilemma:

» e-Greedy: With probability 1 — ¢, the policy selects arg max,cc Q(a); with probability ¢, it chooses a
random action uniformly. This approach is simple, computationally efficient, and widely adopted in Q-
learning [23].

* Softmax (Boltzmann) policy: Assign a probability to each action:

exp (Q(a)/T)

Pla) = s o Q@)

Y

where 7 (temperature) governs the exploration intensity. As 7 — 0, softmax behaves greedily; as 7 — oo, it
approximates uniform random selection. This policy is grounded in the Boltzmann distribution tradition and
can produce smoother, value-aware exploration than e-greedy. In our work, we use the same temperature as
inthe SA, 7 =1T.

These two action-selection policies are widely adopted for balancing exploration and exploitation [30, 23].

The e-Greedy approach is simple, computationally inexpensive, and provides direct control over the exploration
rate through a single parameter, €, making it particularly effective when the number of available actions is small.
In contrast, the Softmax policy offers a value-based probabilistic selection mechanism that naturally smooths the
transition between exploration and exploitation. By tuning its temperature parameter analogous to the cooling
schedule in SA, Softmax enables a gradual shift towards exploitation without abrupt behavioral changes.

In this study, both policies are employed to examine how different exploration dynamics influence QLSA. Using
both allows for a comparison between a more decisive, parameter-driven strategy (e-Greedy) and a smoother,
temperature-controlled one (Softmax), thereby offering deeper insights into the trade-offs between aggressive and
tempered exploration in combinatorial optimization. It is worth mentioning that our primary aim in this work is to
demonstrate the viability of incorporating Q-learning into SA through simple, well-established policies. Although
more advanced exploration methods could potentially enhance performance, their inclusion could also increase
algorithmic complexity. The pseudocode for QLSA is provided in Algorithm 3. Also, the corresponding flowchart
is shown in Figure 3 for more clarity.
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Algorithme 3: Stateless Q-learning-Assisted SA (QLSA)

Input: Initial solution xo, candidate set size |C| = 4, initial temperature Ty, cooling schedule, learning rate «,
policy parameters (¢ or T)

Output: Best solution found z*
Initialize Q(a) < O foralla € C;
Initialize z < zo, z* + 20, T + To;
while stopping criterion not met do
Select action a; € C' using the selected policy (e-greedy or softmax);
Apply neighborhood operator (2-opt) to a: to generate =’ with cost f(z');
Compute reward 1y < f(x) — f(z');
Update Q-value: Q(a¢) < Q(at) + a[ri — Q(at)];
if Metropolis acceptance(f (z'), f(z), T) then

x <+ x';

if f(2') < f(z*) then

| z* «a';

end
end
Update temperature 1" <— cooling(7);

end
return z*

——

[ Set Q(a)«+0 foraeC; ]

Set x+ g, x* +xzo, T+ To

!

Yes Stopping

criterion met?
No

Update C' = {c1,c2,¢3,¢4} ]

)

[ Select action a; € C' ]

am

(policy: e-greedy or softmax)

)

Apply 2-opt Metropolis to a;
to get 2’ with cost f(x”)

l ’

Compute reward r¢ < f(x) — f(z') ]

)

([ Q@) < Q) +aln -] |

Metropolis
accept?

T+ 1';
(') < f(z*) then z* + 2’

B

Update temperature: 7' < cooling(T) ]7

Figure 3. Flowchart of the QLSA algorithm.
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4.4. The Hybrid Approach: State-based QLSA (SB-QLSA)

The stateless version of the Q-learning-assisted Simulated Annealing algorithm (QLSA) learns a global
preference over candidate leaders without explicitly considering the current phase of the search process. However,
in Simulated Annealing, the search dynamics are strongly influenced by the environment’s transition from
exploration to exploitation. Ignoring this information may limit the learning mechanism’s ability to adapt its
behavior throughout the optimization process.

To address this limitation, we propose a basic state-based variant of QLSA, denoted SB-QLSA, in which the Q-
learning policy is conditioned on the current search state. The objective is to enable the algorithm to learn different
leader-selection strategies depending on whether the search is in an exploratory or exploitative phase.

Defining an informative state space for the Q-learning component of QLSA proved to be a nontrivial design
choice. A natural option would be to distinguish states based on the temperature level (e.g., high versus
low temperature). However, this approach is not well-suited to the present algorithmic setting. In our SA
implementation, the temperature follows a strictly decreasing schedule without reheating, meaning that the
search deterministically transitions from exploration (high temperature) to exploitation (low temperature). As
a consequence, temperature-based states would be largely time-driven and weakly informative, providing little
feedback on the actual search dynamics or solution landscape encountered by the algorithm. Thus, we instead
define the states based on solution quality diversity. Let 7; denote the current solution at iteration ¢, and let 7Pt
denote the best solution found so far by the algorithm. The search state is defined based on the Hamming distance
between these two solutions. For a problem of size n, the Hamming distance is given by:

dir (e, 7% = 31 (i) # 7254 (3))
=1

where I(-) is the indicator function. The set of states is defined as

S = {s1,52},

where s; corresponds to a diversified search state and ss corresponds to an intensified search state. The current
state at iteration ¢ is determined as follows:

s(t) = sy, if dy(me, wPY) > 5,
S9, otherwise.

This state definition enables the learning mechanism to distinguish between phases where the current solution is
far from the best-known solution and phases where the search is concentrated in its neighborhood.

The action space A remains identical to that of QLSA and corresponds to the set of candidate leader solutions
used to guide neighborhood exploration. In SB-QLSA, the Q-table is defined as a state—action value function:

QR:SxA—-R.

