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Abstract This study aims to evaluate the performance of various regression models in unbalanced and clustered data,
using the 2018 Human Development Index (HDI) data for regencies in Java Island, Indonesia, as a case study. The models
assessed include Linear Mixed Models (LMM), Generalized Estimating Equations (GEE), Mixed-Effects Regression Trees
(MERT), and Gaussian Copula Marginal Regression (GCMR). These models share a common foundation in incorporating
random effects, allowing for a fair and systematic comparison. The performance of the model was evaluated using two key
metrics: The median absolute error (MedAE) and the root mean square error (RMSE), applied to both the original data set
and an oversampled version generated using the Synthetic Minority Oversampling Technique (SMOTE). The results indicate
that the application of SMOTE consistently improves the accuracy of the model. MERT achieved the lowest MedAE in both
datasets, demonstrating superior capability in minimizing median prediction errors. Meanwhile, GCMR produced the best
RMSE on the original data, highlighting its robustness in handling complex data structures without requiring oversampling.
Residual analysis using boxplots further supports these findings, showing that SMOTE effectively reduces residual variability
and improves model stability. Among the models evaluated, MERT exhibited the most consistent overall performance. These
findings underscore the utility of oversampling techniques such as SMOTE in improving regression model performance on
unbalanced and hierarchically structured data. Furthermore, both MERT and GCMR are identified as strong candidates for
such analytical scenarios, contributing valuable insights toward developing more robust and accurate predictive models in
data science and applied statistics.
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1. Introduction

Clustered data refers to data that is organized into groups or clusters in which observations within the same group
tend to be correlated or dependent on one another. This intra-cluster dependence often arises due to unobserved
factors that similarly affect all observations within a group. Unlike independent data, where each observation
is assumed to be unaffected by others, clustered data requires special analytical approaches. Classic examples
of clustered data span various domains. In healthcare, for instance, patients treated in the same hospital may
share similar characteristics due to environmental or institutional factors. In education, students within the same
classroom may exhibit similarities influenced by teaching styles or shared social dynamics. In industrial and
economic settings, branches of the same company operating in a specific geographic region may encounter similar
market conditions, resulting in dependency across observations.
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Traditional linear modeling approaches, such as simple or multiple linear regression, assume independence
among observations. This assumption is violated in clustered data settings, leading to biased and inefficient
estimates if not properly addressed. One widely adopted method to account for intra-cluster correlation is
the Generalized Estimating Equations (GEE) approach [1]. GEE enables consistent estimation of regression
parameters while accommodating correlated responses within clusters, without requiring a precise specification of
the variance-covariance structure. This robustness has made GEE a popular choice in medical and social research,
particularly for longitudinal and hierarchical data structures.

Recent advances in machine learning have introduced innovative methods for analyzing clustered data. One
notable approach is the Mixed Effect Regression Tree (MERT), which integrates the interpretability of decision
trees with the modeling power of linear mixed models [2]. While traditional decision trees partition data based on
input variables to form homogeneous subgroups, MERTSs extend this by incorporating random effects, allowing
them to handle within-cluster correlation while retaining intuitive tree-based visualization [3]. Studies have
demonstrated the effectiveness of MERT in medical domains, such as predicting disease risk while accounting
for dependencies among patients in the same healthcare facility.

Another powerful framework for modeling dependencies in multivariate data is copula-based modeling. A
copula is a function that links the marginal distributions of random variables to form a joint multivariate
distribution. Introduced by Sklar in 1959, copulas offer a flexible mechanism to capture linear and non-linear
dependencies without assuming specific marginal distributions [4]. Various copula families—such as Gaussian, t,
and Archimedean copulas—enable the modeling of different types of dependency structures. In practice, copulas
have found success in fields such as finance [5], where they are used to model the interdependence between
asset prices, especially when traditional linear correlation fails to capture complex relationships. In clustered data
contexts, copulas can be employed to model the joint distribution across dependent observations by combining
marginal distributions into a comprehensive multivariate structure. This enables accurate risk assessment and
prediction in domains such as economics, epidemiology, and engineering [6, 7, 8, 9]. The Gaussian Copula
Marginal Regression (GCMR) method combines copula theory with marginal regression modeling to capture
complex dependencies in clustered data [10]. GCMR estimates the marginal distributions of the dependent and
independent variables separately and then links them using a Gaussian copula. This approach offers greater
flexibility in handling non-normal distributions and capturing nonlinear dependencies compared to traditional
linear models [11]. GCMR has shown improved predictive performance, particularly in cases where clustered
data exhibits intricate dependency structures not well modeled by linear assumptions.

