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Abstract In this paper, we focus on the well-known SIR epidemic model, formulated as a Markov counting process with the
discrete Skellam distribution. Our main objective is to estimate its key parameters, namely the infection and recovery rates.
We develop a Bayesian approach that relies on Markov chain Monte Carlo and data-augmentation techniques, and establish
the posterior distributions under suitable priors. We then compare the Bayesian estimators with maximum likelihood (ML)
estimators, for which we study weak consistency and asymptotic normality. Finally, the theoretical results are supported with
numerical simulations and illustrated through a real-world application to COVID-19 data from Morocco.
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1. Introduction

Advances in mathematical and computational approaches in recent years have made possible a more rigorous
analysis of epidemics. Consequently, different approaches have led to the proposal of numerous epidemic models,
including the widely studied SIR (susceptible—infected—recovered) model [19]. As described by Bailey in [7], this
model is utilized to analyze the progression of complex infectious diseases and assess the effects of public health
programs and interventions.

There are several types of parameter estimation approach, such as the Bayesian approach [26] and the
maximum likelihood (ML) approach [11]. The ML method is consistent and relies on realizations zj, derived from
observations Xy, where k = 0, 1,..., N. Moreover, the Bayesian approach can be used: it consists of incorporating
additional information about the population’s parameters through prior knowledge, which can be inferred from
preliminary study [9]. This approach is known as a powerful estimation method that involves tedious computational
techniques, including the MCMC (Markov Chain Monte Carlo) techniques [25].

In this work, we use the aforesaid estimation method to infer the unknown infection and removed rates in the
stochastic epidemic model. We do this by characterizing the state process, by Skellam distribution [30]. This
distribution is defined as the law of the difference of two independent random variables [4]. This distribution is
particularly relevant for modeling scenarios in which positive and negative events interact significantly, as in the
propagation and recovery processes of an epidemic like the SIR model.
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The approaches described in this paper are distinguished by their exact and rigorous formulation of the
likelihood function, given by the Skellam distribution. This fact sets our work apart from studies, that are based on
approximation likelihood, as in [24]. Due to their flexibility and conjugacy, we use Gamma distributions as priors
of the infection rate 5 and recovery rate v [21], this choice is well-suited for positive parameters and simplifies the
computational aspect of the posteriors. Moreover, to improve the accuracy of these Bayesian estimators, when the
observation times are sparse, we follow the technique built in our previous work on the SIS epidemic model [12];
we introduce M — 1 of latent values points between each consecutive observation, which contributes to a better
understanding of the unobserved events arising during the epidemic. For further details, the readers should view the
studies in [13, 21]. To illustrate the efficiency of the Bayesian estimator compared to the obtained ML estimator,
for which, we prove the weak consistency and asymptotic normality; numerical simulations are made. As well as
we apply the proposed methods to real data, that concerns the daily number of infected and recovery individuals of
the COVID-19 pandemic in Morocco.

We organize the rest of the article as follows: In the next section, we introduce the Skellam distribution as
a bivariate distribution. In Section 3, we describe the dynamics of the SIR epidemic model using the Skellam
distribution. We explore the Bayesian inference as an approach for model parameter estimation in Section 4. In
Section 5, we study the asymptotic proprieties of the MLE. In Section 6, we support the theoretical results with
numerical simulations and present a real-world application. Finally, the paper terminates with a conclusion and
appendix sections.

Throughout the paper, we denote Pois(a) as the Poisson distribution with parameter «, and P(.) and =(.)
represent, respectively, the normalized and non-normalized distributions.

2. The Bivariate Skellam Distribution

We first define the univariate Skellam distribution before introducing the bivariate case.

Definition 1

Let W1 and W5, be two independent Poisson random variables, such that W7 ~ Pois(A1) and Wy ~ Pois(Az). The
difference X = W7 — W is distributed as Skellam distribution, denoted X ~ S(A1, A2), with probability mass
function is given by

z/2
A
P(X =2 | A, X2) =exp (—A1 — o) <)\1> j|m‘(2 AMA2), z€Z, @))]
2

where J,(z), present the modified Bessel function of the first kind, is defined as J,(z) =

p=0

Early in 1937, Irwin [15] developed the distribution of the difference between two iid Poison random variables
(A1 = A2). The situation where \; # Ao was studied by Skellam [30] and Prekopa [22] (the reader can consult [16]
for more details).

For the bivariate case, let Y;, ¢ € {0,1,2}, be three independent Poisson-random variables with respective
parameters Ay, A1, and Ay. We define

X1 =Y1+0Ys, Xo=Yy+ Y, (2)
where d; and & are constants taking only the values —1 or +1.
In this work, we are particularly interested in the case where Yy = 0, and (61, d2) = (=1, +1).

So (2), becomes

X1 =YY, Xy =Y, 3
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2 BAYESIAN AND LIKELIHOOD INFERENCE FOR THE SIR MODEL

a simple calculations means that, for (k,7) € Z x N and r > min(0, —k)

PURREDYA
P(Xl:k7X2:T):eXp(7A17)\2)(k1TT)'F. (4)

3. Characterization of the SIR model by Poisson process

Within the standard SIR epidemic model, individuals are classified into three groups: susceptible, infective, and
recovered. The population under consideration is assumed to be closed and homogeneous, with a total size of
n + a. At any time ¢ > 0, the corresponding group sizes are denoted by S(t), I(t), and R(t), with the constraint
I(t)+ S(t) + R(t) =n +a.

