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Abstract

Objective: Some research in the queueing theory literature describes batch-delivery systems instead of only individualised
one-on-one support. This study initially presents adjustable arrival percentages and interdependency in a system like these
arrival and service procedures in order to determine the likelihood and characteristics of the system for queuing. It also
validated the results that were attained.

Methods: With Poisson as the default assumption (that there is only one arrival for every Poisson occurrence), it is expected
that the input will regulate the by varying arrival rates in speed and duration. The service is trustworthy and authorised for
exact results. We are just using one server for the duration of this service. Re-entering the queue to enhance the outcome is
what feedback does. Service is started when the number of customers approaches or beyond the capacity that is set aside.
All of the probability in a stable state are found by a recursive technique.

Findings: Our utilisation feedback in M /M /1/K;, model the properties and solutions of steady-state are determined and
examined. The reneged customer and feedback customer, respectively, will have probabilities p;andp2. Anticipated client
volume and wait duration are contingent upon interdependencies, service frequency, rapid arrival frequency, and delayed
arrival frequency. Based on every criteria, every outcome has been confirmed.

Novelty: There are some works related to a feedback queueing system, but this will is new approach of finding the best result
for the required model with controllable arrival rates along with Mutual dependability of arrival and procedure for services.

Keywords Bivariate Poisson process, Interdependent Controllable Arrival and Service percentages, Limited Capacity,
Reverse balking, One Server, feedback
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1. Introduction

When a queue is long, it is common for arrivals to lose motivation and decide against joining it. This form of
arrival is known called balking. A customer who may decide to return to the service repeatedly until the service
is finished is referred to as feedback. In the writings of Haight[2], the concept of consumer balking occurs in
queuing theory (1957). He conducted an evaluation of an infinitely long M/M/1 queue with baulking. In their
study of “the M/M/1/N queueing system using backward baulking”, Jain and Rakesh Kumar [8] (2014) found
that the likelihood of balking decreases as queue size increases. It is common practice to assume that the Arrival
and service procedures operate separately, along with an amount of additional presumptions. The processes of
arrival and services, however, are interdependent in many specific instances, therefore this must be taken into

*Correspondence to: Bebittovimalan A (Email: bebittovimalan@gmail.com). PG & Research Department of Mathematics, St. Joseph’s
college (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli - 620 002.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2026 International Academic Press



188 THE M/M/1/K g INTERDEPENDENT QUEUEING MODEL...

consideration. The term “interdependent queuing model” refers to an orderly model where services are connected
and arrivals are also connected. A lot of research possesses documented evidence among the research papers on
the interdependent normative queuing model with adjustable arrival percentage. Shobha and K. S. Rao [4] (2000)
have spoken about “M /M /1/cc interdependent queuing model with controllable arrival rates”. Dr. M Thiagarajan
and A. Srinivasan [5] (2006) have discussed “the M/M/1/K interdependent queueing model with controllable
arrival rates”. Again Dr. M Thiagarajan and A. Srinivasan [6] (2007) had a discussion about “the M /M /C/K/N
interdependent queueing model with controllable arrival rates balking, reneging and spares”. Dr. M Thiagarajan
and S. Sasikala (2016) have discussed “the M/M/1/N interdependent queueing model with controllable arrival
rates and reverse balking”. Yue, Rui, et al. [17] (2023) ”Capacity estimation at all-way stop-controlled intersections
considering pedestrian crossing effects.” finds to help other values of controlled arrival rates. Yang, Yaoqi, et al.
[18] (2023) ”Stochastic geometry-based age of information performance analysis for privacy preservation-oriented
mobile crowdsensing” basic information about stochastic geometry. Mahanta, Snigdha, Nitin Kumar, and Gautam
Choudhury [19] (2024) ”An analytical approach of Markov modulated Poisson input with feedback queue and
repeated service under N-policy with setup time” makes a feedback on Markov modified Poisson analytic technique
service . Xie, Qian, Li Jin and Jiayi Wang [20] (2023) ”Strategic Defense of Feedback-Controlled Parallel Queues
against Reliability and Security Failures” enters strategic defence of controllable arrivals. Gayathri, S., and G. Rani
[21] (2023) "an FFM /M /C interdependent stochastic feedback arrival model of transient solution and busy period
analysis with interdependent catastrophic effect” is a new method of analysis. Cherfaoui, Mouloud, Mohamed
Boualem, and Amina Angelika Bouchentouf, [22] (2023) ”Modelling and simulation of Bernoulli feedback queue
with general customers’ impatience under variant vacation policy” is an approach of Bernoulli response with
overall annoyance customer who enters with vacation. Dr. M. Thiagarajan and A. Bebittovimalan (2024) [23] “An
Infinite Capacity Single Server Markovian Queueing System With Discouraged Arrivals Retention Of Reneged
Customers and Controllable Arrival Rates With Feedback” and Dr. M. Thiagarajan, A. Bebittovimalan (2024) [24]
“A Finite Capacity Finite Source Single Server Markovian Queueing System with Discouraged Arrivals Retention
of Reneged Customers and Controllable Arrival Rates with Feedback™ are helpful to improvise this paper.