A common challenge in real-world clustered datasets is the imbalance in cluster sizes or class distributions,
where one category may dominate the data, leading to biased models that perform poorly in minority classes [12].
This imbalance often skews predictive performance toward majority clusters or classes, diminishing the model’s
generalizability. Several strategies have been proposed to address data imbalance. Among them, oversampling
techniques, such as the Synthetic Minority Oversampling Technique (SMOTE), artificially generate synthetic data
for underrepresented classes to balance the dataset. Conversely, under-sampling reduces the size of majority classes,
which, while effective, risks discarding valuable information [13]. In this study, only oversampling is applied due
to the limited number of observations (119), as under-sampling could result in significant loss of information.

This study aims to compare the effectiveness of the Gaussian Copula Marginal Regression (GCMR) method
in modeling unbalanced and clustered data with other established approaches such as Generalized Estimating
Equations (GEE) and Mixed Effect Regression Tree (MERT). Through this comparison, the study seeks to
provide more insight into the strengths and limitations of each approach in predicting outcomes from unbalanced
and clustered datasets. By combining mixed-model-based regression techniques with the SMOTE oversampling
method, the goal is to develop a model that is both flexible and accurate in handling intra-cluster dependencies
and data imbalance. This, in turn, is expected to improve predictive performance and broaden applicability across
various domains such as public health, economics, and finance. The proposed methods will be applied to Human
Development Index (HDI) data from regencies on Java Island, Indonesia.
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Figure 1. Histogram of Regency Human Development Index in Java Island 2018

2. Data and Methods

2.1. Data

This study focuses on the analysis of the Human Development Index (HDI) as the dependent variable, which is
modeled in relation to a set of independent variables derived from the Village Potential Survey (PODES). The unit
of analysis in this study is the regencies located on the island of Java, Indonesia. The data set includes administrative
regions at the regency level, which exhibit various socioeconomic, cultural, and infrastructure characteristics that
influence human development in the region.

The Human Development Index (HDI) serves as an indicator for measuring the quality of life in each area, based
on three core dimensions of development: health, education, and standard of living. HDI is a key metric used to
evaluate the extent to which a region can provide well-being for its population. The HDI data used in this study
were obtained from Statistics Indonesia, BPS. Each Java regency has an HDI score derived from the measurement
of the following three main components:

» Health: Measured by life expectancy at birth, reflecting the overall health conditions of the population.

* Education: Measured by the mean years of schooling and expected years of schooling, indicating the quality
of and access to education in the region.

» Standard of Living: Measured by per capita income, representing the economic well-being of residents in
each regency.

The HDI ranges from O to 1, where higher values indicate better human development outcomes. For instance,
regions with higher HDI scores typically exhibit better access to healthcare and education services, as well as
higher economic standards of living. The HDI values used in this study are derived from the 2018 National Socio-
Economic Survey (SUSENAS). The histogram of the HDI variable for regencies in Java Island is presented in
Figure 1.

The independent variables utilized in this study were derived from the Village Potential Survey (PODES),
administered by Statistics Indonesia (BPS). As a comprehensive nationwide survey, PODES captures detailed
information on village-level potential and socio-economic characteristics across Indonesia. The dataset
encompasses a wide range of indicators that may affect the Human Development Index (HDI), including access to
educational services, basic infrastructure such as clean water, electricity, and transportation networks, as well as the
availability of healthcare facilities and other socio-economic determinants. The full list of independent variables
employed in the analysis is presented in Table 1.

These data were initially collected at the village level and subsequently aggregated to the regency level. This
study focuses on regencies located in Java Island, which comprises Jakarta, West Java, Central Java, Yogyakarta,
East Java, and Banten. This coverage enables comparative analysis across regions with varying development levels
and socio-economic characteristics. The HDI data used in this study refers to regency-level HDI in Java Island,

Stat., Optim. Inf. Comput. Vol. 15, January 2026



232 BOOSTING MIXED-EFFECTS MODELS WITH SMOTE: INSIGHTS...

Table 1. Independent Variables Used in the Study

Name | Variables Type

code Province code in Java Island categorical

X1 Percentage of households without access to electricity (PLN | numeric
and non-PLN)

Xs Percentage of villages/sub-districts where most residents | numeric

dispose of waste into rivers, irrigation channels, lakes, oceans,
drains, ditches, or other places

X3 Percentage of villages/sub-districts where most residents use | numeric
open land, rivers, ponds, beaches, or ground pits as sanitation
facilities