At the initial time, only susceptibles and infectives are present, namely (7(0),S(0), R(0)) = (a,n,0). The
epidemic process is described by X, (t) = {(I(¢), R(t)); t > 0}, which is formulated as a two-dimensional
continuous-time Markov chain with state space S = {(i,r); 0 <i<n, 0 <r < (n—1i)+ a}. We then have the
following transition probabilities for a small dt:

B(X(t 4 01) = (i 1.7) | Xalt) = (7)) = %(a Fn— = 0)5t+ of6),
P(Xn(t $8t) = (i—1,r+1) | Xu(t) = (i,r)) = ~idt + o(5t), )
ﬂi(a +n—r— z)

P(X,n(t +6t) = (i,r) | Xn(t) = (i,r)) =1- ( +7i> 5t 4 o(3t).

The probability of all other transitions is o(dt). The parameters 5 and -y present, respectively, the infection and
recovery rates. The process is ending whenever the number of infected individuals reaches zero, see [9, 24] and the
references therein.

The original Markov process characterized by (5), can be formulated as sum of independent Poisson process;
according to [5, p. 40], see also [17, Chapter 11], X,, can be rewritten

X (t) = Xn(0)+ Y Vi <n /Ot By (n71X,,(s)) ds> ‘, (6)
4

where the non-random starting point is X,,(0) = (a,0), and Y, := (Yg(¢); ¢ > 0) are independent standard Poisson
processes.

Note that, as described by Andersson and Briton in [5], the process is considered to allow a restricted
set of transitions, represented by a finite number of vectors ¢ € Z? such that sup, B,(z) > 0; in particular,
e {(-1,1),(1,0)}. The time-density function By(.) is supported to be a continuous function. Therefore, the
process X,, becomes

X (t) = X (0) + ;m (/Ot nBy (n™ Xy (s)) ds)

t

=Xn(0) 4+ (=1, 1) Y_q1y (g /Ot I(s)(n+a—1I(s)— R(s))ds> + (1,0) Y1 0 ('y/o I(s)ds)
a+ Y0 (nfot B(1,0) (n71Xn(s)) ds) - Y11 (nfg B(_1,1y (n71Xu(s)) ds)
YZ11) (nfot Bi_1,1 (n=1Xn(s)) ds)

a + Pois(A1) — Pois(A2) !
Pois(Az2) 7
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where the Poisson process Pois(-) has rates A\ = s fg I(s)(n+a—1I(s) — R(s))ds and Ay = vatI s)ds
n

respectively, which is equivalent to (3). Therefore, we have:

Allc+r—a VA

2 (k,r)eSs. (7

P(Xn(t) = (k,7) | /\17/\2) =exp (—A1 — A2) Gk+r—alrl

In practice, a discrete version of (7) is essential because the process (X,,(t),¢ > 0) is sampled at discrete time
points in the interval [0, T, specifically ata given time tg =0 < t; < ta < --- < T =tn, fort; — t;—1 =: §t; =
with a constant integer N > 0. This discretized form is provided by Euler’s as detailed in [18, Algorithm 1]. For
i €{1,2,..., N}, we obtain the expression:

(ADFtrime (A"
(ki—l—ri—a)! ’f‘i!

P (Xn( i) = (kiyri) | Xon(ti-1), )‘37 /\12) = exp (_/\i - )‘22) ) 3

where (k;,7;) € S, and the time rates \! and \} are given by the expressions

AL 5/ s)(a+n—R(s)—I(s))ds, )é:'y/ti I(s)ds.

By substituting these time rates into equation (8), it becomes:

n

t; t;
P(Xn(ts) = (kis7i) | Xnltion) ) = exp<—"’ [ 16 atn 1)~ RE)ds — [ I(S)ds>

ki+r;—a
( ft I(s)(a+mn—R(s) — I(s ))d)
(ki + 7 — a)!

(7ft1 I(s) ds)

’f‘i!

(©)]

In the context of infectious disease modeling, the basic reproduction number R, plays a fundamental role and
is expressed as Ry = 2. This number determines whether an epidemic can occur by measuring the disease’s
transmission potential and evaluating its threshold behavior. The parameters 3 and ~ must be estimated because
they are unknown. This paper aims to demonstrate efficient methods that use ML and Bayesian inferences to
estimate them, e.g., [3]. For the remainder of this document, we set 6 = (3, ).

4. Bayesian Framework

Although the model process (6) is defined in continuous-time, the data available in practice are generally obtained
at discrete observation times, and often at relatively spaced frequencies This creates a difficulty in estimating
and inferring the parameters since it is assumed that the process X,,(¢t) = {(I(t), R(t)),t > 0} will be observed
only a finite number of times. To overcome this difficulty, we augment the data using Eraker’s approach [13]. This
approach involves inserting M — 1 latent points of data between consecutive observations, where M € N*. It relies
on MCMC methods and is applicable to various models, particularly those with missing data, see [24, 1].

Hence, to keep the discretization bias randomly small,the time step is defined as dt = %, where M is a
strategically selected positive integer. The interval [0, T is then divided into N = MT evenly spaced time points:
to=0<---<tpy_1<tm <tpg1 < --- <T=tyn

For this, we introduce the matrix X, which contains all components of the augmented dataset, that is, both the
observed and the missing values; therefore, ...

