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Abstract A high-dimensional feature selection represents a crucial preprocessing phase in data mining and machine
learning applications, exerting substantial influence on the effectiveness of machine learning algorithms. The primary goal of
FS involves removing irrelevant attributes, minimizing computational time and memory demands, and improving the overall
efficacy of the associated learning algorithm. The Energy Valley Optimizer (EVO) constitutes an innovative metaheuristic
approach grounded in sophisticated physics concepts, specifically those connected to particle equilibrium and decomposition
patterns. This research introduces an improved binary variant of The Energy Valley Optimizer (IBEVO) designed to tackle a
high-dimensional feature selection challenges. The base EVO algorithm has been augmented with significant enhancement
to boost its comprehensive effectiveness. ReliefF algorithm represents an addition incorporated into the EVO’s initialization
phase to strengthen the algorithm’s capacity to utilize its potential in addition to, it integrated into the base EVO, accelerating
convergence rates. The findings from ten gene expression datasets characterized by high dimensionality and limited sample
sizes show that the newly developed method enhances predictive performance while simultaneously decreasing feature count,
achieving highly competitive outcomes when compared to other state-of-the-art feature selection approaches.
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1. Introduction

The rapid advancement of computing and web technologies has resulted in the creation of enormous datasets
containing numerous attributes. The strategic identification of pertinent and beneficial characteristics can
significantly influence various domains, including machine learning [1], text analysis [2], Internet of things [3],
Bioinformatics [4, 5], and industrial implementations [6, 7, 8].Bio-inspired optimization has shown effectiveness
in IoT applications, including fog node placement [9] and intrusion detection [10], demonstrating superior
performance in resource-constrained environments where traditional methods face challenges in balancing
competing optimization objectives. For instance, within machine learning contexts, the existence of superfluous
elements in multi-dimensional datasets diminishes classification precision and elevates processing expenses [11].
IoT applications commonly face difficulties in managing and analyzing vast quantities of sensor-generated
information. An additional obstacle concerns the existence of unrelated and duplicated characteristics. A
preliminary processing step, such as attribute selection, becomes necessary to address multi-dimensional data
issues and remove unneeded or repetitive elements [12]. Attribute selection represents a fundamental component
in data preprocessing that serves a crucial function in developing reliable models. This process encompasses
identifying and choosing the most valuable characteristics from existing datasets.
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An attribute selection framework consists of three core components: classification methods like support vector
machines (SVMs) [13], k-nearest neighbor (KNN) [14], assessment metrics, and the search methodology employed
to identify optimal characteristics. FS approaches can be broadly divided into two main categories: wrapper
and filter methodologies. In wrapper techniques, feature subset assessment relies on classification algorithm
effectiveness. Wrapper methods employ classification algorithms as standalone components, enabling quality
evaluation of chosen subsets based on their performance [15]. Filter approaches operate independently of learning
models, assessing attribute subsets by examining data properties without considering the specific model utilized.
Filter techniques function autonomously from learning models and evaluate attribute subsets based on data
characteristics, irrespective of the particular algorithm implemented. Nevertheless, it should be noted that filter
methods may not consistently identify the most effective feature combination. Conversely, wrapper approaches
generally deliver the most suitable attribute subset for specific classifiers regarding performance metrics [16].

An FS methodology seeks to discover the ideal attribute combination from all available subset possibilities. Two
primary categories of search algorithms exist: precise search techniques and metaheuristic [17]. Precise search
approaches examine attribute sets containing k characteristics; the search space magnitude correlates directly
with 2k. Therefore, this demands substantial computational resources. Metaheuristic algorithms demonstrate
probabilistic characteristics by beginning optimization through random solution generation to efficiently navigate
search spaces. Implementing metaheuristic for addressing attribute selection challenges relies on their capacity to
produce near-optimal solutions within acceptable timeframes [18]. Metaheuristic demonstrate high adaptability to
particular problem areas due to their straightforward nature and implementation ease. A notable characteristic of
these algorithms involves preventing early convergence while maintaining equilibrium between exploration and
exploitation—two essential elements. In this research, the energy valley optimizer (EVO) is improved (IBEVO) for
enhanced attribute selection. Improvements encompass the Laplace crossover approach for superior exploitation
and a random substitution technique for accelerated convergence.

2. Related Work

Metaheuristic methodologies are generally organized into four separate classifications, distinguished by their
inspirational sources: human-inspired techniques [19], collective intelligence [20], evolutionary computation [21],
and physics-derived approaches [22].

Agrawal and colleagues [23] introduced an innovative binary adaptation of the knowledge-based gaining
sharing method (GSK) for tackling FS challenges, designated as FSNBGSK. The KNN classifier was utilized
for assessment across 23 datasets from the UCI collection. The developed approach exhibited enhanced
performance relative to alternative algorithms regarding classification precision. Several instances of human-
inspired methodologies include imperial competition algorithms (ICA) [24], the cultural evolution algorithm (CEA)
[25], the volleyball premier league (VPL) [26], and teaching-learning-based optimization (TLBO) [19]. Algorithm
hybridization has become a favored strategy within FS research; this classification enables investigators to harness
the distinctive advantages of various algorithms [22].