Xy Percentage of villages/sub-districts with settlements along | numeric
riverbanks

X5 Percentage of villages/sub-districts with rivers contaminated | numeric
by waste

Xs Percentage of villages/sub-districts with slum settlements numeric

X7 Number of early childhood education centers and kinder- | numeric
gartens per 1,000 residents

Xg Number of elementary schools (SD/MI) per 1,000 residents numeric

X9 Number of secondary schools (SMP/MTs, SMA/MA, SMK) | numeric
per 1,000 residents

X1 Number of hospitals, health centers, polyclinics, and doctor | numeric
practices per 1,000 residents

X1 Number of maternity clinics, midwife practices, POSYANDU, | numeric
and POLINDES per 1,000 residents

X1 Number of pharmacies and drugstores per 1,000 residents numeric

X3 Number of medical doctors and dentists per 1,000 residents numeric

X1a Number of midwives per 1,000 residents numeric

X5 Number of malnutrition cases per 1,000 residents numeric

Source: Village Potential Survey (PODES) 2018 by BPS, Statistics Indonesia

covering six provinces with a total of 119 regencies/cities. Table 2 presents the number of regencies per province.
It is evident that the number of observations is unbalanced, with Jakarta, Yogyakarta, and Banten having fewer
regencies compared to West Java, Central Java, and East Java. The modeling process will be conducted using
two datasets: the original dataset and the dataset generated through the SMOTE, stratified by the provincial level
region variable. These datasets are then further divided into training and testing sets. The training set is used for
model development, with 70 percent of the data allocated for training and 30 percent for testing. The implemented
models include Linear Mixed Models (LMM), Generalized Estimating Equations (GEE), Mixed Effect Regression
Trees (MERT), and Gaussian Copula Marginal Regression (GCMR). The modeling is performed using the training
dataset.

2.2. Methods

Several statistical methods are employed to analyze the data and identify relationships between variables, including
Linear Mixed Model (LMM), Generalized Estimating Equations (GEE), Mixed Effect Regression Tree (MERT),
and Gaussian Copula Marginal Regression (GCMR). Each method is selected based on its ability to handle
dependency in clustered data and to capture potential non-linear relationships between variables. To address class
imbalance in the data, the Synthetic Minority Oversampling Technique (SMOTE) is applied.
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Table 2. Number of Regencies in Each Province in Java Island

Province Number of Regencies
Jakarta 6

West Java 27

Central Java 35
Yogyakarta 5

East Java 38

Banten 8

Source: BPS, Statistics Indonesia

2.2.1. Synthetic Minority Over-sampling Technique (SMOTE). SMOTE is a widely adopted oversampling method
that generates synthetic observations for the minority class, rather than duplicating existing samples. By introducing
interpolated data points, SMOTE enhances the representation of the minority class, enabling machine learning
algorithms to learn more robust and generalizable decision boundaries. SMOTE operates by synthesizing new
samples through linear interpolation between existing minority class instances and their nearest neighbors. This
process is conducted in the feature space, making it particularly suitable for datasets with continuous variables.
The procedure involves the following steps: Selecting a minority class instance x; as the reference point. Then,
identifying % nearest neighbors of z; within the minority class using the k-Nearest Neighbors (k-NN) algorithm.
The last steps are generating synthetic samples by interpolating between x; and one of its neighbors x,,,. To
determine the nearest neighbors, SMOTE utilizes the k-NN algorithm with the Euclidean distance metric. The
distance between two feature vectors x; and x;, each of dimension n, is computed as:

d(l‘i,l‘j) = (1)

In this study, the number of neighbors & is set to less than 5 (2, or 3 or 4). But the oversampling SMOTE results
using k =2, k =3, or k =4 did not show any significant differences. In this study, we used k = 3 for the discussion.
For other provinces with more observations, the choice of k may be more flexible. This constraint represents one of
the limitations of the dataset used in our study. Once a neighbor x,,, is selected, a synthetic sample .y is created
using the following interpolation formula:

Tnew = T + 0 - (Tpp — ;) 2

where ¢ € [0,1] is a random scalar drawn from a uniform distribution. This ensures that the new sample lies
along the line segment connecting x; and z,,,, thereby expanding the minority class distribution in a controlled
manner. One of the main advantages of SMOTE is its ability to balance the dataset without discarding samples from
the majority class, thus preserving information. Another benefit is that it helps models better recognize patterns
from the minority class [14]. However, SMOTE also has limitations. The generated synthetic samples may be less
representative if the minority class data contain outliers. Additionally, when applied to datasets with categorical
features, interpolation may produce less meaningful results.