2. DESCRIPTION OF THE MODEL

Ao - Faster rate of arrival
A1 - Slower rate of arrival
uw - Service rate

€ - Dependence rate

1. Take a look at a system with just one server with limited capacity queuing, where clients come in a Poisson
circulation with rates Ag and \;, and service durations exhibit exponential distribution with rate p. The
bivariate Poisson procedure with a combined Probability Mass Function (PMF) of the type is supposed to be
followed by the procedure of arrival (X7 (t)) and the procedure of service (X2(t)) off the system.

P[Xl(t) =T, Xg(t) = xg]

—(\i L_etmin(zl w2) et) [(\; — e)t]*r 7 — e)t|z2—d
— e~Outumar 30 ( )[(J_!(JE1 )_]j)!(x[Z(u_j)!)]

=0

where z1,22 =0,1,2,.0 > 0,i =0,1;u > 0,0 < e < min(\,p),i=0,1

2. The system has a limited capacity N

First Come First Serve is the rule for the line.

4. A consumer may decline with probability ¢; and enter with probability p; = (1 — g;) while the system is
empty.

W
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5. The likelihood that a client will quit the system is po, and the likelihood that they will become a feedback
customer is ¢o.

6. When the system has at least one client, the customer will baulk with the probability of (1 — ﬁ) and
will thereafter come together with the probability of

T
(Np—1)°

3. THE EQUILIBRIUM STATE EQUATION

Let P, (0) indicate the chance of a stable state of having n consumers in the system with an arrival percentage of A
,and P, (1) indicate the chance of a stable state with an arrival rate of \; . It is noted that P, (0) is valid for 0 < n
leqry , whereas each of them P, (0) and P, (1) are valid for r, +1 <n < R, — 1 . Furthermore, P, (1) is valid for
Ry, <n < Np.Then P,(0) = P,(1) =0if n > Np.

—(Ao — €)p1Po(0) + p2(pn — €)P1(0) = 0 (h

1

~(§57) o= 9420 0] PrO) + 2l = OP20) + o - OO =0

_ KNTi 1) (Mo — €) + palp — 6)} P (0) + p2(pt — €)Pp11(0)

#(31) Pa-0Pua© =0 n=23n -1 ®
(7)o =+ pali = 0] PO+ 2t = P 0+ s P (1) .
+(21) o= 9Pua0) =0
~(57) o= 94 0] Pa©) + 2t 9P 0 )
+ <]$b_11> Qo= Pry 1(0) =0 n—rp+1my+2,.s By—2
- [(ﬁ’;:i) (Mo — )+ 2l - eﬂ Pr,-1(0) + (ﬁ:j) (Mo — )P, 2(0) = 0 ©
-1 (F25) 1= 94— 0] Pa(®) 2l = IPr121) =0 @
() =9+ pat =0 Pult) + at = Pl .
+ (ﬁb__ll) (M= Pry 1(1) =0 n=ry+ L+ 2, Ry — 1
() O =0+ pali = | P+ pal = Pra() + (=7 ) (o= P (0 )

+ (ﬁz : 1) ()\1 — E)PRbfl(l) =0
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. [(Nb”_ 1) (M =€)+ pal— a} Pu(1) + P2l — )Pt (1)

