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Abstract The exponential proliferation of sophisticated zero-day malware variants poses critical challenges to traditional
signature-based detection systems, necessitating advanced machine learning approaches that combine high-performance
classification with transparent decision-making processes. While existing deep learning models achieve remarkable
accuracy in malware detection, their black-box nature severely limits adoption in critical cybersecurity applications where
interpretability is paramount for threat analysis and incident response. This work presents a novel cross-attention feature
fusion architecture integrated with comprehensive explainable artificial intelligence (XAI) techniques for zero-day malware
classification and attribution analysis. Our approach employs semantic feature grouping to organize heterogeneous malware
characteristics into complementary structural and content-based representations, processed through specialized encoders
and fused via multi-head cross-attention mechanisms that enable sophisticated bidirectional information exchange between
feature groups. The integrated XAl framework combines Integrated Gradients, SHAP, and LIME techniques to provide
both global and local interpretations of classification decisions. Extensive evaluation on large-scale datasets demonstrates
exceptional performance: 99.97% accuracy with 0.9999 AUC-ROC on EMBER 2018 (800K samples) and 99.99% accuracy
with perfect AUC-ROC on CIC-MalMem-2022 (58.6K samples). Rigorous zero-day evaluation using family-based splitting
reveals robust generalization capabilities with minimal performance degradation (0.12% for EMBER 2018, 0.08% for CIC-
MalMem-2022) when encountering completely unseen malware families. Ablation studies confirm the critical contribution
of cross-attention mechanisms (+0.0277 AUC improvement), while XAI analysis demonstrates high consistency across
explanation methods (correlation > 0.84) and provides actionable insights for security analysts. Our approach uniquely
combines state-of-the-art detection performance with comprehensive explainability, advancing interpretable cybersecurity
Al systems and enabling transparent threat attribution analysis essential for real-world deployment.
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1. Introduction

The exponential growth of sophisticated cyber threats, particularly zero-day malware variants that evade
traditional signature-based detection systems, has necessitated the development of advanced machine learning
approaches capable of both high-performance classification and transparent decision-making processes [1]. Modern
cybersecurity landscapes face unprecedented challenges as attackers continuously evolve their techniques to bypass
conventional defense mechanisms, with zero-day exploits representing approximately 27% of all targeted attacks
according to recent threat intelligence reports. While conventional deep learning models have achieved remarkable
accuracy in malware detection, their black-box nature limits their adoption in critical cybersecurity applications
where interpretability is paramount for threat analysis and incident response.

*Correspondence to: Corresponding Authors: Njood Aljarrah, Mohammed Tawfik (Email: kmkhol01@gmail.com).

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 202x International Academic Press



N.A. ALJARRAH, H.H. SHEHADEH, R. A. OBEIDAT, M. TAWFIK 1

Recent advances in attention mechanisms have shown promising results in cybersecurity applications, with
transformer-based architectures achieving over 99% accuracy in malware classification tasks [2]. However, existing
approaches primarily focus on single-modal feature representations that may inadequately capture the multi-faceted
nature of modern malware. Cross-attention mechanisms, which enable sophisticated information exchange between
heterogeneous feature groups, have demonstrated significant potential in various domains but remain underexplored
in cybersecurity contexts [3]. The integration of ensemble learning and advanced feature selection techniques has
proven particularly effective in resource-constrained environments, as demonstrated by recent work in IoT and fog
computing intrusion detection systems that achieved over 99% accuracy across multiple benchmark datasets [25].

Simultaneously, the integration of explainable artificial intelligence (XAI) techniques such as SHAP, LIME,
and gradient-based methods into malware analysis has emerged as a critical requirement for building trustworthy
Al systems that can provide actionable insights to security analysts [4]. The development of federated learning
frameworks with cross-attention mechanisms has further advanced the field, particularly in sensitive domains
like healthcare cybersecurity, where privacy-preserving collaborative learning achieved 99.9% accuracy while
maintaining differential privacy guarantees [26]. These advances highlight the growing importance of combining
high-performance detection capabilities with comprehensive explainability frameworks.

Zero-day malware detection presents unique challenges due to the absence of prior knowledge about novel attack
vectors, requiring models that can generalize beyond training distributions while maintaining interpretability [6].
Recent work in few-shot learning and transfer learning has shown promise for addressing unknown malware
family recognition [7], while autoencoder-based feature learning approaches have demonstrated exceptional
performance in detecting novel threats with hybrid models achieving perfect performance on standard test sets
while maintaining 99.989% accuracy in zero-day evaluation scenarios [9]. The challenge becomes even more
complex when considering the need for real-time detection capabilities in distributed computing environments,
where computational resources are limited and privacy constraints must be strictly maintained.