This study was conducted using Human Development Index (HDI) data at the regency level across Java Island,
where the number of regencies varies considerably among provinces. The Synthetic Minority Oversampling
Technique (SMOTE), which is typically applied to categorical data involving class imbalance, was employed
in this research by treating provinces as the classification variable. Some large provinces, such as the capital
region, contain only a few regencies. However, the capital region has a high level of economic activity and
strategic importance compared to other provinces that are also significant. Consequently, when performing
prediction or parameter estimation with a limited number of observations, the predictive performance may be
less accurate than in provinces with a greater number of regencies serving as data points. Therefore, this study
can serve as a reference for future research that aims to conduct prediction or estimation under conditions of
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unequal sample sizes across provinces, particularly in cases where key regions such as the national capital have
substantially fewer observations. The use of SMOTE in this study does not follow the conventional approach
typically applied in classification regression, where the response variable is categorical and serves as the basis
for class formation during oversampling. Instead, we adopt a different perspective: the class used for SMOTE
is not the response variable, but rather the group variable (i.e., provinces in Java Island), which functions as
a random effect in models such as LMM and MERT. Thus, SMOTE is employed to balance the distribution
across categorical groups with unequal sample sizes, even though the response variable remains continuous. This
approach aims to improve representation of minority groups within longitudinal or hierarchical data structures,
without modifying the SMOTE algorithm theoretically. We acknowledge that applying SMOTE in mixed-effects
regression is still relatively uncommon in the literature, and we include relevant references on oversampling in
regression contexts [15, 16]. In this study, the "UBL” package in the R programming language was used to perform
the SMOTE oversampling technique.

2.2.2. Linear Mixed Models (LMM). LMM is a statistical framework designed to analyze data with hierarchical or
clustered structures. LMM accommodates two types of effects: fixed effects and random effects [17]. Fixed effects
capture the influence of covariates that are consistently observed across all groups (e.g., education level or income),
whereas random effects account for group-specific variability. The LMM can be expressed in the following form:

Yij = XijB+ Zijvj + €ij 3)

where Y;; denotes the HDI value for the j regency within the i group, X;; is the covariate matrix for the
observation, 3 represents the fixed effect coefficients, Z;; is the design matrix for random effects, v/; represents the
random effect coefficients, and ;; is the residual error term. This model captures variation in HDI across regencies
while accounting for intra-group dependencies. The generalized form of this model is known as the Generalized
Linear Mixed Model (GLMM). By integrating the link function used in Generalized Linear Models (GLMs) into
the LMM framework, GLMM extends the applicability to response variables that follow distributions from the
exponential family [18]. The equation for a Generalized Linear Model is given by [19]:

g(pi) = XiB 4

When random effects are incorporated as in LMM, the GLMM takes the following form [20]:
9(nij) = XizB + Zijv; ®)

The function g(-) represents the link function, and in this study, the models employ the gamma distribution
with a logarithmic link. The term y;; denotes the expected value of the response variable for the i observation
within the j group. The generalized linear mixed model (GLMM) is implemented using the 1me4 package and
the glmer () function in R. It is widely recognized that the Human Development Index (HDI) follows a non-
symmetric distribution, typically modeled using the gamma distribution. Therefore, when analyzing datasets that
violate the Gaussian assumption, it is recommended to select a link function that corresponds appropriately to the
error structure or the presumed distribution of the response variable.

2.2.3. Generalized Estimating Equations (GEE). GEE are employed to account for dependence in clustered data
structures, such as the HDI measurements across districts. GEE offers a more flexible alternative to traditional
linear models by enabling parameter estimation without requiring explicit specification of the covariance structure
among observations. It yields consistent estimates of regression parameters even in the presence of intra-cluster
correlation. The general form of the GEE model is expressed as:

g(pmi) = XiB (6)

where g(u;) represents the link function, and in this study, the models employ the gamma distribution with a
logarithmic link, X; denotes the covariate matrix, and 3 represents the vector of regression coefficients. Parameter
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estimation for 3 is performed by solving the following estimating equation iteratively, using the Iferatively
Reweighted Least Squares (IRLS) method [21]:

N
UB)=) DIV (Yi—pi)=0 (7)
i=1

In this formulation: - Y; is the response vector for the ith cluster, - 1; s the expected value of Y; based on the model,

-D; = %’; is the matrix of partial derivatives of u; with respect to 3, - V; is the working variance-covariance matrix

of Y;, computed as:

Vi = 4;*R(a)A}” ®)

where: - A; = diag(Var(Y;)) is a diagonal matrix of marginal variances, - R(«) is the working correlation matrix
that characterizes the correlation among observations within a cluster. Several commonly used working correlation
structures include:

* Independent: Assumes no correlation among observations, R(«) = I.