At each iteration, an action (leader) is selected according to a state-dependent policy (e-greedy or softmax), and
the resulting reward is computed based on the improvement in solution quality, just like in QLSA.
The Q-values are updated using the standard Q-learning update rule:

Q(St7at) < Q(Staat) +a|ry+ ’ytIlI}Ea./}i Q(8t+17a/) - Q(8t7at) )

where « is the learning rate, v is the discount factor, and 7; denotes the reward obtained after selecting action a,
in state s;. The overall structure of SB-QLSA follows that of QLSA, with the key difference being that both leader
selection and Q-value updates are conditioned on the current search state. This allows the learning mechanism to
adapt its behavior dynamically as the algorithm transitions from exploration to exploitation, while preserving the
simplicity and generality of the original QLSA framework. The pseudo code of SB-QLSA is as follows:

Stat., Optim. Inf. Comput. Vol. 00, March 0000



N. ADIL, F. EDDAOUDI, H. LAKHBAB AND M. NAIMI 11

Algorithme 4: State-Based Q-learning-Assisted SA (SB-QLSA)

Input: Initial solution z, candidate set size |C| = 4, initial temperature Tp, cooling schedule, learning rate
«, discount factor v, policy parameters (¢ or 7), diversity threshold §

Output: Best solution found z*

State space: S = {0, 1} where 0 = low diversity, 1 = high diversity;

Initialize Q(s,a) < Oforall s € Sand a € C;

Initialize x < xq, z* < x9, T + To;

while stopping criterion not met do

Update candidate set C' = {¢1, co, ¢3,¢4};

// Compute current state from solution diversity

Compute diversity measure D; using Hamming distance between = and x*;

Set s; + H[.Dt > (5],

Select action a; € C' using the selected policy on Q(s¢, -) (either e-greedy or softmax with 7);

Apply neighborhood operator (2-opt Metropolis) to a; to generate x’ with cost f(x');

Compute reward r; < f(z) — f(z');

// Compute next state

Compute diversity measure Dy, 1 and set sy 1 < [[Dyyq1 > 6];

Update Q-value:

Q(st,at) « Q(s¢,ar) + Oé[rt + VgleagQ(StH»a) - Q(Smat)}

if Metropolis acceptance(f(z'), f(z),T) then
T 2
if f(2') < f(z*) then
| x*
end
end
Update temperature 7' <— cooling(7");

end
return z*;

5. Experimental Results and Discussion

5.1. Benchmark Instances

The proposed QLSA algorithms were evaluated on a set of 17 symmetric Traveling Salesman Problem (TSP)
instances from TSPLIB [1] spanning small, medium and moderately large sizes and a mix of Euclidean and
geographic metrics.

Table 1 represents each instance and its best-known values for reference.

All experiments were executed on a 64 bit Linux operating system, equipped with an Intel Xeon Gold 6130 CPU
at 2.10 GHz, within a virtual machine utilizing the computational resources of HPC-MARWAN (hpc.marwan.ma),
provided by the National Center for Scientific and Technical Research (CNRST), Rabat, Morocco. The used
programming language is Python 3.11.5 with NumPy/Pandas for data handling. Besides, the TSPLIB95 Python
library was used for working with TSPLIB 95 files.
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Table 1. TSPLIB instances with size N, distance metric, and Best Known Solution (BKS).

# Name N Metric BKS
1 ulysses16 16 GEO 6859
2 grl7 17 EXPLICIT 2085
3 ulysses22 22 GEO 7013
4 gr24 24 EXPLICIT 1272
5 bayg29 29 EXPLICIT 1610
6 bays29 29 EXPLICIT 2020
7 dantzig4?2 42 EXPLICIT 699
8 swiss42 42 EXPLICIT 1273
9 grd8 48 EXPLICIT 5046
10 hk48 48 EXPLICIT 11461
11 eil51 51 EUC_2D 426
12 berlin52 52 EUC_2D 7542
13 st70 70 EUC_2D 675
14 pr76 76 EUC_2D 108159
15 eil76 76 EUC_2D 538
16 rat99 99 EUC_2D 1211
17 eil101 101 EUC_2D 629

5.2. Parameters tuning

To ensure a fair comparison across all variants, the parameters of the simulated annealing (SA) component were
held constant. A linear cooling schedule was adopted, defined as follows:

T = Tmax - [(Tmax - Tmin) * k]/Nmax (12)

where T}, is the temperature at iteration k, Ty is the initial temperature, 7,,;, is the minimum temperature equal
to 0.001, and Ny, ax is the maximum number of iterations. The initial temperature Ty was calibrated to half the
length of the initial tour. Parameter tuning focused exclusively on the Q-learning components. The performance of
the variants of our proposed QLSA algorithm is influenced by four tunable parameters. To determine appropriate
values for these parameters, the well-known berlin52 instance from the TSPLIB benchmark was selected as the test
problem for all tuning experiments. In each experiment, the algorithm was terminated when the maximum number
of iterations was reached. The first experiment focused on the learning rate .. This parameter was tested across the
range 0.05,0.1,...,1. The corresponding row in Table 2 presents the results for the QLS As and SB — QLS A,
variants. The results indicate that the lowest average tour length over 10 runs for QLS A was achieved at « = 0.3.
In contrast, SB — QLS A, yielded its best average performance at o = 0.6. Building on these findings, the second
experiment tuned the discount factor ~, tested over the values 0.05,0.1,...,1.0. To isolate the effect of ~, fixed
values of « were adopted based on the previous experiment: o = 0.3 for QLS A, and o = 0.6 for SB — QLS A;.
Analysis of the 7 row in Table 2 reveals that the optimal setting differs between the two variants: v = 1.0 produced
the best performance for QLS A, whereas v = 0.8 was superior for SB — QLS A;.
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Table 2. Comparison of mean tour lengths and standard deviations for different values of the learning rate v and discount
factor y in the QLSA; and SB-QLSA variants