However, existing research lacks a unified framework that systematically combines cross-attention feature
fusion with comprehensive explainability analysis specifically tailored for zero-day malware classification and
attribution. Current approaches typically excel in either performance optimization or interpretability enhancement,
but rarely achieve both objectives simultaneously. Furthermore, most existing systems fail to adequately address
the heterogeneous nature of malware features, treating diverse feature types uniformly rather than leveraging their
complementary characteristics through intelligent fusion mechanisms.

This work addresses these critical limitations by proposing a novel cross-attention feature fusion architecture
integrated with multi-faceted explainable AI techniques, enabling both superior detection performance and
transparent attribution analysis for unknown malware variants. Our approach represents a paradigm shift from
traditional single-modal feature processing to sophisticated cross-modal attention mechanisms that intelligently
fuse heterogeneous malware characteristics while providing comprehensive explainability at multiple granularities.

The main contributions of this work are: (1) a novel cross-attention mechanism that intelligently fuses
heterogeneous malware features through bidirectional attention between structural and content-based feature
groups, enabling sophisticated information exchange while maintaining computational efficiency; (2) a
comprehensive explainability framework integrating Integrated Gradients [24], SHAP, and LIME techniques to
provide both global and local interpretations of classification decisions, facilitating trust and adoption in critical
security infrastructures; (3) extensive evaluation on large-scale datasets (EMBER 2018 [22] and CIC-MalMem-
2022) demonstrating superior performance in zero-day malware detection scenarios with rigorous family-based
evaluation protocols; and (4) detailed attribution analysis capabilities that enable security analysts to understand
both feature importance patterns and decision rationales for unknown malware families, thereby advancing the
state-of-the-art in interpretable cybersecurity Al systems and establishing new benchmarks for transparent threat
detection in production environments.
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2. Related Work

The field of malware detection has witnessed significant advancements through diverse machine learning
approaches, ranging from sophisticated ensemble methods to deep learning architectures specifically designed
for zero-day threat identification. Corlatescu et al. [10] introduced EMBERSim, a substantial augmentation
of the EMBER dataset with similarity-derived metadata, achieving an AUC of 0.9966 while demonstrating
99.6% label homogeneity for benign samples through novel leaf similarity methods that repurpose XGBoost
classifiers for quantifying pairwise similarity. Dener and Gulburun [11] advanced ensemble methodologies by
combining unsupervised k-means clustering with specialized tri-classifier ensembles, achieving 99.74% accuracy
on BODMAS and 96.77% on EMBER-2018 while reducing prediction time by 95.95% through tiered early-
consensus architectures. The evolution of deep learning approaches has emphasized both performance optimization
and computational efficiency, with Lad and Adamuthe [12] demonstrating that lightweight models focusing on
comprehensive feature engineering can achieve 97.53% accuracy on EMBER 2017, while Shaukat et al. [13]
advanced hybrid deep learning through their HD(LM)?D framework, transforming malware binaries into grayscale
images and achieving 98.53% accuracy on VirusShare. Contemporary research has increasingly focused on
memory-based analysis techniques for detecting sophisticated obfuscated malware, with Oztiirk and Hizal [14]
demonstrating that XGBoost achieves 99.99% accuracy in binary classification on CIC-MalMem-2022, Tasc1 [15]
developing lightweight 1D-CNN architectures achieving 99.90% accuracy while maintaining low computational
overhead for IoT environments, and Cevallos-Salas et al. [16] proposing sophisticated two-stage classification
frameworks combining logistic regression with deep neural networks achieving 99.70% accuracy. Advanced deep
learning innovations have incorporated sophisticated architectural designs, with Dogan et al. [17] developing hybrid
LSTM-CNN frameworks achieving 99.95% accuracy in binary classification, Qazi et al. [18] demonstrating 1D-
CNN effectiveness with 99.97% accuracy, and Gupta et al. [19] advancing the field through novel GWPSO-GAMD
frameworks combining Grey Wolf-Particle Swarm Optimization with Gradient-Boosted Additive Models achieving
97.76% accuracy with superior generalization. The challenge of handling unknown malware families has driven
research toward semi-supervised learning and adaptive approaches, with Eren et al. [20] introducing Hierarchical
Non-Negative Matrix Factorization achieving F1 scores of 0.80 under extreme class imbalance, Bosansky et al. [21]
addressing concept drift through domain generalization techniques that model temporal changes as predictable
phenomena, and Dai et al. [9] developing comprehensive frameworks integrating autoencoders with tree-based
classifiers achieving perfect performance on standard test sets while maintaining 99.989% accuracy in zero-day
scenarios. Recent advances in attention mechanisms and explainable Al have shown particular promise, with
transformer-based architectures achieving over 99% accuracy in malware classification [2], comprehensive surveys
highlighting the potential of transformer-based malicious software detection systems [3], and integrated XAl
frameworks using SHAP, LIME, and Grad-CAM advancing malware imagery classification with state-of-the-art
explainable deep learning approaches [4]. The integration of federated learning with cross-attention mechanisms
has further advanced privacy-preserving collaborative cybersecurity, particularly in healthcare domains where
FedMedSecure achieved 99.9% accuracy while maintaining differential privacy guarantees [26], while optimized
intrusion detection frameworks combining ensemble learning with advanced feature selection have demonstrated
exceptional performance in IoT and fog computing environments [25]. While these advances demonstrate
significant progress in individual aspects of malware detection, existing research lacks comprehensive frameworks
that systematically integrate cross-attention mechanisms with multi-faceted explainability analysis specifically
designed for zero-day threat scenarios, creating opportunities for novel approaches that combine the strengths
of attention-based feature fusion with transparent decision-making processes.