¢ Exchangeable (Compound Symmetry): Assumes a constant correlation among all observations.

* Autoregressive (AR-1): Assumes that correlation decays exponentially with increasing time or distance
between observations.

* Unstructured: Places no restrictions on the correlation pattern, allowing each pair of observations to have a
distinct correlation.

In this study, the exchangeable (compound symmetry) working correlation matrix was employed. This choice is
based on the assumption that all pairs of observations within the same area share a common correlation level.
Compared to alternative working correlation structures, the exchangeable form is more appropriate for clustered
data that lack a natural temporal or spatial ordering among units within the same area. For instance, using
an independent correlation structure would imply that observations within a cluster are mutually uncorrelated,
effectively reducing the model to an ordinary regression that ignores intra-cluster dependence. Similarly, the
autoregressive (AR(1)) structure is unsuitable in this context because the correlation among observations does
not decay according to distance or ordering, as typically observed in time-series data. The unstructured correlation
matrix was also not adopted, as the number of observations in this study was insufficient to estimate all pairwise
correlations—this structure generally requires a large sample size for stable estimation. All analyses in this study
were conducted using the R software, specifically the “geepack” package, to fit the Generalized Estimating
Equations (GEE) model with an exchangeable working correlation matrix.

2.2.4. Mixed Effects Regression Trees (MERT). MERT combine the flexibility of regression trees with the
hierarchical modeling capabilities of Linear Mixed-Effects Models (LMM) [3]. This hybrid approach is designed
to accommodate dependence in clustered data structures—such as HDI measurements across regencies—while
maintaining interpretability through a tree-based structure. The general form of the MERT model is expressed as:

Yij = XijB+ Zijvj + €ij ©))

where Y;; denotes the HDI value for the j regency within the i™ group, X;;3 represents the fixed effects modeled
via regression tree partitions, Z;;1/; captures the random effects associated with group-level variability, and ¢;; is
the residual error term. While the model structure mirrors that of a standard LMM, MERT distinguishes itself by
using a regression tree to estimate the fixed effects component X;;3. This allows the model to capture complex,
nonlinear interactions among covariates, while the random effects Z;;1/; account for intra-group correlation. In this
study, the Mixed Effects Regression Tree (MERT) model was implemented using the glmertree package in R,
which allows simultaneous estimation of tree-based fixed effects and group-level random effects. The modeling
procedure consists of the following steps:

* Hierarchical Data Structuring: The dataset is organized to reflect its multilevel nature, with individual
observations nested within categorical groups (e.g., provinces). The response variable is continuous, while
the grouping variable serves as a random effect.
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* Tree-Based Partitioning of Fixed Effects: The fixed effects component X;; is modeled using a regression
tree. The algorithm recursively partitions the data based on predictor values, forming terminal nodes that
represent subgroups with distinct predictor-response relationships.

» Estimation of Random Effects: The random effects Z;;v; account for within-group variability. These
effects are estimated for each group, capturing deviations from the overall tree-based structure due to group-
specific influences.

* Model Fitting: The glmertree () function is used to fit the model. It combines recursive partitioning
for fixed effects with maximum likelihood estimation for random effects, producing a hybrid model that
accommodates both nonlinearity and clustering.

* Prediction Mechanism: Predictions for a new observation Y;; are obtained by summing the estimated mean
response of the terminal node (from the regression tree) and the random effect associated with the group j.
Formally, the prediction is given by:

Yij = finode + U
where [inoqe is the estimated mean of the terminal node, and v; is the estimated random effect for group j.

e Subgroup Interpretation: Although MERT does not yield interpretable regression coefficients, the tree
structure provides intuitive decision rules that help identify meaningful subgroups. This is particularly
useful for understanding heterogeneous effects across clusters and uncovering nonlinear interactions among
predictors.

The main advantage of MERT is its ability to capture nonlinear interactions among variables while accounting
for within-group dependence. This model enables the identification of subgroups with distinct characteristics that
influence the Human Development Index (HDI).