(10)
—1
+<ﬂ >()\1_€)Prb—1(1):0 n=Ry+1,Ry+2,.... Ny — 1
Ny —1
n—1
ol — )P, (1) + (N 1) (M — Py (1) =0 (an
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From 1 we get,
)\0 — €
P1(0) = | —— | p1Po(0
Using the above result in 2, we get
1 )\0 — € 2
P2(0) = Po(0
2(0) [Nb—l] Lh(/i—ﬁ)} P1Po(0)
LetS, = 0 "€ gy = M€
pa(p =€) p2(p —€)
And hence we recursively derive
Pn(()) == |:(]Vb—1)n_1 (S7) ]717)0(0)7 n = 1,2, s Th (12)
T‘b! .
Pry11(0) = {(Nb—l)’"b} (7)™ p1Po(0) = Pry41(1) (13)
Using the above Result in 13 in 5, we recursively we derive
_ (n _ 1)' n
Pﬂ(o) - <(Nb — 1)7171 (57) plp@(o)
57 n—rp—1
- l (Nb i 1) (n— 1)YPo_rys
S\ (14)
+ (Nb — 1) (n—=1)Pn—r,—2
S7 n—Ry+1
+...+ (Nb — 1) (’I’L — 1)P7L_Rb+1 Pm,-i—l(l)
n=ry+1Lry+2,....Rp—1
Using the above result in 6, we get
Ry —1)!
((]\gbil)R)b_l) (S7)™p1Po(0)
Pry+1(1) = 1 15)
7
Where
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From 7 we get

Pt = [(35) (g) 1] oo

Utilising the outcome mentioned above in 8,we obtain recursively

T7 n—rp—1
-1 oy
(Nb — 1) (n )Pn rp—1

T n—r,—2
+ <Nb B 1) (n = 1) P2

T7 n—Ry
—1)Po
bt (g) 0= DPacn

Pa(l) =

Prb+1(1)

n=ry+1Lry+2,....Rp— 1, Ry

Using 16 in 9 we get

T7 Rb—’l‘b @ + T7 Rb—’!‘b—l Rb! + + T7 R
Ny —1 7! Ny —1 (’I“b—‘rl)! Ny —1 b

Utilising the outcome mentioned above in 10 and 11 we obtain recursively

PRb+1(1) = PTb+1(1)

T7 n—rp—1
Pa(l) (Nb r 1) (n = 1Py

T7 n—ry—2
+ <Nb — 1) (n— 1)'Pn7rb72

T7 TL—Rb
tet (o) = VP [Pra()
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Hence
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T TL*Rb
7
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12 to 19, we can find all the stable state probabilities are stated in therms of Py (0).

191

(16)
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(18)

19
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4. PROPERTIES OF THE REQUIRED MODEL

The Likelihood P(0) that such a system is entering at a quicker rate is

Ny,
P(0) = Pa(0)
n=0
Th Rbfl Nh
PO)=> Pal0)+ D> Pu(0)+ Y Pu(0)
n=0 rp+1=0 n=Ry
Pn(0) occurs only whenn =0 < r, < R — 1,
T Ry—1
P0) =Po(0) + > Pu(0)+ > Pu(0)
n=1 rp+1=0

From 12,13 and 14 we get
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(

The Likelihood P(0) that such a framework is entering at a slower rate is

Ry Ny, Ny
P = Y P+ > PuO)P()= > Pu(l)

n=rp+1 n=Rpy+1 n=rp+1
From 19
Ny
P(1)= > (C7) D7Po(0) 1)
rp+1=0
T7 n—ry—1 T7 n—ry—2
Where Cr; = <Nb — 1) (n—1)Pp_p,—1 + <Nb 3 n—1)Ppory—2+ ... +

n—Ry
T;
— 1P,
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From the normalising condition, the probability 7,(0) that the framework is vacant may be computed.

PO)+P(1) =
From 20 and 21 we get

Ry—1
P0)+P1) =Po(0) + > { (M) S?}pmom)

n=1
Rp—1
_{ Z B
n=rpy+1
Ny

Z (C7) D7Py(0)

n=rpy+1

{1 + szl { (H) S?}pl

D7Py(0) (22)

Ry—1 -1 (23)
[ > oo 3 o]
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The system’s typical customer count is provided by
LS:LSQ + le
Ty Rbfl
Loy =Y nPu(0)+ > nPu(0) (24)
n=0 n=ry+1
Rp—1 Ny
Lo = > nPy(0)+ > nPu(0) (25)
n=rpy+1 n=Ry
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L —
B Zl ((me 1) S (roiPo(0)
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n=rpy+1
From 15,16 and 17
Ny
Lo, = Y_ n(C7)DrPy(0) 7
r,+1=0
From 26 and 27 we get
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Stat., Optim. Inf. Comput. Vol. 15, January 2026



194 THE M/M/1/K g INTERDEPENDENT QUEUEING MODEL...

The anticipated wait time for users of the system is determined using Little’s method as

L
Ws == 29
5 (29)

where A = AP (0) + A P(1)

5. COMPUTATIONAL ILLUSTRATIONS

For fixed values of r, = 3, R, = 6, N, = 8,p; = 1&po = 1 and for different values of Ao, A1, i1, € the virtues of
P,(0), P(0), P(1), Lsand W; are calculated and compiled in the subsequent table.