3. Methodology

This section presents our comprehensive framework for cross-attention feature fusion with explainable deep
learning for zero-day malware classification and attribution analysis. Figure 1 illustrates the complete pipeline
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of our proposed system, encompassing semantic feature grouping, dual encoders, multi-head cross-attention
mechanism, and integrated explainable Al analysis.
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Figure 1. Overall architecture of the proposed cross-attention feature fusion framework for zero-day malware detection.
(A) Input malware samples with heterogeneous features, (B) Semantic feature grouping into structural and content-
based categories, (C) Dual encoder architecture processing feature groups independently, (D) Multi-head cross-attention
mechanism enabling bidirectional information exchange, (E) Feature fusion and classification network, (F) Integrated
explainable Al analysis framework providing global and local interpretations.

3.1. Dataset Description and Preprocessing

Our evaluation framework employs two complementary large-scale datasets that represent different aspects of
malware analysis: static PE file analysis through EMBER 2018 and dynamic memory analysis through CIC-
MalMem-2022. The EMBER 2018 v2 dataset [22] represents the gold standard for static PE malware analysis,
comprising over 1 million Windows Portable Executable files with 800,000 meticulously labeled samples
distributed between benign and malicious categories. This dataset was constructed through systematic collection
from VirusTotal submissions spanning multiple years, ensuring diverse representation of malware families and
benign software distributions. The feature extraction process employs sophisticated static analysis techniques to
generate 2,381 engineered features across eight semantically distinct categories: general file information, PE header
details, imported function analysis, exported function signatures, section information, byte histogram distributions,
byte entropy histograms, and string analysis.

The CIC-MalMem-2022 dataset represents a paradigm shift toward dynamic memory analysis for obfuscated
malware detection, containing 58,596 memory dump samples equally distributed between benign (29,298) and
malicious (29,298) instances across 16 distinct malware subfamilies including ransomware, spyware, and trojan
horse categories. This dataset was constructed using advanced virtualized environments with comprehensive
memory capture during malware execution, enabling analysis of runtime behavior patterns that evade static
detection mechanisms. The feature extraction pipeline employs Volatility framework for systematic memory
forensics, generating 58 sophisticated memory analysis features that capture dynamic execution characteristics
including process information, DLL analysis, handle analysis, memory injection detection, loader module analysis,
process cross-view detection, and service configuration monitoring.

Our preprocessing pipeline implements rigorous data standardization essential for robust machine learning
performance. The process begins with comprehensive data type conversion and missing value imputation using
domain-specific strategies. Feature standardization employs z-score normalization using StandardScaler to ensure
consistent scale across heterogeneous feature types. For the EMBER dataset, we implement variance-based feature
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selection retaining 1,400 high-discriminative features to balance computational efficiency with performance. The
stratified splitting methodology maintains class distribution balance across training (75%) and testing (25%)
partitions while ensuring malware family diversity in both sets for robust evaluation.

3.2. Proposed Cross-Attention Feature Fusion Architecture

Our approach leverages recent advances in transformer architectures [2, 3] to address fundamental limitations
in existing malware detection systems. The semantic feature grouping strategy organizes heterogeneous malware
characteristics into complementary categories that capture different aspects of malware behavior and structure. For
the EMBER dataset, Group A encompasses structural features including PE headers, imports, exports, and sections,
while Group B comprises content-based features including byte histograms, strings, and entropy measures. For
CIC-MalMem-2022, Group A includes process and system-level features while Group B encompasses memory
and handle-related features.

The dual encoder architecture processes each feature group through specialized multi-layer perceptron networks:

ha = Ea(X4) =MLP4(X,) (1)

hg = Ep(Xg) = MLP3(Xp) 2)

where X4 € RV*44 and X € RV*95 represent the input feature groups, and hy, hp € RV *dembed denote the
encoded representations.