X:< I, {tl o {th1 Ity {tM+1 o Iy )
Rto Rtl o Rthl RtM RtMJrl o RtN
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4 BAYESIAN AND LIKELIHOOD INFERENCE FOR THE SIR MODEL

If ¢ is an integer multiple of M, then X; represents an observed data value, equivalently written as X°b. On the
other hand, if ¢ is not a multiple of M, X; corresponds to the missing data (no-obs), are denoted by Xno-obs
Typically, the notation X, can refer to either missing or observed data, depending on the context. In total, there are
2(M — 1)T data points that remain unobserved in the system. Thus, conditional on the first observation, the joint
posterior density can be written as

N
7(X,0) o [T P (%: | Kicr,87) 7(0), (10)

i=1

where the distribution of (Xi | Xi 1, 9> is given in Eq.(9), and 7(#) is the joint prior distribution for /3 and ~.
In Eq. (10), we establish the joint posterior law of the model parameters based on the combination of observed
and latent data. However, we are mainly interested in the distribution of (0, X no-obs | X°bs ). As described in [9, 10]

and references therein, inference can be performed by alternating simulations of unobserved data and parameter
estimates given the augmented data and the current parameter values.

Given the large amount of missing data in epidemiological models, a Gibbs sampler is particularly effective
for sampling variables. At the first step, a candidate value for (/3,+) is sampled according to the joint prior
distribution 7 (6), which is then employed to generate the latent trajectory, as explained in the subsequent section.
We then update 6 = (8,v) with a newly generated value and adjust the latent observations accordingly. By
successive repetition of this update scheme, we obtain a Markov chain that converges in distribution to the posterior

m (9, X no-obs | X"bs), which constitutes its unique stationary distribution [32].

4.1. The posterior distributions of missing data
The initial stage in the Gibbs sampler is to update the missing data paths by using Eraker’s approach [13] to
generate one column of latent observations X given X; i—1 and X i+1, based on the conditional distribution

@ (Xz \ X\iﬁ) x T (Xi | Xi,—lyf(i-u,e) ; (11)
where X \i denotes all columns of X except the i-th one. The explicit form of this conditional density, proved in
Appendix A, is stated as follows:

Theorem 1
When 6t is sufficiently small, we have

> o o ot A\ PtYTe
7(X = ) | Ko, Ko ) x By <[2nx<n+a - y)] n Ci)

5t N
X ([%x(n—i—a—x—y)] —&—C;)

X (%x + Cf;)y (%x + C’}i)RtiH
(z+y—a)ly!

; 12)

where C’}, j €{1,...,5}, are constants calculated from the data, and its form are given by (25).

It is not possible to sample directly from this posterior distribution of latent data, so we employ an Accept—Reject
Metropolis—Hastings (AR-MH) update at this stage [25, Chap. 6]. In this scheme, a new candidate X = (', )
for X; = (I,,, Ry,) is proposed from a discrete uniform distribution centered on the mean of its neighboring states
X, ; and X¢+1, within the feasible SIR domain S defined previously in Section 3.

Denoting piy = [(Iy,_, + Iy, )/2] and pup = [(Ry,_, + Ry,.,)/2], we define the adaptive proposal windows by

wr = max (1, round(n|Iy,,, — I,_,])), wr =max (1, round(n|Ry,,, — Re,_,|)), n=04,
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and the proposal distribution is
X! ~ Unif(([lil —wr, iy +wy] X [4r — WR, g + wg]) N S).

This proposal is symmetric by construction, leading to the Metropolis—Hastings acceptance probability

F(X{ | XPLXHl»@)

a (X{,XZ) = min{ 1, — -
W(Xi | Xi—17Xi+179)

At each sweep, the proposal widths (wy, wgr) automatically expand when the local trajectory exhibits strong
variability, and shrink when it stabilizes. This adaptive mechanism maintains acceptance probabilities within a
desirable range. In our numerical experiments (Section 6), the empirical acceptance rates of the AR—-MH update
were 37% for M = 2, 45% for M =5, and 52% for M = 10, which confirms that the sampler is well tuned
and exhibits good mixing across the different interpolation levels. The complete implementation of the Gibbs
sampler, including the adaptive AR—MH update for the latent states described in Subsection 4.1, is summarized in
Algorithm 1.

4.2. Prior and posterior distributions of the parameters 3 and ~

In the final stage of the Gibbs sampler, we draw #(") = (3(") (")) the parameter vector # conditioned on its
current value and the augmented data, at iteration h. Here, the parameters of interest must be positive, which leads
us to choose a prior distribution that produces positive results. For this, we assume, as before, two independent
Gamma distributions, i.e., 3 ~ I'(m, A) and v ~ T'(m’, \'). Due to conjugacy, this choice is practical for Bayesian
inference. Moreover, the gamma distribution proves to be highly flexible and is commonly applied to describe
the rate parameters of epidemic models. For further details, readers may consult [24] and the references therein.
Bayes theorem leads to a gamma-type posterior distribution; the following theorem, whose full proof is presented
in Appendix A, asserts this statement

Theorem 2

Suppose that 5 and ~ are modeled with independent Gamma priors, namely S ~ I'(m, A) and v ~ T'(m/, \’); then
the posterior distributions of these parameters are given by

BIX ~ T(Asn+m—1,An+N), (13)
’Y|X ~ I‘(A4’N+m/—17A2,N+)\’), (14)
where the constants A, w,--- , A4 ny are given by

T T
ALN:/O %I(t)S(t)dt:/O I(t)(a+n — R(t) — I()) dt;