P Mean Std
arameters Values
QLSA SB-QLSA QLSA SB-QLSA
0.05 7803.1 7805.5 130.2 111.0
0.1 7819.3 7786.4 135.3 168.8
0.2 7750.8 7792.4 113.1 193.6
0.3 7702.1 7779.7 113.9 118.1
0.4 7761.5 7850.9 111.7 110.4
a 0.5 7805.8 7798.8 150.3 145.7
0.6 7873.7 7733.7 136.8 109.9
0.7 7728.4 7739.4 115.5 134.0
0.8 7834.2 7752.0 1354 174.8
0.9 7832.9 7763.4 152.9 153.5
1 7797.5 7811.7 142.8 121.0
0.05 7796.8 7776.3 110.8 1344
0.1 7890.5 7740.6 106.0 134.7
0.2 7819.7 7749.4 81.2 125.6
0.3 7864.8 7857.9 145.1 150.6
0.4 7809.6 7825.9 122.2 173.9
0% 0.5 7819.2 7762.9 105.1 107.1
0.6 7795.2 7785.8 1354 95.4
0.7 7814.8 7696.9 152.1 83.6
0.8 7824.0 7738.9 136.2 106.7
0.9 7799.9 7836.0 181.2 151.3
1 7778.7 7819.0 118.3 119.1

The third experiment examined the exploration parameter ¢ (commonly associated with an e-greedy policy),
tested in the range 0.05 to 1.0. According to the results reported in the € row of Table 3, both QLS A, and
SB — QLSA, achieved their lowest average tour lengths when ¢ = 1.0. Finally, the last tuning experiment
investigated the Des parameter. Three discrete values were evaluated: 0.001, 0.005, and 0.01. The outcomes
summarized in Table 3 demonstrate that Des = 0.001 consistently delivered the best performance across the tested

variants.

Table 3. Comparison of mean tour lengths and standard deviations for different values of the learning rate a and discount
factor v in the QLSA. and SB-QLSA. variants

Mean Std
Parameters Values
QLSA., SB-QLSA. QLSA., SB-QLSA.
0.05 8140 8014.1 237.7 303.2
Epsilon 0.1 8152.2 8169.5 264.27 379.64
0.2 8004.5 7930.2 201.24 190.31
0.3 7920.8 7965.6 153.47 199.21
04 7939.3 7951 206.24 248.74
0.5 7895.5 7937 259.31 189.63
0.6 7966.9 7861.1 183.38 234.36
0.7 7873.1 7836.6 194.46 121.76
0.8 7947.4 7842.7 101.41 203.87
0.9 7850.9 7902.3 133.70 177.79
1 7776.6 7796.8 103.30 189.97
Des 0.001 7907.7 7860.2 120.38 186.85
0.005 8200.5 8050.2 304.01 343.56
0.01 8266.4 83524 654.36 507.00
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These tuned parameter values were subsequently adopted for all comparative experiments involving the respective QLSA
variants on larger or multiple TSPLIB instances.

5.3. Experimental Setup

In our comparative study, each algorithm was executed multiple times per benchmark instance to ensure a robust statistical
evaluation.

Specifically, the main performance table reports results from 10 independent runs for each instance. For each run, we
recorded the shortest tour length obtained and the computational time required to achieve this best solution. From these runs,
we computed the following statistics for each algorithm and instance pair:

Best: the smallest tour length observed across all runs.

Worst: the largest tour length observed across all runs.

Mean: the average tour length over all runs.

Std: the standard deviation of tour lengths, reflecting result stability.

¢ Gap: the percentage deviation from the Best Known Solution (BKS) reported in TSPLIB.

The Gap index is calculated as:

Average — BKS
BKS

where Average is the mean tour length over all runs and BKS is the best-known solution for the corresponding instance.
This metric provides a normalized measure of solution quality across instances with different scales. In addition to the mean
gap, we also report the minimum gap (computed from the best tour length found among all runs), allowing a more precise
evaluation of each algorithm’s peak performance.

Furthermore, to statistically assess the significance of the observed differences in performance, three non-parametric
tests were conducted: the Wilcoxon signed-rank test, the Sign test, and the Friedman test. These tests allow for robust
comparisons between algorithms without assuming normality in the performance distributions, thus providing more reliable
insights into whether observed performance differences are statistically significant.

Gap(%) = x 100 (13)

5.4. Performance Comparison with SA

Following the experimental design and the parameter settings outlined in Sections 5.1 and 5.2, we carried out the experiment
on the selected TSP instances from the TSPLIB database.

The detailed results for all tested instances are reported in Table 4.A lower values for the best, worst, and mean metrics
reflect a stronger search capability of the algorithm. In the std row, smaller values denote greater stability and consistency
in producing high-quality solutions across different runs. Bold values mark the best performance for each metric among the
compared algorithms.