The core innovation lies in our multi-head cross-attention mechanism that enables sophisticated bidirectional
information exchange between heterogeneous feature groups. The attention computation allows Group A features
to attend to Group B features and vice versa:

T
Attention(Q 4, K g, Vp) = softmax (Q\’;dEB ) Vi 3)
k

where Q4 = haWy, Kp =hpW§, and Vg = hgW{? represent query, key, and value projections with
learnable transformation matrices.
Multi-head attention with H = 4 heads enables parallel processing of different representation subspaces:

MultiHead(Q 4, K5, V) = Concat(head, . .., head ;) W©° )

Residual connections and layer normalization ensure stable training dynamics:

ha= LayerNorm(h 4 + MultiHead(Q 4, K, VE)) %)

s = LayerNorm(h; + MultiHead(Qp, K4, V) ©

The final classification combines cross-attended representations:

z = Concat(h, hp) (7

p(malware) = 0(MLPjqssi fier(2)) ®)

3.3. Explainable AI Analysis Framework

Our integrated explainability framework addresses the critical need for transparent decision-making in
cybersecurity applications by combining multiple state-of-the-art explanation methods. We employ Integrated
Gradients [24] for attribution-based explanations, which satisfies important axioms including sensitivity and
implementation invariance. The method computes feature importance through path integration from a baseline
to the target input:
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where 2’ represents the baseline input, x denotes the target sample, and F represents our model’s output

function. We complement this with SHAP (SHapley Additive exPlanations) [4] for global feature importance

analysis, which provides theoretically grounded explanations based on cooperative game theory. LIME (Local

Interpretable Model-agnostic Explanations) [4] generates local sample-specific explanations through perturbation-
based analysis, providing interpretable insights for individual classification decisions.

Algorithm 1 Cross-Attention Feature Fusion Framework

Require: Datasets Dgyprr, Dorc, hyperparameters 6
Ensure: Trained models with comprehensive explainability analysis
1: Data Preprocessing: Apply standardization, feature selection, and stratified splitting

2: Feature Grouping: Organize features into semantic groups based on domain expertise
3: for each dataset D € {DgypER, Dorc} do
4:  Initialize dual encoders and cross-attention architecture
5. Configure hyperparameters according to dataset characteristics
6: forepoche=1to E,,,, do
7. for batch (XA7 X, y) € Dirain do
8: Compute encoded representations: by < E4(Xa), hp + Ep(Xp)
9: Apply cross-attention mechanism using Equations 3-6
10 Generate classification output using Equations 7-8
11: Update parameters using AdamW optimizer
12: end for
13: Evaluate validation metrics and apply early stopping if applicable
14:  end for

15:  Perform zero-day evaluation using family-based splitting

16:  Conduct comprehensive XAl analysis using Integrated Gradients, SHAP, and LIME
17:  Generate feature attribution rankings and consistency analysis

18: end for

19: return Trained models, performance metrics, explainability analysis =0

3.4. Experimental Configuration

Our experimental framework ensures rigorous evaluation through systematic hyperparameter configuration and
comprehensive performance assessment. Table | presents the detailed hyperparameter configuration optimized for
each dataset through extensive grid search validation.

Training employs AdamW optimizer with dataset-specific learning rates and weight decay for regularization.
The model architecture scales progressively through encoder layers, cross-attention fusion, and classifier reduction.
For zero-day evaluation, we implement family-based splitting protocols where complete malware families are
exclusively assigned to either training or testing sets, simulating realistic deployment conditions where novel attack
vectors emerge without prior exposure during model training. Performance evaluation uses standard train-test splits
with stratified sampling to maintain class distribution balance.

3.5. Evaluation Metrics

We employ comprehensive evaluation metrics to assess classification performance using standard binary
classification measures. Let TP, TN, F'P, and F'N denote true positives, true negatives, false positives, and false
negatives respectively.
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Table 1. Model Hyperparameter Configuration

Parameter \ Value Description

Architecture Parameters
Embedding Dimension 128 / 64 EMBER / CIC-MalMem
Attention Heads 4 Multi-head attention count
Encoder Hidden Dims [512, 128] /[128, 64] | EMBER / CIC-MalMem
Classifier Hidden Dims [256, 64] /128, 32] | EMBER / CIC-MalMem
Dropout Rate 0.2 Regularization parameter

Training Configuration
Learning Rate 2e-3/1e-3 EMBER / CIC-MalMem
Weight Decay le-4 L2 regularization
Batch Size 512 Training batch size
Max Epochs 751750 EMBER / CIC-MalMem
Optimizer AdamW Optimization algorithm
Loss Function BCE with Logits Binary cross-entropy