2.2.5. Gaussian Copula Marginal Regression (GCMR). GCMR is a statistical framework that integrates marginal
regression with the Gaussian copula to model dependence structures in clustered data. This approach enables the
modeling of nonlinear relationships between dependent and independent variables and accommodates complex
inter-cluster dependencies, such as those observed across districts. The Gaussian copula facilitates the combination
of marginal distributions for each variable with a dependence structure defined via a copula function. This
formulation provides enhanced flexibility in capturing nonlinear dependencies within the data. The marginal model
for GCMR in clustered settings is given by:

g(EY; | X)) =X,"8 (10)

where g(-) is the link function, X is the covariate vector, and 3 denotes the regression parameters to be estimated.
After specifying the marginal distribution Fy (y), GCMR employs the Gaussian copula to model the dependence
among observations [10]. The Gaussian copula function with correlation matrix R is defined as:

Cr(ui,uz, ... up) = @ (27 (wr), 7 (u2), ..., 27 (uy)) (11)

where u; = Fy (y;) represents the marginal cumulative distribution value of the response variable, &1 is the
quantile function of the standard normal distribution, and ® denotes the multivariate normal distribution with
zero mean and correlation matrix R. The matrix R defines the correlation structure between clusters. Parameter
estimation in the GCMR model is performed by maximizing the log-likelihood function of the marginal regression
model combined with the Gaussian copula. The log-likelihood function is given by:

(B, R) = log fy (yi | X, B) +loger(ur, ..., up) (12)

i=1

The first term, log fy (y; | X;, 3), corresponds to the marginal regression component, while the second term,
log cr(uy,...,u,), captures the contribution of the Gaussian copula in modeling the correlation structure. The
parameters 3 and R are estimated jointly using the Maximum Likelihood Estimator (MLE). The modeling was
conducted using the “gemr” and "MASS” package available in the R software.
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Figure 2. Pearson’s correlation among variables: (a) original dataset, (b) dataset with SMOTE

3. Model Performance Evaluation

The performance of the models applied in this study is assessed using two quantitative indicators: Root Mean
Square Error (RMSE) and Median Absolute Error (MedAE). RMSE evaluates the magnitude of prediction error
by measuring the average squared differences between the predicted and actual values. It is particularly sensitive to
large deviations, as larger errors contribute disproportionately to the overall score. The RMSE is computed using
the following formula [22]:

13)

where n is the number of observations, y; is the actual value of the i™ observation, and g, is the corresponding
predicted value. In contrast, the Median Absolute Error (MedAE) measures prediction accuracy based on the
median of the absolute differences between predicted and actual values. MedAE is more robust to outliers, as it
relies on the median rather than the mean, making it less sensitive to extreme values in the data. The MedAE is
defined as:

MedAE = median (|y1 — 91/, [y2 — 92, -, [Yn — Gnl) 1)

A model with strong predictive performance will exhibit lower values of both RMSE and MedAE, indicating
minimal deviation between predicted and observed outcomes [23].

4. Results and Discussion

The relationships between variables are assessed using Pearson correlation coefficients, as the majority of the data
used in the modeling process are numerical. As illustrated in Figure 2, negative correlations are represented by
reddish hues, while positive correlations are indicated by bluish hues. Darker shades signify stronger correlations,
whereas lighter shades correspond to weaker associations. Furthermore, Figure 2 shows that the response variable,
namely the Human Development Index (HDI, y), is correlated with the predictor variables (z). This is evident
from the correlation values between HDI (y) and all predictor variables (as detailed in Table 1), which consistently
exhibit strong patterns—both positive and negative—without fading (refer to the first row or column in Figure 2).
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The modeling process is conducted using two datasets: the original dataset and the SMOTE-generated dataset,
stratified by provincial-level region variables. Each dataset is split into training and testing sets, with 70% allocated
for training and 30% for testing. Model fitting is performed using the training data, and the estimated regression
coefficients are presented in Table 3.

Model diagnostics were performed for LMM, GEE, MERT, and GCMR. The diagnostics can be observed
through the plots of fitted values versus residuals, as shown in Figure 3. If the plots do not exhibit any discernible

pattern, the linearity assumption of the model is considered to be satisfied.
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(a) Fitted values vs residuals for LMM
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Figure 3. Residual diagnostics for each model: (a) LMM, (b) GEE, (c) MERT, and (d) GCMR

Model prediction and evaluation are performed using the testing data from the original dataset, which has not
undergone SMOTE oversampling. The predictions generated by each model are shown in Figure 4. Figure 4(a)
displays predictions from models trained on the original dataset, while Figure 4(b) shows predictions from models
trained on the SMOTE dataset. The blue line represents the actual HDI values. In general, predictions from the
SMOTE-trained models are closer to the actual values, although some exceptions exist.