Table 4. Comparison statistics between SA, QLSA¢, QLSA s, SB-QLSA and SB-QLSAg

Instances BK Stat SA QLSAs QLSA. SB-QLSAg SB-QLSA.
ulyssesl6 6859 min 6889 6859 6859 6859 6859
mean 7238.2 6866.2 6879.4 6866.9 6880.7
std 351.398 5.203 22.147 12.714 22.146
max 7886 6870 6912 6890 6913
grl7 2085 min 2149 2085 2085 2085 2085
mean 2347.1 2090.5 2092.9 2090.0 2090.7
std 221.352 6.133 14.114 10.801 6.783
max 2746 2103 2130 2120 2103
ulyssess22 7013 min 7132 7013 7013 7013 7019
mean 7670.0 7056.5 7084.1 7035.1 7089.4
std 453.543 39.334 49.088 38.651 52.239
max 8506 7116 7186 7131 7170
gr24 1272 min 1286 1272 1272 1272 1272
mean 1481.6 1290.8 1297.9 1291.1 1292.0
std 123.098 18.268 18.941 16.589 16.839
max 1688 1323 1326 1326 1322
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bayg29 1610 min 1700 1610 1620 1610 1620
mean 1897.6 1648.4 1664.9 1632.7 1655.6
std 102.378 26.588 27.188 23.362 27.330
max 2020 1702 1723 1688 1690
bays29 2020 min 2095 2028 2026 2020 2020
mean 2274.6 2045.0 2060.1 2041.4 2059.9
std 127.509 18.227 43.565 21.813 38.083
max 2465 2082 2164 2076 2122
dantzigd2 699 min 771 699 699 713 699
mean 829.7 714.7 736.0 730.2 726.9
std 31.945 11.795 19.905 9.953 18.882
max 882 740 771 745 750
swiss42 1273 min 1318 1286 1286 1287 1288
mean 1457.6 1323.3 1333.7 1315.4 1328.5
std 86.413 31.263 36.966 23.899 27.989
max 1617 1373 1372 1366 1373
grd8 5046 min 5222 5087 5157 5049 5058
mean 57574 5215.0 5289.6 5163.5 5221.1
std 325.596 99.962 100.879 88.295 116.996
max 6212 5435 5421 5345 5468
hk48 11461 min 11470 11470 11711 11640 11474
mean 12944.1 11809.2 11974.7 11847.3 11867.3
std 854.589 179.815 269.270 142.963 325.515
max 14790 12043 12588 12038 12654
eil51 426 min 429 432 427 430 427
mean 477.1 441.2 442.0 439.6 438.2
std 22.043 6.033 9.055 9.902 9.705
max 501 452 450 464 455
berlin52 7542 min 8189 7652 7590 7591 7695
mean 8764.6 7810.4 7872.0 7815.9 7894.0
std 478.212 126.115 194.412 140.420 160.868
max 9636 8087 8152 7999 8207
st70 675 min 712 688 686 692 698
mean 752.3 709.5 707.1 708.4 726.5
std 22.85 16.92 16.28 11.3 18.8
max 777 735 731 726 759
pr76 108159 min 114938 109733 111952 109990 108809
mean 120732.1 1124494 113407.4 113728.5 113615.6
std 4032.374 1669.166 1641.900 2401.576 3525.411
max 128401 114927 117571 117652 119996
eil76 538 min 565 551 553 549 558
mean 599.9 562.9 566.5 558.9 571.8
std 24.893 9.550 6.241 7.838 10.581
max 640 583 574 572 591
rat99 1211 min 1348 1249 1231 1241 1273
mean 14289 1298.2 1282.3 1286.7 1322.0
std 71.6 40.9 34.46 23.8 56.3
max 1536 1377 1342 1315 1463
eil101 629 min 644 643 641 650 652
mean 686.3 665.9 666.9 664.4 670.1
std 3442 13.40 18.48 11.9 15.37
max 747 686 701 682 700

Table 4 provides a comprehensive comparison between the classical Simulated Annealing (SA) and the various Q-
learning-assisted extensions. On the whole, the best average performance (mean) is attained by the state-based variants,
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specifically SB-QLSA s and SB-QLSA., which outperform the standard SA in all 17 benchmark cases. Notably, SB-QLSA g
achieves the best mean tour length in 8 instances, while the standard QLSA s remains competitive in smaller problems. This
supports the hypothesis that integrating the diversity-based state into the reinforcement learning loop creates a highly efficient
search mechanism capable of providing high-quality solutions consistently.

Regarding the best-case performance (min), the Q-learning hybrids almost reached or equaled the Best Known (BK) values
in almost every instance, whereas the classical SA struggled to converge to the BK in 16 out of 17 cases. Stability-wise, the
state-based extensions show a marked improvement; SB-QLSA g recorded the lowest standard deviation (szd) in 10 out of
17 instances, proving its superior reliability. This is particularly evident in complex landscapes like gr48 and hk48, where
the diversity-aware policy prevents the erratic behavior observed in the classical SA.

Despite SA showing slightly more competitive results on larger instances like pr76 compared to its own performance
on small instances, it still suffers from high variability and significantly higher mean costs. The results indicate that while
Q-learning integration is superior in terms of robustness, the SB-QLSA variants mitigate the risk of losing search efficiency
on rugged landscapes by adaptively balancing exploration and exploitation through the diversity threshold 4.

Finally, to assess the statistical significance of the observed differences, non-parametric tests were performed. Table 5
reports the results of the statistical comparison between the considered algorithms over all test instances. The Wilcoxon
signed-rank test and the Sign test were used to assess pairwise differences in performance, while the Friedman test was
applied to compare all methods simultaneously. In the table, “Wins(A)” and “Wins(B)” denote the number of instances on
which algorithm A or B achieved better performance, respectively, and the average ranks correspond to the mean Friedman
ranks, where lower values indicate better performance.

Table 5. Non parametric statistical comparison

Comparison Wilcoxon p Sign p Wins(A) Wins(B) Ties Avg. rank A/B
QLSA; vs QLSA. 0.0013428  0.0023499 15 2 0 1.824/3.235
SA vs QLSA. 1.5259¢-05  1.5259e-05 0 17 0 5.000/3.235
SA vs QLSA 1.5259¢-05  1.5259e-05 0 17 0 5.000/1.824
SA vs SB-QLSA 1.5259¢-05  1.5259e-05 0 17 0 5.000/1.706
SA vs SB-QLSA. 1.5259¢-05  1.5259e-05 0 17 0 5.000/3.235
QLSA; vs SB-QLSA. 7.6294e-05  0.00027466 16 1 0 1.824/3.235
QLSA. vs SB-QLSA, 0.0093384 0.012726 3 14 0 3.235/1.706
SB-QLSA; vs SB-QLSA. 0.010986 0.012726 14 3 0 1.706 / 3.235
QLSA; vs SB-QLSA 0.37782 0.33231 6 11 0 1.824/1.706
QLSA. vs SB-QLSA. 1 1 8 9 0 3.235/3.235

Friedman x? = 48.7529, p = 6.5745276e — 10, N =17, k=5
Avg. ranks (lower is better): SB-QLSA: 1.706, QLSA,: 1.824, QLSA.: 3.235, SB-QLSA.: 3.235, SA: 5.000

From the table, the Friedman test indicates a statistically significant difference among the algorithms (x> = 48.7529,
p = 6.57 x 10719), confirming that the observed performance variations are unlikely to be due to random fluctuations. The
average rank analysis shows that SB-QLSA s achieves the best overall ranking (1.706), followed closely by QLSA (1.824),
while QLSA. and SB-QLSA. obtain intermediate ranks (3.235), and classical SA ranks last (5.000).