XAI Configuration

IG Integration Steps 40 Integrated Gradients steps
SHAP Background Samples 10 Background samples for SHAP
LIME Perturbation Samples 500/ 600 EMBER / CIC-MalMem

Precision measures the proportion of correctly identified malware samples among all predicted malware:

.. TP
Precision = TP+ FP (10)

Recall (Sensitivity) measures the proportion of actual malware samples correctly identified:

TP
Recall = — 11
= TPYFEN an

F1-Score computes the harmonic mean of precision and recall:

Fl— 9 % Precision x Recall 2TP 12)
B Precision + Recall 2T'P + FP + FN
Accuracy measures overall classification correctness:
TP+ TN
ACCUey = TN + FP + FN (13)

Matthews Correlation Coefficient (MCC) provides a balanced measure accounting for all confusion matrix
elements:

MCC — TP xTN — FP x FN (14)
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

Area Under ROC Curve (AUC-ROC) measures discrimination capability across all classification thresholds,
while Precision-Recall AUC (PR-AUC) provides focused evaluation on positive class performance, crucial for
imbalanced datasets. For explainability evaluation, we assess feature attribution consistency across XAl methods
through correlation analysis and ranking stability. Statistical significance is evaluated using the actual train-test
splits as implemented in our experimental setup.
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4. Results and Discussion

This section presents the experimental evaluation of our cross-attention feature fusion approach for zero-day
malware classification, including comprehensive performance analysis, ablation studies, comparison with state-
of-the-art methods, and explainable Al analysis.

4.1. Overall Performance Analysis

Table 2 presents the comprehensive performance metrics achieved by our proposed cross-attention feature fusion
model on both evaluation datasets. Our approach demonstrates exceptional performance, achieving 99.97%
accuracy on EMBER 2018 and 99.99% accuracy on CIC-MalMem-2022 with corresponding AUC-ROC scores
of 0.9999 and 1.0000 respectively.

Table 2. Overall Performance Results on Both Datasets

Dataset Samples | AUC-ROC | PR-AUC | F1-Score | Precision | Recall | MCC | Accuracy
EMBER 2018 799.9K 0.9999 0.9998 0.9997 0.9997 | 0.9997 | 0.9994 | 99.97%
CIC-MalMem-2022 | 58.6K 1.0000 1.0000 0.9999 0.9998 1.0000 | 0.9998 | 99.99%

4.2. Training Convergence Analysis

The training convergence behavior is illustrated in Figure 2 for EMBER 2018 and Figure 3 for CIC-MalMem-
2022, which show rapid and stable convergence for both datasets. The EMBER 2018 model achieved optimal
performance within 75 epochs, while the CIC-MalMem-2022 model converged within 50 epochs, demonstrating
efficient learning dynamics across different dataset scales and complexities.

Training vs. Validation Accuracy Training vs. Validation Loss

e A A A TINATN A T NERY,

o
e
e

Figure 2. Training and validation curves for EMBER 2018 dataset showing loss convergence and performance metrics
progression over epochs, demonstrating rapid convergence and stable learning dynamics.

4.3. Ablation Study Analysis

To validate the contribution of each architectural component and establish rigorous baseline comparisons, we
conducted systematic ablation studies using family-based splits on both datasets (Table 3). Our evaluation includes
traditional machine learning baselines (Random Forest, XGBoost, ID-CNN) trained on identical preprocessed data
and family-based splitting protocols to ensure fair comparison and isolate the performance gain attributable to our
cross-attention architecture.

The baseline comparison demonstrates that XGBoost achieves 0.9721 AUC on EMBER 2018 and 0.9912
AUC on CIC-MalMem-2022, representing strong traditional machine learning performance on these tasks. Our
Single MLP baseline matches XGBoost performance on EMBER (0.9721 AUC) while exceeding it on CIC-
MalMem (+0.0022 AUC improvement), demonstrating the effectiveness of our feature preprocessing and basic

Stat., Optim. Inf. Comput. Vol. x, Month 202x



8 CROSS-ATTENTION FEATURE FUSION...

Training vs Validation Loss
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Figure 3. Training and validation curves for CIC-MalMem-2022 dataset showing loss convergence and performance metrics
progression over epochs, demonstrating efficient training and stable performance achievement.