T
A2,N = / I(t) dt;
0

N (15)
Azn =) (I(t:) + R(t:) — a);

i=1

N
Asn =Y R(t).
i=1

5. The maximum likelihood estimation for 3 and ~

In this section, we investigate the MLE [23] method; we aim to derive the most probable value for 3 and ~
using a discrete observations of the process obtained above X, () = ((I(¢), R(¢)),t > 0) at time points 0 =
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6 BAYESIAN AND LIKELIHOOD INFERENCE FOR THE SIR MODEL

to,t1,...,ty = T. Given the distribution specified in (9), the likelihood function of the vector of observation
X, = (Xn(to), Xn(t1),. .., Xn(tn)) is then given as follow

L(Xn|0) = JIP(Xa(t:) = (I(t), Rt:)) | Xaltior).0)

N ti s ti
:Hexp (—ﬁ/t %(a—i—n—R(s)—I(s)) ds—v/ I(s)ds)

I(t;)+R(ti)—a
(i [ I(s) (a+n— R(s) — I(s)) ds)

(I(t;) + R(t;) — a)!

16
R{1,)! 1o
The log-likelihood function ¢ () is simplified as
In(0) =log (L (X, | 0)) = —BA1N +10g(B)As,n — yA2,N + log(y)As,n + A5 N, (17)
where the constants A; y, - - - , A4,y are predefined previously in (15), and
N t;
A =37 | (1) + R(t:) — a) log (/ I(s)(a+n— I(s) — R(s)) ds) log (I(t:) + R(t:) — a))
i=1 ti—1
N t7,
-y [R(ti)log < / 1(s) ds> ~log (R(ti)!)} A
i=1 ti—1
The maximum likelihood estimators of /5 and ~y are, respectively, given by
N
> ((t:) + R(t:) - a)
Burp, = Az N i=1
AN fOT I(s)(a+n—R(s)—I(s))ds
(18)
N
> R(t:)
Sarp = As N _ =1
AN fOT I(s)ds

5.1. Consistency and Asymptotic Normality

In this subsection, we examine the weak consistency and asymptotic Gaussian distribution of the maximum
likelihood estimator §M L= (B\M L,Ymr), wWhich are particularly useful for inference in stochastic processes.
Adopting Crowder’s notation [8], we define the following terms: 6y = (59,7o) denotes the true value of the
parameter, ¢y, (0) represents the gradient of ¢ (6), and ¢%;(6) corresponds to the matrix of second-order derivatives
of £ (6). The information matrix is given by By = E [—¢;(y)]. Finally, {cy } represents a real sequence that will
be specified later, such that cy — oo.

Proving the weak consistency of the estimator §N reduces to verifying [8, formula (2.3)]. Specifically, for some A
and a sequence (cy) (neither A nor ¢y depending on ), we must show that, when [|§ — 6y|| = §; < A, we have,
for some 6 = (3,7) in the segment line for each row:

P (—c;/“‘(e —00)TBY205(8)(0 — 00) > 5%) 1, as N - oo (19)
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We begin our computations as follows:

E[A3 ~n] 0 —1/2 Az N 0
—1/2 it 3
By / 0 (0) = — < %ﬂ E[A4,N]> ( %2 _A4,N>
Ve 52

@ ASTN O
. B2 \/E[A3 N]
- 0 Yo A4 N

Therefore,

—en (0 — 00)T B2 04(6) (0 — 6y)

_ —12 (B Az _ )2 4 20 Ay N 2
=cy <B2E[A4,N](ﬁ Bo)” + ~27]E[A3N}(7 70))

_ BB =50 ((ex'PAsn ) | t0(r—0) ((en A )
32 E[A4N] 7 E[As ]

By using ordinary calculus, we have almost surely, as N — oo.

fALgN —)/ +R — a) dt, and A4N — / dt. (20)

Now, since R(t) + I(t) + S(t) = n + a, with R(¢), I(t), S(t) being nonnegative for all ¢ € [0, T'], we deduce that
R and I are bounded. As a result, we have the uniform integrability of the sequences { % A3 n } and { % A4 n }.
Combining this with (20) we obtain [28, Theorem 5], when N — oo

N

It follows that, for N sufficiently large, we obtain the following approximation almost surely:
ex' Ay _ (cl/z\/ﬁ ) _(FAsn)
Eldn \" YT/ [2E[4,]
N <C]—Vl/2\/>> fo (I(t) + R(t) —a)dt .
LEI@ R(t) — a] dt

1/2 4 —1/2 fT R(t)dt

Similarly, we obtain Sy _Aun (CN \/%) —>————. By choosing ¢y = VN we can assert that the
S Jo ELR(®) dt

sufficient condition (2.3) in [8] holds, the proof is complete, and we can now state the following theorem:

fE[AgN —)/ +R()—a] dt, and— [A4N —)/ )] 21

Theorem 3

The maximum likelihood estimator 5M L= (3 ML, Y1) is weakly consistent; that is,

O 560y, as N — oo. (22)

For the normality asymptotic behavior of the MLEs, we adopt Sweeting’s notation [31]. We recall that £%,(9) is
the Hessian matrix of the log-likelihood £ (), and we have

A [N
oy = 7 4| and Ay =
0 )

72 0
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8 BAYESIAN AND LIKELIHOOD INFERENCE FOR THE SIR MODEL

Here, A3 y and A4 v are as defined in (15). We have A]_\,l converges to the zero matrix as N — oo. Furthermore,