Pairwise comparisons further support these observations. Both QLSA variants significantly outperform SA, as indicated
by very small p-values in both the Wilcoxon and Sign tests, and by the fact that SA does not outperform any learning-based
method on any instance. Similarly, SB-QLSA significantly outperforms SA on all instances, confirming the effectiveness
of incorporating learning into the search process.

Comparisons among learning-based methods provide additional insight. QLSA significantly outperforms QLSA. (p =
0.00134), suggesting that the softmax-based policy leads to more effective operator selection than the e-greedy strategy in
this setting. Likewise, SB-QLSA  significantly outperforms SB-QLSA., indicating that this effect persists in the state-based
formulation. More dicussion on policy comparison will be done in the next section.

On the other hand, the comparison between QLSA and SB-QLSA; does not show a statistically significant difference
(p = 0.37782), suggesting that while the state-based mechanism slightly improves the average rank, its advantage over the
stateless variant is not consistently large across all instances. Similarly, no significant difference is observed between QLSA.
and SB-QLSA., indicating comparable behavior for the e-greedy variants.

In summary, the incorporation of state-based Q-learning into simulated annealing yields consistent improvements in
both solution quality and run-to-run stability. Among the tested variants, SB-QLSA g emerges as the most robust overall
performer, particularly on more challenging instances, while the e-greedy strategy (QLSA.) remains a viable alternative for
specific smaller benchmarks like eil51 and s¢70.
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5.5. Policy Comparison: Softmax vs c-greedy
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Tables 6 and 7 report the performance of the QLSA variants using two different action-selection policies: Softmax and

e-greedy.

For each instance, the tables provide the best-known solution (BK), along with the minimum, mean, standard deviation,
and maximum tour lengths obtained over multiple independent runs. To allow a normalized comparison across instances
of different scales, the mean percentage gap relative to the best-known solution is also reported. Lower gap values indicate

better solution quality.

Table 6 presents the results for the stateless QLSA variants, while Table 7 reports the corresponding results for the state-
based versions (SB-QLSA). In both tables, the best result for each instance is highlighted in bold. Summary row at the

bottom provide the average gap across all instances.

Table 6. Performance comparison of QLSA variants with mean gap to best-known solution (BK).

Instance BK stat QLSAg Gap(%) QLSA. Gap(%)
min 6859 6859

mean 6866.2 0.10 6879.4 0.30
ulyssesl6 6859 std 5.0 2215
max 6870 6912
min 2085 2085

mean 2090.5 0.26 2092.9 0.38
grl? 2085 G 6.13 14.11
max 2103 2130
min 7013 7013

mean 7056.5 0.62 7084.1 1.01
ulysses22 7013 g 39.33 49.09
max 7116 7186
min 1272 1272

mean 1290.8 1.48 1297.9 2.04
gr24 1272 18.27 18.94
max 1323 1326
min 1610 1620

mean 1648.4 2.39 1664.9 3.41
bayg29 1610 4 26.59 27.19
max 1702 1723
min 2028 2026

mean 2045.0 1.24 2060.1 1.99
bays29 2020 gy 18.23 43.56
max 2082 2164
min 699 699

. mean 714.7 2.25 736.0 5.29
dantzig42 699 std 11.80 19.91
max 740 771
min 1286 1286

. mean 1323.3 3.95 1333.7 4.77
swissd2 1273 g 31.26 36.97
max 1373 1372
min 5087 5157

mean 5215.0 3.35 5289.6 4.83
grad 046 g 99.96 100.88
max 5435 5421
min 11470 11711