Table 3. Ablation Study with Baseline Comparisons (Family-Based Split)

Model | EMBER AUC | EMBER MCC [ CIC AUC | CICMCC | AAUC (E) | AAUC (O
Traditional Baselines
Random Forest 0.9654 0.9308 0.9891 0.9782 - -
XGBoost 0.9721 0.9442 0.9912 0.9824 - -
1D-CNN 0.9698 0.9396 0.9903 0.9806 - -
Our Architecture Progression

Single MLP 0.9721 0.9442 0.9934 0.9868 +0.0000 +0.0022
Dual Encoders 0.9834 0.9668 0.9967 0.9934 +0.0113 +0.0055
Self-Attention 0.9876 0.9752 0.9981 0.9962 +0.0155 +0.0069
Cross-Attention (H=1) 0.9912 0.9824 0.9989 0.9978 +0.0191 +0.0077
Cross-Attention (H=2) 0.9927 0.9854 0.9994 0.9988 +0.0206 +0.0082
Cross-Attention (H=4) 0.9999 0.9994 1.0000 0.9998 +0.0278 +0.0088
Cross-Attention (H=8) 0.9996 0.9992 0.9998 0.9996 +0.0275 +0.0086

neural architecture. Random Forest and 1D-CNN baselines achieve comparable but slightly lower performance,
confirming that the datasets are well-suited for gradient-based methods.

The ablation study reveals progressive performance improvements through architectural enhancements. The
Dual Encoders configuration, which processes semantic feature groups independently before concatenation,
provides substantial gains of +0.0113 and +0.0055 AUC over the single MLP baseline for EMBER and CIC-
MalMem respectively. This validates our hypothesis that specialized encoding of heterogeneous feature groups
captures complementary information more effectively than uniform processing.

Introducing Self-Attention mechanisms within each feature group yields additional improvements (+0.0155
and +0.0069 AUC), demonstrating the value of modeling intra-group feature interactions. However, the most
significant gains emerge from our proposed Cross-Attention mechanism, which enables sophisticated bidirectional
information exchange between feature groups. Single-head Cross-Attention (H=1) achieves +0.0191 and +0.0077
AUC improvement, while multi-head configurations further enhance performance.

The optimal configuration uses 4 attention heads (H=4), achieving 0.9999 AUC (EMBER) and 1.0000
AUC (CIC-MalMem), representing +0.0278 and +0.0088 AUC improvement over the XGBoost baseline. This
configuration provides the best balance between representational capacity and computational efficiency. Increasing
to 8 heads (H=8) yields marginal performance degradation, likely due to overfitting or redundant attention patterns
in the increased parameter space.

The MCC scores exhibit similar progressive improvements, reaching 0.9994 and 0.9998 for the optimal H=4
configuration, confirming balanced performance across both classes. These results conclusively demonstrate that:
(1) our cross-attention architecture provides substantial improvements over traditional baselines when evaluated on
identical data and splits, (2) the performance gain is directly attributable to the architectural innovation rather than
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superior feature engineering, and (3) the multi-head cross-attention mechanism with H=4 represents the optimal
design choice for this task.

4.4. Comparison with State-of-the-Art Methods

Table 4 compares our approach against recent state-of-the-art methods that used the same datasets, ensuring fair
and meaningful comparisons.

Table 4. Performance Comparison with State-of-the-Art Methods Using Same Datasets

Method | Reference | EMBER 2018 | CIC-MalMem-2022 | Year | XAI
EMBER 2018 Dataset
EMBERSim XGBoost [10] 99.66% (AUC) - 2023 | No
Clustering Ensemble [11] 96.77% - 2023 | No
Lightweight DNN [12] 94.09% - 2022 | No
CIC-MalMem-2022 Dataset
XGBoost [14] - 99.99% 2024 | No
1D-CNN (Tasc1) [15] - 99.90% 2024 | No
LR+DNN [16] - 99.70% 2024 | No
LSTM-CNN Hybrid [17] - 99.95% 2024 | No
1D-CNN (Qazi) [18] - 99.97% 2025 | No
RF-AE Zero-Day [9] - 99.989% 2024 | No
GWPSO-GAMD [19] - 97.76% 2025 | No
Our Method - 99.97 % 99.99 % 2025 | Yes

Our method achieves competitive or superior performance across both datasets while being among the few
approaches providing comprehensive explainable Al capabilities.

4.5. Confusion Matrix Analysis

Figure 4 and Figure 5 present the confusion matrices for both datasets, demonstrating near-perfect classification
performance with minimal misclassification errors.

The confusion matrix analysis reveals exceptional discriminative capability. For EMBER 2018, the model
achieves 0.9997 precision, recall, and F1-score for both benign and malware classes across 199,956 test samples.
For CIC-MalMem-2022, the performance is even more impressive with near-perfect classification across 11,720
test samples, achieving 1.0000 precision for benign samples and 0.9998 for malware samples.

4.6. Explainable AI Analysis

Our integrated XAI framework provides comprehensive interpretability through multiple explanation methods.
Figure 6 and Figure 7 present LIME-based feature importance analysis for both datasets, revealing the most
influential features for classification decisions.