Table 1. P(0), P(1), Ls and Wy values

£ | Poo(0) | PO) | P() | Ls W,
0 | 05193 | 0.9474 | 0.0526 | 0.5776 | 0.1446
0
0

>
e
=

=

0.5190 | 0.9519 | 0.0481 | 0.5804 | 0.1451
0.5281 | 0.9672 | 0.0328 | 0.6218 | 0.1019
0.5 | 0.4524 | 0.9952 | 0.0048 | 0.7774 | 0.1962
0.5 | 0.4527 | 0.9932 | 0.0068 | 0.4743 | 0.1187
0.3522 | 0.9988 | 0.0012 | 0.4441 | 0.1180
0 | 0.5210 | 0.9732 | 0.0268 | 0.9763 | 0.2445
0 | 0.7257 | 0.9865 | 0.0135 | 0.7171 | 0.1799
0 | 0.6018 | 0.9972 | 0.0028 | 0.5224 | 0.1058
0.3 | 0.0710 | 0.9992 | 0.0008 | 1.0513 | 0.2664
0.6 | 0.6015 | 0.9981 | 0.0019 | 0.7046 | 0.1618
0.9 | 1.0082 | 0.9964 | 0.0036 | 0.6123 | 0.1239

[e ol lielNe el oo N N I =,

NN ouVmMaaaNRE A Ao
(=]
W

[ e I I >A N AN N VS RS O]

6. GRAPHICAL REPRESENTATION

0.7
06 ~EEE——
0.5
0.4
o \
0.2
0.1 Ws

0

4 Ls
5
6
Hls BWs

Figure 1. By varying the faster rate of arrival Ao while keeping other parameters fixed, we can determine how the mean
quantity of users inside the network Lg together with the anticipated client wait time W are affected.
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Figure 2. By varying the slower rate of arrival A\; while keeping other parameters fixed, we can determine how the mean
quantity of users inside the network Lg together with the anticipated client wait time W are affected.

0.8
0.6

0.4

Ls

Hls mWs

Figure 3. By varying the service rate of arrival p while keeping other parameters fixed, we can determine how the mean
quantity of users inside the network Lg together with the anticipated client wait time W are affected.

7. CONCLUSION
The findings based on the table consist of

* Once the mean dependency percentage increases while the additional factors remain continuous, L and W
decline.

Ly & W, rise as the arrival rate rises while the other factors remain stable.

Ls & W, drop whenever the service percentage rises while the remaining factors stay identical. Additionally,
it noticed that when ¢; is 1, the predicted framework size is O.

L climbs steadily and reaches its maximum when ¢; is zero when the balking rate is decreased while
maintaining the other factors constant.

W climbs steadily and reaches its maximum when ¢, is zero when the feedback rate is decreased while
maintain the other factors constant.

The prior versions are included in this model as special situations. This exemplar simplifies to “M/M/1/K
correlated queueing exemplar with adjustable arrival rates, for instance, when & = 0[5]. When A tends to A; and
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Figure 4. By varying the dependence rate of arrival ¢ while keeping other parameters fixed, we can determine how the mean
quantity of users inside the network Lg together with the anticipated client wait time W are affected.

e = 0, this exemplar reduces to the “M/M/1/K queueing model reverse balking with controllable arrival rates ”
[14].

The feedback queuing model enhances the ability to model and optimize systems where repeated service requests
are likely. Consequently, clients receive their work quickly.The slower, faster, and idle system probabilities are
computed. MATLAB is used to compute an average amount of clients and their wait times. Figures and tables are
provided so that the customer flow may be easily understood.

In future, the present feedback queueing model can be extended by considering multiple servers or different
service disciplines such as priority or bulk service. The model may also be enhanced by including customer
behaviors like impatience, abandonment, or retrial. Introducing server breakdown and repair mechanisms would
make the system more realistic.
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