17T
1 1 T @NA?,,N 0
Wi (6) = Ay (=03 (6) (43) = 1T
0 ?NA&N
1 7
as | B2 Jo (I(t) + R(t) —a) dt 0

L .7 = W(6), asN — oo,

0 el Jo R(t)dt

uniformly on every compact subset of the parameter space © = {6 = (8,7) : 5,7 > 0}. Because ¢ — (I (t) +
R(t) — a) and ¢t — R(t) are strictly positive in [0,7], the matrix W (¢) must be definite positive almost surely.
Hence, the condition C1 (Growth and convergence) in [31] holds. The continuity condition C2 in [31] is trivial,
since both —¢%;(0) and Ay are uniformly continuous in (3,~) in every compact set of © C R?. Now, using [31,
Theorems 1 and 2] combined with the continuous mapping theorem, we obtain:

(WN(9)1/2AN(§ML —9), WN(e)) Ly (Z,W(9)), as N — oo, 23)

uniformly on every compact subset of ©. Here, Z is a two-dimensional standard normal vector.

6. Simulation and Implementation

For the implementation of the estimation procedure described above, we propose the following algorithm, which
provides a summary of the MCMC simulation approach based on the posteriors established in Theorems (1) and

)
Algorithm 1 Gibbs Sampler with Adaptive AR-MH Update for Posterior Sampling

1: Initialization:
* Interpolate linearly between observed values of X to initialize latent trajectories )AQ
* Set initial values for parameters ﬂ(o), 7(0), and choose the scaling factor n = 0.4.
2. forh=1,2,..., Nier —1do
3: Step 1: Update latent data X; (AR-MH step).
4: fori=2,...,N — 1suchthati # 0 (mod M) do
5: Propose a new latent state X using the adaptive AR-MH rule defined in Subsection 4.1.

™ (X“Xi—leiJrlye(h))

6: Compute the acceptance probability &« = minq 1,

W(XHXFL,XHMG(M)
7: With probability «, set )A(i + X/, otherwise, retain the previous value.
8: end for

: Step 2: Update parameters given X (Gibbs step).
10: Draw 3" using (13).
11: Draw ~") using (14).
12: Increment h and return to Step 1.
13: end for

6.1. Numerical Implementation

In this section, we implement the methodologies outlined here by applying classical and MCMC methods to the
SIR epidemic model, where the values of the model parameters v and ( are predefined. Using these predefined
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values, we generate a sequence of /N observations of the bivariate process using Gillespie’s exact algorithm, as
established in [14] (see Appendix A.3).

This implementation sets the parameters § and v at values 0.2 and 0.5. The total population size is fixed at
n + a = 10°, with @ = 10. The time increment is At = % where the number of observations (including latent
data) is given by N =T x M, with T' = 60 representing the simulation horizon and M representing the number
of augmenting data points; M € {2,5,10}. The initial values of the hyperparameters for the priors of 8 and ~y are
chosen following the guidelines in [12, Sect.5]. In order to address computational resource restrictions, we perform
25,000 iterations of the MCMC sampler for each dataset, under three alternative settings of the latent data points:
M = 2,5, and 10.

From a computational perspective, the cost of the MCMC algorithm increases with the number of latent points
M, since a finer temporal discretization requires updating a larger number of augmented states at each iteration.
In our implementation, the runtime grows approximately linearly with M. However, the numerical results show
that the posterior summaries of (3, ~) stabilize for moderate values of M, indicating that increasing M beyond this
range yields only marginal gains in estimation accuracy at a substantially higher computational cost. Consequently,
moderate values of M offer a practical trade-off between statistical efficiency and computational feasibility.

The subfigures in Figure 1 and Figure 2 (first row) present the histograms of the ML estimates for 5 and ~
in cases where Ry > 1 and Ry < 1, along with their corresponding normal probability density. The fitted normal
distributions, shown, align closely with the empirical histograms of the estimates. This result suggests that the
MLE:s for both 8 and + are approximately normally distributed, centered on their true values. This fact is provided
by @ — @ plots suggesting that the normality assumption is a real approximation for the distribution of the
estimates, which is crucial for deriving valid confidence intervals.

Table 1 display the estimations of the parameters depending on M for three cases Ry > 1, Ry = 1 and Ry < 1.
As illustrated, the MLE’s estimators exhibit less sensitivity to the number M, and the estimations remain close to
the true values with slight deviations. However, the MCMC estimation method has an average sensitivity to the
number M and provides more flexibility and robustness in handling missing data, which is crucial in practical
applications where data may not be fully observed. However, this task requires more execution time than the MLE
method. For comparison, commonly used approximate approaches such as deterministic ODE-based fitting or
Gaussian increment methods were not considered here, as our focus is on exact discrete-time likelihood inference.

A summary representation of the posterior distribution is reported in Table 1 together with Figure 3. In particular,
they report the posterior mean and the standard deviation. An increase in the number of latent data points A leads
the estimates to converge towards the true values. However, the improvement is substantial only up to a moderate
value of M, after which the incremental benefit becomes negligible.

As shown in Figure 3, the histograms, along with the MCMC trace plots displayed in Figure 4 and Figure 5, offer
graphical evidence of the algorithm’s convergence to the limiting distribution. In practice, when the true parameter
values are unknown, increasing the number of latent points M/ may improve estimation precision, although this
must be balanced against the associated computational cost [13].