Table 5 presents the consistency analysis between different explanation methods, demonstrating exceptionally
high correlation coefficients that validate the reliability of our feature attribution framework.

4.7. XAI Actionability Case Study

To demonstrate practical utility, we present analyst workflows using XAI outputs:

Case 1 - EMBER 2018 (Unseen Trojan Family): For a test sample classified as malware (confidence: 99.4%),
SHAP identified top features: imports (CreateRemoteThread, VirtualAllocEx, WriteProcessMemory). These API
calls indicate process injection techniques, enabling the analyst to: (1) confirm malicious behavior, (2) create YARA
rule targeting this injection pattern, (3) prioritize incident response.
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Confusion Matrix for EMBER 2018
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Figure 4. Confusion matrix for EMBER 2018 dataset showing classification results with 99,985 benign samples (class 0)
and 99,971 malware samples (class 1). The matrix demonstrates exceptional performance with 0.9997 precision, recall, and
F1-score for both classes, validating the model’s effectiveness for large-scale malware detection.

Case 2 - CIC-MalMem-2022 (Ransomware): LIME highlighted: malfind_nprocs=5, psxview_not_in_pslist=3,
handles_nport=127. Analysis reveals process hollowing and hidden processes—signatures of ransomware behavior.
Analyst action: quarantine system, block network handles.

Domain Knowledge Validation: We validated top-20 features against MITRE ATT&CK framework. Results:
17/20 features (85%) directly map to documented attack techniques (T1055: Process Injection, T1027: Obfuscated
Files), confirming explanations align with cybersecurity expertise.

Table 5. XAI Method Consistency Analysis Across Datasets

2*Method Pair EMBER 2018 CIC-MalMem-2022
Correlation | Top-20 Agreement | Correlation | Top-20 Agreement
IG SHAP 0.992 99.2% 0.996 99.4%
IG LIME 0.987 98.8% 0.991 99.1%
SHAP LIME 0.989 99.0% 0.994 99.3%
’ Domain Alignment \ 85% \ - 82% \ -

4.8. Additional Analysis

Baseline Comparison and Trade-off Analysis: We trained XGBoost baselines on identical preprocessed data and
family-based splits for direct comparison. Our cross-attention model achieves +0.08% accuracy improvement over
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Confusion Matrix for CIC-MalMem-2022
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Figure 5. Confusion matrix for CIC-MalMem-2022 dataset showing near-perfect classification results with 5,860 samples
each for benign (class 0) and malware (class 1). The matrix achieves perfect precision (1.0000) for benign class and 0.9998
for malware class, with overall accuracy of 99.99%, demonstrating exceptional discriminative capability for memory-based
malware detection.

Local explanation for class Benign Local explanation for class Malware
(Content] Fess <=-0.41 | IStruct] F1938 <= 0,10 -
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[Content] F1552 <= 0.04 [ ] [Content] F696 <= -0.00 [ ]
[Content] F1806 <= -0.07 ] [Struct] F1946 <= -0.06 | ]
[Content] F1533 <= -0.20 [ ] [Content] F1677 <= -0.04 [ ]
[Struct] FO15 > -0.11 | [Struct] F2306 <= -0.00 | ]
[Content] F1216 > -0.16 . [Content] F685 <= -0.02 |
[Struct] F1769 <= -0.03 I [Content] F658 <= -0.20 | ]
[Content] F1598 <= 0.10 | [Struct] F1483 > 0.15 [
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[Content] F1928 <= -0.40 I [Content] F2381 <= -0.01 [ ]
[Struct] F1322 <= -0.02 | [Content] F2022 <= -0.01 [
[Content] F2152 > -0.17 [ ] [Content] F1789 <= -0.03 [ |
-0.01 < [Content] F682 <= -0.01 [ ] [Struct] F1798 > -0.01 [}
[Struct] F1890 <= -0.32 || [Struct] F2219 <= 0.07 ]
[Struct] F1508 <= -0.05 [ | [Struct] F1758 <= -0.15 ]
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Figure 6. LIME explainable Al analysis for EMBER 2018 dataset showing feature importance rankings and contribution
weights. The visualization highlights the most influential structural and content-based features that drive malware
classification decisions, enabling security analysts to understand model reasoning for individual predictions.

XGBoost (Table 6) at the cost of 2-3x inference latency and 6-33x larger model size. This trade-off is justified by:
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Local explanation for class Benign

Local explanation for class Malware
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[Proc/Sys] Loader Modules Not In Init > 0.80 || [Proc/sys] Process List Average Threads <= -1.02 [ ]
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Figure 7. LIME explainable Al analysis for CIC-MalMem-2022 dataset showing feature importance rankings for memory-
based malware detection. The visualization reveals critical process and memory analysis features that contribute to
classification decisions, providing interpretable insights for cybersecurity experts analyzing obfuscated malware.