The models are evaluated using Median Absolute Error (MedAE) and Root Mean Square Error (RMSE), as
shown in Table 4. Lower values indicate better predictive accuracy. Upon inspection, the differences across models
are relatively small. The MERT, GCMR, and LMM models demonstrate comparable performance, with MERT
yielding the lowest MedAE values.

To visualize these metrics, a bar chart is presented in Figure 5, showing that models trained on the SMOTE
dataset generally yield lower MedAE and RMSE values. This supports the effectiveness of SMOTE in improving
model accuracy for unbalanced data. To assess the significance of differences between mixed models with and
without SMOTE, paired t-tests were performed. The tests indicate that LMM, GEE, MERT, and GCMR each
show statistically significant differences with p-values below 0.05. This demonstrates that applying the SMOTE
technique to the regency-level HDI data on Java Island, Indonesia, yields predictions with significantly lower error.

Residual distributions are illustrated in Figure 6 using boxplots. Without SMOTE (Figure 6(a)), MERT and
GCMR show smaller residual variation compared to LMM and GEE, with GCMR having the smallest residuals.
Upon the application of SMOTE, all models show significant improvement in performance, as indicated by the
more concentrated residuals.
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Coef LMM GEE GCMR
Origin SMOTE | Origin SMOTE | Origin SMOTE
Bo 0.7530  0.7874 | 0.7276  0.7787 | 0.7534 0.7883
B1 -2.6022  0.2831 | 0.8817 -4.9866 | -2.6085 0.2995
B2 -0.1046  -0.0768 | -0.1889  0.2743 | -0.1043  -0.0766
B3 -0.0160 -0.0578 | 0.4106 -0.1644 | -0.0167  -0.0586
Ba 0.0487 -0.0036 | 0.0907 0.1584 | 0.0489 -0.0034
Bs -0.0120  0.0215 | -0.2153  0.0014 | -0.0127 0.0206
Be 0.0223  -0.0466 | 0.4219 -0.0438 | 0.0228 -0.0447
B7 0.0115 -0.0173 | 0.0292  0.0256 | 0.0120 -0.0175
Bs -0.0829  -0.0673 | 0.0150 -0.0967 | -0.0828  -0.0673
By -0.0761  -0.0459 | -0.9271 -0.0592 | -0.0762  -0.0460
Bo 0.0692  0.0804 | 0.5145 0.2093 | 0.0684 0.0798
B 0.0290  0.0256 | 0.2361  0.0365 | 0.0282 0.0244
P12 -0.0730  -0.0786 | 0.0489 -0.0594 | -0.0736  -0.0794
B3 0.1285  0.1268 | -0.0652 -0.0778 | 0.1288 0.1260
P14 0.0002 -0.0405 | -0.2853 -0.0038 | -0.0002  -0.0400
Bis 0.0162  -0.0002 | -0.2959 -0.0761 | 0.0165 -0.0001

Note: MERT does not produce estimates for the regression parameters f3.

Table 4. Model Evaluation Metrics

Model MedAE RMSE

Origin SMOTE Origin SMOTE
LMM | 0.014110 0.011236 | 0.030400 0.021164
GEE 0.020975 0.017608 | 0.030253  0.022348
MERT | 0.014081 0.011222 | 0.030415 0.021170
GCMR | 0.023572 0.017841 | 0.029573 0.022414
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The MERT model continues to demonstrate good consistency in performance, with residuals remaining
concentrated both with and without SMOTE. The LMM and GEE models also show improved performance with
SMOTE, as evidenced by the more concentrated residuals compared to the models without SMOTE. Overall, the
SMOTE technique helps reduce residual variation and enhances model performance, with MERT demonstrating
the most consistent and best performance. It can be concluded that the models using the SMOTE technique have
better accuracy than those using the original data in the case of the HDI dataset from regencies in Java.

The trade-off between model interpretability and performance is indeed a central consideration in selecting
statistical methods, particularly for applied researchers. Our analysis shows that MERT (Mixed Effect Regression
Trees) achieves excellent predictive performance but operates as a “black box” without interpretable coefficients,
making it more suitable in contexts where absolute accuracy is prioritized over model transparency. In contrast,
models such as LMM (Linear Mixed Model) and GEE (Generalized Estimating Equations) provide parameters
that are directly interpretable—either at the individual level (subject-specific, in LMM) or at the population level
(population-averaged, in GEE).