6.2. Real Application

In this section, we apply both proposed estimation methods for the recovery and infection rates, v and 3, using
COVID-19 data from Morocco for the period from 15% May 2021 to 30" November 2021, a total of 200 daily
observations. This database is sourced from the World Health Organization [34], the United Nations Office for
the Coordination of Humanitarian Affairs [36], and the official Moroccan coronavirus portal [35], which contains
data on new and cumulative deaths as well as new and cumulative cases. The number M of latent points simulated
between two successive periods, as explained in Section 4, is M = 2,5, 10. The results are shown in Table 2.

By analyzing the period considered in this study, as shown in Table 2, the estimation of the parameters 3 and
~ for both the classical and Bayesian approaches yields similar values. However, the credible interval obtained
using the proposed MCMC algorithm is more accurate than the confidence interval obtained using the maximum
likelihood method. This consistency across methodologies indicates robustness in the estimation process. Notably,
the ratio %, representing the effective reproduction number Ry, is very close to the values reported in [33] or [12].
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Table 1. Means, standard deviations (SD), confidence intervals (CI) for B v and 41, and credible intervals for B MCMC

BAYESIAN AND LIKELIHOOD INFERENCE FOR THE SIR MODEL

and YoM, at different M values.

B Barenre Barr 0l Amcmc AML

M=2

mean 0.5 0.50416 0.50679 0.2 0.19751 0.19853

SD 0.00621 0.00321 0.00244 0.00126

CI(95%) [0.4938, 0.5147] [0.50049, 0.51309] [0.1934, 0.2016] [0.19607, 0.20100]
M=5

mean 0.5 0.50324 0.50671 0.2 0.19778 0.19855

SD 0.00580 0.00335 0.00254 0.00192
o CI(95%) [0.4941, 0.5151] [0.50049, 0.51309] [0.1937, 0.2035] [0.19663, 0.20047]

=10

mean 0.5 0.50245 0.50540 0.2 0.19801 0.19930

SD 0.00573 0.00218 0.00250 0.00141

CI(95%) [0.4949, 0.5139] [0.50321, 0.50763] [0.1934, 0.2016] [0.19791, 0.20072]
M=2

mean 0.5 0.50716 0.50654 0.5 0.0.495421 0.50154

SD 0.00629 0.00331 0.00244 0.00126
o CI(95%) [0.4928, 0.5152] [0.50056, 0.51311] [0.48298, 0.51231] [0.48674, 0.51204]

=5

mean 0.5 0.51357 0.50971 0.5 0.50916 0.50836

SD 0.00911 0.00428 0.00241 0.00182

CI(95%) [0.4873, 0.5406] [0.49412, 0.52088] [0.4686, 0.5156] [0.50746, 0.50927]
M =10

mean 0.5 0.50449 0.50564 0.5 0.508601 0.50894

SD 0.00582 0.00284 0.00351 0.00312

CI(95%) [0.4941, 0.5141] [0.50340, 0.50771] [0.4929, 0.52140] [0.49801, 0.52040]
M =2

mean 0.2 0.21051 0.20941 0.5 0.49510 0.0.49581

SD 0.00131 0.00129 0.00244 0.00126

CI(95%) [0.18519, 0.21307] [0.50049, 0.51309] [0.48984, 0.51842] [0.48059, 0.51005]
M=5

mean 0.2 0.20152 0.20480 0.5 0.50746 0.50646

SD 0.00111 0.0012 0.00212 0.00183

CI(95%) [0.4873, 0.5406] [0.49444, 0.52198] [0.4696, 0.5142] [0.50784, 0.51027]
M =10

mean 0.2 0.20112 0.20245 0.5 0.50881 0.50901

SD 0.00181 0.00169 0.00359 0.00362

CI(95%) [0.19912, 0.21041] [0.19941, 0.21101] [0.4989, 0.52151] [0.49824, 0.52068]

Table 2. Estimates of the parameters 3 and -y for data from Morocco between 15 May 2021 and 30" November 2021, with
25,000 iterations and M € {2, 5,10}, including their credible and confidence intervals.

Bucuc Ymcemce RmMCMC BuL ML R(LML
M =2
mean 0.50506 0.12802 3.94516 0.49991 0.12731 3.92671
sd 0.00631 0.00251 0.00301 0.00125
CI(95%) [0.4907, 0.5188] [0.1078, 0.1511] [0.4812, 0.5130] [0.1089, 0.1421]
M=5
mean 0.50373 0.12741 3.95361 0.50221 0.12699 3.95472
sd 0.00564 0.00241 0.00312 0.00182
CI(95%) [0.4917,0.5188] [0.1092, 0.1424] [0.5041, 0.5109] [0.1014, 0.1408]
M =10
mean 0.50112 0.12698 3.94644 0.50138 0.12694 3.94974
sd 0.00554 0.00250 0.00259 0.00146

CI(95%) [0.4948, 0.5210] [0.1124, 0.1329] [0.50211, 0.5125] [0.1104, 0.1382]

Figure 6 shows that the posterior predictive median trajectories for I(¢) and R(t) are in good agreement with
the observed Moroccan COVID-19 data. The associated 95% credible intervals capture the main epidemic phases,
supporting the adequacy of the proposed SIR—Skellam model for real data analysis.
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Figure 1. Histograms and the Q-Q plots for ML estimates of /3 (left column) and ~y (right column) in the case where Ry > 1.
(For clarification on color references in the figure legend, consult the electronic version of this article.)
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Figure 2. Histograms and the Q-@Q plots for ML estimates for /5 (left column) and  (right column) in the case where Ry < 1.
(For clarification on color references in the figure legend, consult the digital version of this article.)