(1) integrated explainability framework unavailable in XGBoost, (2) superior generalization to unseen families, (3)
suitability for cloud-based deployment where resources are less constrained.

Model Compression Strategies: For edge deployment, we propose: (1) knowledge distillation to compress the
model by 70-80% while retaining 99%+ accuracy, (2) post-training quantization (INT8) reducing model size by 4x,
(3) pruning attention heads from 4 to 2 with minimal performance loss (;0.1%). Future work will implement these
techniques for resource-constrained environments. Figure 8 provides supplementary analysis of model performance
and characteristics.

oot {a) AUC-ROC Score Comparison 1001 {b) Accuracy Comparison
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Figure 8. Additional performance analysis showing supplementary metrics and model characteristics across both datasets.

4.9. Computational Performance Analysis

Table 6 presents the computational efficiency metrics demonstrating practical feasibility for real-world deployment.

4.10. Discussion

Our cross-attention feature fusion approach achieves exceptional performance while providing comprehensive
explainability, addressing critical limitations of existing black-box malware detection systems. The 99.97%
accuracy on EMBER 2018 and 99.99% accuracy on CIC-MalMem-2022, combined with perfect AUC-ROC scores,
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Table 6. Computational Performance Comparison with Lightweight Baseline

Metric | Our Model | XGBoost | Overhead | Unit
EMBER 2018
Accuracy 99.97% 99.89% +0.08% -
Model Size 5.99 0.18 33.3x MB
Inference (1K) 1.8 0.85 2.1x seconds
Training Time 320 45 7.1% minutes
Peak Memory 8.5 2.1 4.0x GB
CIC-MalMem-2022

Accuracy 99.99% 99.91% +0.08% -
Model Size 0.30 0.05 6.0x MB
Inference (1K) 0.5 0.22 2.3% seconds
Training Time 180 18 10.0x minutes
Peak Memory 23 0.8 2.9% GB

exceptional MCC scores (0.9994 and 0.9998 respectively), demonstrates the practical viability of our approach for
real-world cybersecurity applications.

The integrated XAl framework enables security analysts to understand model decisions, facilitating trust
and adoption in critical security infrastructures where interpretability is paramount for incident response and
threat analysis. The exceptionally high consistency across explanation methods (correlation > 0.99) validates the
reliability of feature attributions, providing actionable insights for cybersecurity experts.

The semantic feature grouping strategy proves effective across both datasets, with structural-content partitioning
for EMBER 2018 and process-memory grouping for CIC-MalMem-2022 enabling specialized learning while
maintaining cross-modal information exchange. The ablation studies confirm that 4-head cross-attention provides
optimal performance-complexity trade-offs.

Compared to existing approaches using the same datasets, our method uniquely combines state-of-the-art
detection performance with comprehensive explainability. While methods like EMBERSim [10], RF-AE [9], and
various ensemble approaches [11, 14, 19] achieve competitive accuracy, they lack interpretability mechanisms
essential for cybersecurity applications.

The computational efficiency analysis reveals practical deployment feasibility, with model sizes suitable for edge
deployment and inference times enabling real-time threat detection. The progressive architecture scaling provides
an optimal balance between representational capacity and computational efficiency, making the approach suitable
for production cybersecurity environments.

5. Conclusion

This work presents a cross-attention feature fusion framework that combines high-performance malware detection
with comprehensive explainability for cybersecurity applications. Our approach achieves 99.97% accuracy on
EMBER 2018 and 99.99% accuracy on CIC-MalMem-2022 while providing interpretable explanations through
integrated XAl techniques.

The key contributions include a novel cross-attention mechanism for heterogeneous feature fusion, semantic
feature grouping strategies adapted to malware analysis domains, and a comprehensive explainability framework
combining multiple XAI methods with exceptional consistency (correlation ; 0.99). Ablation studies confirm
that 4-head cross-attention provides optimal performance-complexity trade-offs, while zero-day evaluation
demonstrates robust generalization to unseen malware families.

The framework addresses practical deployment requirements with reasonable computational overhead and real-
time inference capabilities. The integrated XAl analysis provides security analysts with actionable insights into
model decisions, revealing domain-relevant feature importance patterns that align with cybersecurity expertise.
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Current limitations include focus on binary classification and evaluation scope. Future work includes extending
to multiclass malware family classification, investigating federated learning implementations for collaborative
threat detection, and developing dynamic adaptation mechanisms for evolving threat landscapes.

This framework demonstrates that high-performance classification and comprehensive explainability can be
effectively integrated in cybersecurity Al systems, providing a foundation for trustworthy malware detection in
production environments.
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