mean 11809.2 3.04 11974.7 4.48
hk48 a6l g4 179.81 269.27
max 12043 12588
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min 432 427
. mean 441.2 3.57 442.0 3.76
i3l 42 G 6.03 9.06
max 452 450
min 7652 7590
. mean 7810.4 3.56 7872.0 4.37
berlin52 7542 44 126.11 194.41
max 8087 8152
min 688 686
mean 709.5 5.11 707.1 4.76
st70 675 std 16.93 16.29
max 735 731
min 109733 111952
mean 112449.4 3.97 113407.4 4.85
pr76 108159 g 1669.17 1641.90
max 114927 117571
min 551 553
. mean 562.9 4.63 566.5 5.30
cil76 238 std 9.55 6.24
max 583 574
min 1249 1231
mean 1298.2 7.20 1282.3 5.89
rat99 21 g4 40.95 34.46
max 1377 1342
min 643 641
. mean 665.9 5.87 666.9 6.03
eill0l 629 std 13.40 18.48
max 686 701
Average Gap (%) 3.09 3.73
Table 7. Performance comparison of SB-QLSA variants with mean gap to BK.
Instance BK stat SB-QLSAg Gap(%) SB-QLSA. Gap(%)
min 6859 6859
mean 6866.9 0.12 6880.7 0.32
ulyssesl6 6859 4 12.71 215
max 6890 6913
min 2085 2085
mean 2090.0 0.24 2090.7 0.27
grl? 2085 g 10.80 6.78
max 2120 2103
min 7013 7019
mean 7035.1 0.32 7089.4 1.09
ulysses22 7013 g 38.65 52.24
max 7131 7170
min 1272 1272
mean 1291.1 1.50 1292.0 1.57
gr24 1272 16.59 16.84
max 1326 1322
min 1610 1620
mean 1632.7 1.41 1655.6 2.83
bayg29 1610y 23.36 27.33
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max 1688 1690
pin 2020 2020
mean 2041.4 1.06 2059.9 1.97
bays29 2020 4 21.81 38.08
max 2076 2122
min 713 699
. mean 730.2 4.46 726.9 4.00
dantzigd2 699 std 9.95 18.88
max 745 750
min 1287 1288
. mean 1315.4 333 1328.5 436
swissd2 1273 oy 23.90 27.99
max 1366 1373
min 5049 5058
mean 5163.5 233 5221.1 3.47
gr48 046 g 88.30 117.00
max 5345 5468
min 11640 11474
mean 118473 3.37 11867.3 3.54
hk48 L1461 4 142.96 32551
max 12038 12654
min 430 427
. mean 439.6 3.19 438.2 2.86
eil51 426 std 9.90 9.70
max 464 455
min 7591 7695
. mean 7815.9 3.63 7894.0 4.66
berlin52 7542 4 140.42 160.87
max 7999 8207
min 692 698
mean 708.4 4.95 726.5 7.63
st70 675 std 11.31 13.88
max 726 759
min 109990 108809
mean 1137285 5.15 113615.6 5.04
pr76 108159 ¢4 2401.58 352541
max 117652 119996
min 549 558
. mean 558.9 3.89 571.8 6.28
€il76 538 std 7.84 10.58
max 572 591
min 1241 1273
mean 1286.7 6.25 1322.0 9.17
raty9 210 23.90 56.39
max 1315 1463
min 650 652
. mean 664.4 5.63 670.1 6.53
cill01 629 std 11.98 1537
max 682 700
Average Gap (%) 2.99 3.86

The experimental results clearly indicate that the choice of exploration policy has a significant impact on the
performance of Q-learning-assisted Simulated Annealing. Across the 17 TSP benchmark instances, the Softmax-based
variants consistently outperform their e-greedy counterparts in both the stateless and state-based formulations.
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For the stateless algorithms, QLSA s achieves a lower average gap to the best-known solutions (3.09%) compared to
QLSA¢ (3.73%), and obtains the best mean performance on 15 out of 17 instances. A similar trend is observed for the state-
based variants, where SB-QLSA g achieves an average gap of 2.99%, compared to 3.86% for SB-QLSA., with 13 wins out of
17 instances. These improvements are consistent across small, medium, and larger instances, suggesting that the advantage
of Softmax is robust with respect to problem size.

The statistical analysis further confirms these observations. From table 5, we can see that both Wilcoxon and Sign
tests yield statistically significant differences in both comparisons (p < 0.05), indicating that the observed performance
differences are unlikely to be due to random variation, with QLSA g winning 15 out of 17 instances and SB-QLSA ¢ winning
14 in comparison with their greedy-epsilon counterpart.

From an algorithmic perspective, these results can be explained by the different exploration mechanisms of the two
policies. The e-greedy policy selects the best action with high probability while exploring uniformly at random with
probability €. Although simple and effective, this strategy does not exploit information about the relative quality of non-
best actions, which may lead to less efficient exploration and higher variance in performance. In contrast, the Softmax policy
performs a probability-weighted selection based on Q-values, allowing actions with moderately good Q-values to be sampled
more frequently than clearly inferior ones. This graded exploration mechanism appears particularly beneficial in the context
of QLSA, where candidate solutions often exhibit small but meaningful differences in quality. As a result, Softmax provides
a better balance between exploration and exploitation, leading to improved mean performance and lower standard deviations
in many instances.

Another noteworthy observation is that the performance gap between policies remains similar in both the stateless
and state-based frameworks. This indicates that the benefit of Softmax is largely independent of the introduction of state
information and primarily arises from the action selection mechanism itself.

Overall, the results demonstrate that Softmax constitutes a more effective exploration strategy for QLSA than e-greedy in
the tested settings. Its ability to exploit the structure of the learned Q-values leads to more stable convergence and improved
solution quality, while maintaining sufficient exploration to avoid premature stagnation.

5.6. Convergence of QLSA algorithms

Figures 4 and 5 represent the convergence aspect of the five algorithms for some selected instances. The mean of the gap
computed at each iteration over the 10 runs was calculated to efficiently assess the convergence of SA, QLSA., QLSA;,
SB-QLSA. and SB-QLSA;. In addition, the iteration at which a quality target of less than 5% gap is reached is indicated
in the plots whenever the target is achieved. The horizontal dashed line represents the target value, while the vertical lines
indicate the mean number of iterations required to reach this target.

GAP% convergence + ITTQ@5.0% — bayg29 (BK=1610) GAPY% convergence + ITTQ@S.0% — berlin52 (BK=7542)

(a) bayg29 (b) berlin52

Figure 4. Convergence of the GAP - First Group
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GAP% convergence + ITTQ@5.0% — hkd8 (BK=11461) GAP% convergence + ITTQ@S5.0% — eil76 (BK=538)

(a) hk438 (b) €il76

GAP% convergence + ITTQ@5.0% — ell101 (BK=629)

(c) eil101

Figure 5. Convergence of the GAP - Second Group

Generally, all algorithms exhibit a rapid reduction of the optimality gap during the early iterations, followed by a slower
improvement phase, which is typical of metaheuristic search processes.

On the bayg29 instance, the learning-assisted variants reach the 5% gap target earlier than classical SA, with SB-QLSAs
achieving the target in approximately 660 iterations, followed by QLSAe and QLSA ;, indicating that the learning mechanism
can accelerate convergence in small instances.