7. Conclusion

In this study, we explored both classical and Bayesian methods for estimating the infection and recovery
parameters, 5 and ~, in a stochastic SIR epidemic model, with particular attention to the implementation of
the Skellam distribution [30]. The Skellam distribution proved to be a robust and flexible tool for modeling the
dynamics of epidemic processes, capturing the interaction between infection and recovery events in a closed and
homogeneous population.

The present work shows the strengths and limitations of both the maximum likelihood and Bayesian estimation
approaches. While the classical maximum likelihood method provided consistent and computationally efficient
estimates, the Bayesian framework offered greater flexibility, especially in scenarios with sparse or incomplete
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Figure 3. Frequency histograms of the MCMC chains with 25,000 iterations for the posterior density estimates of 3y;c a7

(blue) and Ap;cpre (red) for M = 2,5, 10 across the three cases: Ro > 1 (first row), f%o =1 (second row), and Ro <1
(third row). (For clarification on color references in the figure legend, consult the electronic version of this article.)
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Figure 4. Trace plots of the MCMC chains based on 25,000 iterations for the posterior density estimates of Barome (first
row) and Ypsc pro (second row) for the case where Ry > 1.

data. By incorporating prior knowledge through independent Gamma distributions, which serve as an appropriate
selection for positive parameters. The Bayesian approach has significantly improved estimation accuracy, as
demonstrated by numerical simulation.

The application of the proposed methods to real COVID-19 data from Morocco highlighted the practical
relevance of our approach. The results obtained are consistent when compared with existing research and
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Figure 5. Trace plots of the MCMC chains based on 25,000 iterations for the posterior density estimates of /3 Mome (first
row) and Yp;c pro (second row) for the case where Ry < 1.
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Figure 6. Observed Moroccan COVID-19 data (black circles) with posterior median trajectories and 95% credible intervals
for I(¢) (top) and R(t) (bottom) simulated from the posterior distribution.

demonstrate the robustness of the proposed methodologies, e.g., [12]. The Bayesian method showed its potential
to address challenges inherent to real epidemic data, such as variability and missing observations.

Looking forward, the methodologies and findings of this study can be extended to more complex epidemic
models, such as those incorporating heterogeneous populations or additional compartments, including SEIR-type

Stat., Optim. Inf. Comput. Vol. x, Month 202x



14 BAYESIAN AND LIKELIHOOD INFERENCE FOR THE SIR MODEL

structures with time-varying transmission rates. In addition, future work will investigate systematic comparisons
between the proposed Skellam-based MLE and Bayesian estimators and commonly used inference approaches,
such as deterministic ODE-based estimators or Gaussian approximation methods, in order to further assess
their relative performance under different data regimes. Moreover, the integration of additional sources of
uncertainty, such as measurement errors or unobserved heterogeneity, could further enhance the applicability of
these approaches in real-world epidemiological settings.
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A. Appendix

A.1. The proof of theorem (1)

For ease of notation, we define a; = ftil I(s)(a+n—I(s)— R(s)) ds and b; = ftil I(s)ds. By applying
Bayes’ rule, we obtain

W(Xz' = (z,9) | Xi+17Xz'—1757’Y) o P(Xi = (z,y), Xit+1, Xi—1 | ﬁﬁ)
X ]P)(XZ = (1’7y) | Xi*hﬁfY) X P(Xi+1 ‘ Xi7ﬁ77)

Nzrt+y—a
(BL)*77 % (4by)Y
(z+y—a) y!
( @41 )1t¢+1+Rti+1 —a x (’7bz‘+1)Rti+l

(]ii+1 + Rti+1 - a)! Rti+1!

x exp{—,@% —fybi}

a;
exp {0 —abin }

i i i Tyt Ry —a
X exp {767@ +na +1) —y(b; + b¢+1)} (Lgl) A i

/Blti+1 to+Re; +y—2a.,yy+Rf

bit1 (ﬂ>z+y7a bil
(z+y—a) n

(bi+1)Rti+1

i i i Tej gt Ry —a
X exp {fﬁi(a +na +1) —y(b; + b¢+1)} (Lgl) A i

(big1) i

5z+yﬁy (ai ) z+y—a by 24)

(z+y—a)ly \n o
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In order to obtain (12), we approximate the integrals a;, a;4+1, b;, and b;1 by using the first-order trapezoidal
method;
(¢7 1 b
— = 1 —1(s)— R(s))d
e @ mra 1) - R
—ﬁx(a—i—n—m— )—l——t[l (a+n—1I_, — Ry,_,)]
~ on Yy m ti—1 ti—1 ti—1/]>
Ct
and
i 1 tit1
i f/ I(s) (n+a— I(s) — R(s)) ds
n n Jy,
ot t
= %(x(a +n—xz— y))+ % (Iti+1 (a +n— Iti+1 - th‘+1))
c3
Furthermore
. . t; t;
Gt % (/ I(s)(a+n — I(s) — R(s))ds + / I (n+a—I(s) — R(s))ds)
ti—1 t;
ot
- E (Itifl (n +a— IiL 1 Rti—l) + ]ti+1 (n +a— ItH»l - th‘+1))
=2(C} + C3),
and
2 t — 1t
; / I(s)ds = T_ (Ii,_, + I,)
ti—1
~ — (a: + I 1)
ot ot
RERRS)
a3
and
e tivs —t;
biss = / Hods = B0 (1 4 ,,)
ti
ot
~ - (gc + Itiﬂ)
ot ot
= 5,@ + E_[ti+l7
Ci
and

bt tiyr —ti—1
bi -+ bi+1 = / I(s)ds >~ — [Iti+1 + Iti—l]