Parameter interpretation in LMM allows researchers to understand both fixed and random effects on the response,
as well as variation across groups or units, making it highly appropriate for longitudinal data with repeated
or hierarchical structures. Similarly, in GEE, each coefficient represents the expected change in the population
mean response when a predictor increases by one unit, yielding marginal inference that is relevant for policy or
public health applications. Regarding model performance, it is important to recognize that models like GCMR
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Figure 4. Fitted values from LMM, GEE, MERT, and GCMR models: (a) original dataset, (b) SMOTE dataset
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Figure 5. Comparison of MedAE and RMSE values for four models using original and SMOTE datasets

(Gaussian Copula Marginal Regression) may excel on original data due to their ability to capture complex non-
linear dependencies in longitudinal data without relying on strict linearity or normality assumptions. GCMR’s
strength also lies in its capacity to separate the marginal model from the dependence structure via copulas, making
it highly flexible and robust for real-world data that often deviate from normal distributions—features that standard
linear models or GLM/GLMM may fail to fully capture.
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However, after data engineering processes such as SMOTE (Synthetic Minority Oversampling Technique),
especially when oversampling is performed through linear interpolation, the original non-linear relationships tend
to be “smoothed out,” making the dependencies appear more linear and potentially diminishing GCMR’s advantage
in detecting non-linear patterns. Theoretically, SMOTE expands the minority data region by interpolating between
neighbors, resulting in smoothing or “regularization” of outliers and original non-linear dependencies—supporting
the observation that complex models like GCMR are more effective on raw data with irregular dependency
structures, while simpler or linear models may catch up in performance after SMOTE and even approach the
effectiveness of non-linear models. Therefore, model selection should be guided by research objectives and data
context: if accuracy is the absolute priority and coefficient interpretation is not the main focus, MERT is a viable
choice; however, if understanding the mechanism of predictor effects is crucial for scientific justification or policy-
making, LMM and GEE with interpretable parameters are more appropriate. On the other hand, GCMR is highly
recommended for original data with complex dependency patterns that are difficult to capture using conventional
models, although the smoothing effect of SMOTE may distort this advantage and bring its performance closer to
linear models on engineered data. In conclusion, the trade-off between interpretability and performance is not solely
determined by algorithm choice but is also heavily influenced by the characteristics and preprocessing of the data;
thus, in real-world applications, method selection must be based on a balanced consideration of interpretability
needs, performance demands, and the nature of the data being analyzed.

Boxplot of Residuals without SMOTE Boxplot of Residuals with SMOTE
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Figure 6. Boxplot of Residuals Models

5. Conclusion

Modeling using LMM, GEE, MERT, and GCMR is highly suitable for clustered data, as evidenced by the low
MedAE and RMSE values during model evaluation. This indicates that all four models—LMM, GEE, MERT,
and GCMR—demonstrate good predictive ability in the case of modeling the HDI of regencies in Java Island,
Indonesia. However, the model with the smallest MedAE is the MERT (Mixed Effect Regression Tree) model,
both for the original data (MedAE = 0.014081) and the oversampled data (MedAE = 0.011222). The MERT model
shows good consistency, making it a recommended choice when the dataset undergoes an oversampling technique.
On the other hand, the GCMR (Gaussian Copula Marginal Regression) model, although having a higher MedAE,
performs well with the original dataset, with the smallest RMSE value (0.029573). This highlights the strength of
the GCMR model in handling original data without the need for oversampling. MERT achieved superior evaluation
metrics in terms of RMSE and MedAE, indicating strong predictive accuracy, but it is less interpretable because it
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does not produce regression coefficients. LMM and GEE showed lower predictive accuracy compared with MERT
but offer greater interpretability through readily available regression coefficients and random-intercept estimates.
GCMR effectively captures nonlinear patterns, which explains its high accuracy on the original (without-SMOTE)
data.

The findings of this study suggest that the application of the SMOTE oversampling technique can improve the
accuracy of models, as indicated by the lower MedAE and RMSE values. In other words, the use of the SMOTE
technique helps reduce model errors, particularly for data with unbalanced observations across clusters, such as
the HDI dataset for regencies in Java. Thus, clusters with fewer observations (minority clusters) are not overlooked
and are given equal weight as other clusters. A key limitation of this study lies in the reliance on data drawn
from regencies located on Java Island, Indonesia, which may possess unique regional attributes not necessarily
representative of other areas. The modeling approach employed assumes intra-group dependence among regencies
within the same province, while maintaining independence across provinces. A recommendation for future research
is to use non-linear data to assess the performance of the best model when confronted with non-linearity between
predictor variables and the response variable in making predictions.
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