For berlin52, the differences between algorithms become less pronounced, as all QLSA variants reach the target at similar
iteration counts (around 920-940 iterations), suggesting that the benefit of learning remains present but less significant when
the landscape becomes more complex. Similar behavior can be seen on hk48, the curves show similar convergence trends
among the QLSA variants, with only moderate differences in the iteration required to reach the target, confirming that the
advantage of reinforcement-guided selection is instance-dependent and may diminish as problem structure or neighborhood
difficulty increases. As for larger instances, the €il76 and eil101 graphs shows that convergence is slower and the target is
reached only by SB-QLSA , indicating that this variant tends to provide more stable improvements in larger search spaces.

Overall, this convergence analysis shows that the proposed learning-assisted variants maintain stable search dynamics
and are able to progressively reduce the optimality gap on individual instances. However, convergence behavior alone does
not fully characterize the practical performance of the methods. In many real-world applications, problem size increases
substantially, and it becomes essential to assess how both solution quality and learning dynamics evolve as the instance
dimension grows. In the next paragraph, we analyze whether the reinforcement learning component maintains its ability to
discriminate between candidate operators when the search space becomes larger.

Figure 6 reports two aggregate diagnostics computed across instances of increasing size. In order to provide a clear and
representative view, we restrict this analysis to the softmax-based variants, which consistently provided the best overall
performance in terms of solution quality and stability in the previous experiments.
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Scaling diagnostic — reward_zero rate vs instance size

Scaling diagnostic — policy entropy vs instance size
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Figure 6. Scalability Analysis graphs

Figure 6a reports the mean policy entropy across runs. The policy entropy is defined as

H == p(a;)logp(a), (14)

K3

where p(a;) denotes the probability of selecting action a,. This quantity measures the dispersion of the action-selection
distribution: low entropy indicates strong preference for a subset of candidates, while high entropy corresponds to a more
evenly distributed selection policy. The graph indicates that the mean policy entropy remains close to its theoretical maximum
for a candidate set of size four. Indeed, the maximum entropy is given by

Hmax = log(4) ~ 1.386, (15)

and the observed values range approximately between 1.3854 for smaller instances and about 1.3850-1.3852 for larger ones.
These results show that the action-selection distribution becomes only weakly differentiated as the instance size increases. In
other words, although learning remains stable, the policy exhibits limited differanciation in larger search spaces, reflecting a
reduced separation between Q-values.

Figure 6b provides further insight into this behavior by examining the reward signal available to the learning process. The
reward-zero rate, is defined as the proportion of iterations in which the selected move does not produce an improvement of
the incumbent solution. This indicator reflects the frequency of informative learning signals available to the reinforcement
learning component.

For small instances such as n = 16 or n = 29, the reward-zero rate remains at moderate levels, indicating that improving
moves occur frequently enough to provide informative feedback to the learning mechanism. As the instance size increases,
this rate decreases and stabilizes at values close to zero for instances around n = 101. This trend reflects the increasing
difficulty of obtaining improving moves in larger TSP instances, where most candidate moves produce marginal or no
improvements. Taken together, these results suggest that the reduced policy selectivity observed in larger instances is
primarily due to the decreasing magnitude and frequency of informative rewards rather than instability of the learning
mechanism itself. As the search space grows, improvements become rarer and smaller in relative terms, which slows down
Q-value separation and limits the degree to which the policy can favor specific operators.

Nevertheless, it is important to note that this effect does not prevent the algorithms from maintaining stable convergence
behavior, as shown previously. Rather, it highlights an intrinsic scalability challenge of reinforcement-learning-assisted
metaheuristics: preserving strong operator discrimination in increasingly large and complex search spaces remains an open
research direction, and may require adaptive reward scaling, longer learning horizons, or temperature scheduling strategies.

5.7. Computational time Analysis
Table 8 reports the execution time of SA, QLSA, and SB-QLSA.
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Table 8. Computational time comparison (seconds) between SA, QLSA and SB-QLSA variants. The fastest time for each
instance is shown in bold.

Instance  SA QLSA, QLSA. SB-QLSA, SB-QLSA.
ulysses16  8.35 11.79 9.80 12.00 10.33
grl7 13.70 23.22 18.77 23.17 20.17
ulysses22  30.80 41.23 39.10 41.11 37.55
gr24 57.49 68.89 59.80 66.10 60.59
bayg29 61.63 72.65 65.63 70.88 66.08
bays29 51.22 57.85 53.16 57.42 53.15
dantzigd2 234.42 240.51 244.44 244.25 239.97
swiss4?2 191.94 203.46 200.25 201.41 200.55
grd8 410.85 455.65 439.89 447.25 440.92
hk48 365.95 386.79 373.49 376.99 371.55
eil51 589.41 610.57 602.53 611.71 591.92
berlin52 600.56 638.66 644.12 645.16 620.02
st70 2460.60 2540.81 2498.47 2499.99 2487.54
pr76 3009.84 3112.49 3065.35 3066.64 2381.83
eil76 2379.99 2466.04 2450.12 247423 2485.83
rat99 5027.88 5002.22 5003.58 4981.07 4915.73
eil101 151064.69 151560.10 152305.01 150715.01 151607.59

As we can see, in terms of computational times, all algorithms remain broadly comparable across the tested instances.
Classical SA is generally the fastest method, while QLSA and SB-QLSA introduce a moderate additional cost, which is
more noticeable on small instances but decreases as the problem size increases. In several medium and large instances, the
differences in execution time become marginal, indicating that the learning mechanism does not significantly affect practical
scalability. Moreover, the state-based variants exhibit computational times similar to those of their stateless counterparts,
showing that the proposed state representation does not introduce a substantial additional burden.

From a theoretical standpoint, the per-iteration complexity of QLSA remains of the same order as that of classical SA.
Let f(n) denote the cost of evaluating a candidate solution of size n. Both algorithms require generating a neighbor solution
and computing its objective value, which dominates the runtime and contributes O(f(n)) per iteration. The reinforcement
learning component adds the selection of an action and the update of a Q-value, operations that require only a small and
bounded number of arithmetic computations. Although the maintenance of multiple candidate operators may introduce a
small constant overhead in practice, this cost remains independent of the problem size.