2

ti—1

=0t (Iti—l + Iti+1)
=2(C5 + CY),
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wesetCi =1, , + Ry, —a.
Then by inserting those previously terms in (24), we found that

F(Xz - (x,y) | Xi—17Xi+175,7) X exp {_25(01 + C%) - 27(0113 + C}L)}

5t . T+y—a
<x(n+a—x—y)+0{>

2n
5t N\ /ot A
<2nx(n +a—z—y) + C2> <2m + C4>
A
<2$+C5) (z +y—a)ly!’
Then
6t . rt+y—a
TF(Xz‘ = (z,y) | Xi—17X1+17577) o (anﬂ(n —z—y)+ Ci)
ct y
ot i > (ot i
(%x(n —zx—y)+ 02> <2m + Cg)
5t )\
(2x—|—C’4> (x+y—a)lyl’
where

Ci = % [Iti—l (77, +a— Iti—l - Rti—l)] and Cé = % [It71+1 (77, +a-— It71+1 - Rti+1)]

C:’L)) = lIt and C}L = %It

2 tti—a i1t

Hence, the proof of (12) in Theorem (1) is concluded.

(25)
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A.2. The proof of theorem (2)

By applying the formula (9) and also by the same notations as used previously for a; and b;. The likelihood for
0 = (B, ) cab written as:

N
LX|0) =]]P(Xi = (I, . Re,) | Xio1,0)
=1
N .
_ )\z)lt +Rt —a ()\ZQ)RtL
_EGXP( 1 ) (I, + Ri, —a)! Ry,
N 3 t
_Hexp( n/ a+n71(s)fR(s))dsf'y/ I(s)ds)
i=1 ti—1 ti—1
It1,+Rti7a R,
B ti
[n/ I(s)(a+n — I(s) — R(s))ds x {7/ I(s)ds:|
ti—1 ti—1
B e
= exp ( = |:Z/ a+n—1I(s)— R(s))ds:| -7 |:Z/ ](s)ds:|)
t i=17ti—1
S -a))yml )
A3, N Ag N
—_———
N N
1 [ N (Z(It,; + Ry, — a)) (Z Rt,;)
= exp —65 {Zai] -y {Zbl] x B =1 Xy i=1 ,
i=1 =1
Al N Az N
where the constants A; y, - - , A4,y are previously defined in (15).
Then
L (X | 0) o exp (— A1 N — YAzn) X fAIN ALY (26)

According to Bayes theorem, we have (5 | X, ) « L (X | 0) x 7 (6), and based on the fact that 8 and ~ are two
parameters priorly independents, and by exploring (26) we get

w(ﬁ\f{,y) ocL(Xw) x 7(6)
x L (X|8,7) x n(8)x()

o exp(—BA1, N — YAz n) x BN T (B)7(v)
o exp(—BA1n)B N 7(B).

Furthermore, since 8 follows a Gamma prior with parameters (m, A), it follows that

T (,B | X,'y) o< exp(—,@Al,N)ﬁA&N x ™1 x exp (—=\B)

oc exp (—f (A, + A)) e tmt
X F(AgﬁN +m — 17A1,N —I—)\)
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Finally, we obtain the proof of formula (13).
We proceed by the same demonstration as above, we have

W(*y\X,B) ocL(X|9> x 7(0)
x exp(—BA1N — YAz, N) BN YN 1 (B) ()
o< exp(—y Az, v )y N T (7).

Given that ~ is assumed to follow a Gamma prior with parameters (m’, \'), we obtain

T (v | X,ﬁ) oc exp(—yAz,n) X YN x w(y)

o exp (—y(Az,y + )y At
0.8 F(A4)N + m/ - 17A27N + )\/) .

We obtain the proof of the formula (14).

A.3. The Gillespie algorithm

As described in [14], Gillespie’s algorithm is an exact procedure to simulate continuous-time pure Markov jump
processes. For the SIR framework, the state of the population at time ¢ can be written as (S(t),I(t), R(t)) =
(s,i,a +n — s — i), where s is the number of susceptibles, i is the number of infected, and n is the total population

size.

The two events considered in the SIR model are infection with rate oy = % and recovery with rate ay = i, where
&(.) will denote the exponential distribution. The algorithm is implemented in two main steps: This algorithm

Algorithm 2 Gillespie Algorithm for SIR Model

Initialize: ¢ < O, S(O) < So, I(O) < 10, R(O) —n—sy— 1o
2: while ¢t < t;,,x do
Calculate rates: o; + ﬁI(t)
4: Draw 7 from &(«)
Choose k according to probabilities py, = %=
6: if £ = 1 then
Infectionevent: S« S —1, I+ I+1, R+ R

(a+n—I(t)—R(t)

, g —yI(t), o+ a1 + ag

8: else
Recoveryevent: S < S, I < I -1, R+ R+1
10: end if

Update time: ¢ <t + 7
12: end while

captures the stochastic transitions between the compartments of the SIR model. The exponential waiting times
and event probabilities ensure that the simulation accurately represents the continuous-time Markov jump process

associated with the SIR epidemic dynamics.
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