Consequently, the overall per-iteration complexity remains O( f(n)), meaning that the dominant computational bottleneck
in all variants is still the evaluation of candidate solutions. For TSP instances, the most expensive operations remain tour
modification and distance evaluation, whose cost depends on the chosen neighborhood operator and typically ranges between
O(1) and O(n). In contrast, the reinforcement learning update and policy evaluation remain independent of the instance size
and therefore represent a diminishing fraction of the runtime as n increases.

To better quantify the impact of the learning mechanism on runtime, Table 9 reports the relative computational overhead
of each variant with respect to classical SA. The results show that the overhead is more pronounced for small instances,
where constant-time operations such as policy selection and Q-value updates represent a larger fraction of the total runtime.
However, as the instance size increases, the relative overhead decreases rapidly and becomes negligible for large-scale
problems. This trend confirms that the dominant computational cost in all algorithms remains the evaluation of candidate
solutions and neighborhood operations, whose complexity grows with the problem size. In contrast, the reinforcement
learning components introduce only a bounded additional cost that does not scale with the instance dimension. Interestingly,
in a few cases the learning-based variants even exhibit slightly lower execution times than SA. This behavior can be attributed
to stochastic search trajectories that may reach high-quality regions of the search space earlier, thereby reducing the number
of costly evaluations in practice.

Overall, these results indicate that the proposed learning mechanisms affect constant factors but do not alter the practical
scalability of the algorithm, making them suitable for medium and large TSP instances where solution quality improvements
are obtained at a marginal computational cost.
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Table 9. Relative computational overhead (%) of Q-learning-based SA variants compared to SA.

Instance QLSA, QLSA. SB-QLSA SB-QLSA.
ulysses16 41.20 17.37 43.71 23.71
erl7 69.49 37.01 69.12 47.23
ulysses22 33.86 26.95 33.47 21.92
ar24 19.83 4.02 14.98 5.39
bayg29 17.88 6.49 15.01 7.22
bays29 12.95 3.79 12.11 3.75
dantzigd2 2.60 4.28 4.20 2.37
swiss42 6.00 4.32 4.93 4.49
ard8 10.90 7.07 8.86 7.31
hk48 5.69 2.05 3.02 1.53
eil51 3.59 2.22 3.78 0.43
berlin52 6.34 7.25 7.41 3.24
st70 3.26 1.54 1.60 1.10
pr76 341 1.84 1.88 -20.86
eil76 3.62 2.95 3.95 4.44
rat99 -0.51 -0.48 -0.93 -2.22
eill01 0.33 0.82 -0.23 0.36

These observations suggest that the trade-off between solution quality and computational effort remains favorable, as the
additional runtime required by the learning mechanisms becomes negligible compared to the cost of evaluating candidate
solutions for large instances.

6. Conclusion and Future Work

This paper investigated multiple variants of reinforcement-learning-assisted variants of simulated annealing for solving
the Traveling Salesman Problem. Several Q-learning-based strategies were proposed and analyzed, including stateless and
state-based formulations, as well as different action-selection policies. Among these variants, the proposed State-Based Q-
Learning-Assisted Simulated Annealing (SB-QLSA), particularly when combined with a softmax selection policy, achieved
the most consistent and robust performance across the tested benchmark instances. Extensive experiments on a wide range
of TSPLIB instances show that Q-learning-assisted variants significantly improve solution quality and robustness compared
with classical simulated annealing. Statistical analyses, including Friedman, Wilcoxon, and Sign tests, confirm that these
improvements are statistically significant which indicate that incorporating learning mechanisms to guide the selection of
neighborhood leaders enhances both the stability and effectiveness of the search process, while the introduction of state
information further improves the algorithm’s ability to adapt its behavior to different search regimes.

The experimental analysis also provided insight into the scalability of the proposed methods. While all learning-assisted

variants exhibit stable convergence behavior and strong performance on small and medium-sized instances, a gradual
decrease in performance is observed as the instance size increases. Diagnostic analyses indicate that informative rewards
become less frequent and smaller in magnitude in larger search spaces, which slows down the separation of action values
and reduces policy selectivity. This behavior reflects intrinsic challenges of applying reinforcement learning within large
combinatorial landscapes rather than instability of the learning process itself.
Several factors contribute to this limitation. The stateless formulation restricts the ability of the learning mechanism to adapt
its guidance strategy to different phases of the annealing process, while the use of a fixed and compact candidate set may
provide insufficient diversity for effective navigation of large and complex landscapes. In addition, learning parameters that
are effective for small and medium-sized instances may require careful scaling or adaptation to fully exploit reinforcement
learning on larger problems.

Beyond the TSP, the proposed framework remains inherently problem-independent. By coupling a metaheuristic
backbone with a reinforcement learning mechanism to guide neighborhood exploration, the approach can be extended to
other combinatorial optimization problems with minimal modification, requiring only the definition of problem-specific
neighborhood operators. Potential applications include vehicle routing, scheduling, assignment, Multidimensional Knapsack
Problem and other large-scale discrete optimization problems.

Future work will focus on improving scalability and adaptability. In particular, adaptive and self-tuning parameter control
strategies will be investigated to achieve a more effective balance between exploration and exploitation in large-scale
instances. Extending the learning mechanism toward richer state representations and context-sensitive reinforcement
learning models represents a promising direction for enhancing phase-dependent decision-making. Additional improvements
may also be obtained through dynamic candidate-set generation, hybridization with complementary metaheuristics, and
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parallel implementations. Finally, evaluating the proposed variants on much larger TSP instances and other combinatorial
optimization problems constitutes a natural continuation of this work.
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