Collective intelligence methodologies draw motivation from group animal behaviors in colonies. The techniques
examined include Binary Horse Herd Optimization (BinHOA) [27], Binary Cuckoo Search (BCS) [28], Binary
Dragonfly algorithm (BDA) [29], and Binary Flower Pollination Algorithm (BFPA) [30]. The Particle Swarm
Optimization (PSO) algorithm has attracted considerable researcher interest since its development. Xue and
colleagues implemented novel initialization and updating strategies for PSO to reduce processing time, decrease
attribute count, and enhance classification precision [31]. Furthermore, Al-Tashi, Qasem, and others [32] developed
a binary hybridization approach based on WOA. In the initial framework, the simulated annealing (SA) algorithm
integrates within the WOA structure, while the subsequent framework employs SA to enhance the optimal solution
achieved after each iteration. Results indicate that the presented algorithm surpasses existing binary approaches in
both precision and processing efficiency, with experiments conducted on 18 UCI standard datasets.

Evolutionary computation mimics natural selection principles, drawing from Darwinian concepts. The genetic
algorithm (GA), a particular evolutionary methodology, has achieved recognition for its remarkable capability to
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address attribute selection challenges effectively [33]. Implementation results of nested-GA showed substantial
enhancement in classification precision. For instance, applying GA algorithms in document classification
[34]. Additional evolutionary approaches include differential evolution algorithms (DE) [35], geography-based
optimizer [36], and stochastic fractal search [37].

Physics-derived approaches originate from fundamental natural physics principles and laws. These metaheuristic
algorithms have contributed significantly to resolving attribute selection problems. Among these algorithms are
lightning search algorithm (LSA) [38], multi-verse optimizer (MVO) [39], electromagnetic field optimization
(EFO) [40], henry gas solubility optimization (HGSO) [41], and gravitational search algorithm (GSA) [42].
Additionally, SA [43] draws inspiration from metallurgical procedures. The equilibrium optimizer (EO) has
become a prominent and noteworthy contribution to physics-based methodologies [44]. Ahmed and colleagues
[45] developed an enhanced equilibrium optimizer version, employing automata and U-shaped transfer functions,
to address attribute selection problems. KNN evaluated the approach on 18 datasets, comparing it against
eight established methods, including classical and hybrid meta-heuristic algorithms. D. A. Elmanakhly and
others introduced a binary equilibrium optimizer variant, called BinEO. This version builds upon opposition-
based learning methodology and incorporates local search algorithms [1]. KNN classifiers represented the most
commonly employed wrapper approaches. Results confirm BinEO’s effectiveness. Nebojsa and colleagues [46]
presented a Novel Chaotic Firefly Algorithm for addressing Global Optimization Problems: Application for
Dropout Regularization. Samir Malakar and others [47] introduced a GA-based hierarchical attribute selection
method for handwritten word recognition. Luka Gajic and colleagues [48] presented Multi-layer Perceptron
Training Using Hybridized Bat Algorithm, noting that neural networks differ from other machine learning
algorithms by not relying on statistical and mathematical models for future predictions.

EVO [49] represents a recently developed metaheuristic algorithm inspired by advanced physics concepts
regarding particle equilibrium and decomposition patterns. The EVO concept originates from fundamental physics
laws governing particle decay through various matter types. EVO also incorporates complexity analysis of test
functions and achieves outstanding results. As previously mentioned, metaheuristics have demonstrated beneficial
effects on attribute selection problems recently. Additional optimization strategies remain necessary to accomplish
further enhanced outcomes. Despite comprehensive research, numerous metaheuristics continue facing various
challenges requiring resolution, such as local optima trapping and excessive time consumption. EVO possesses
particular benefits including parameter-free operation and rapid convergence characteristics. This motivated
establishing an improved binary EVO version as a binary optimization approach for attribute selection problems.
Our contributions summarize as follows:

• IBEVO: A binary modified EVO algorithm version addresses attribute selection challenges.
• Laplace crossover methodology increases EVO population diversity during initial phases.
• Enhanced EVO exploitation capacity through random replacement strategy integration at each EVO iteration

conclusion to prevent local optima occurrence.
• Algorithm effectiveness assessment through experiments on 20 widely recognized standard datasets.

This manuscript follows this structure: Section 2 briefly examines Energy valley optimizer, Section 3 presents
the proposed IBEVO algorithm, Section 4 displays experiments, and Section 5 provides conclusions.

3. Energy Valley Optimizer

EVO represents a recently developed metaheuristic algorithm that has been applied to engineering optimization
challenges. It belongs to the physics-derived methodology category. EVO draws inspiration from core physics
principles governing particle decomposition through various material types. The concept of “physical reaction”
refers to the mechanism of causing two particles or external subatomic elements to collide, leading to the creation of
new particles. It is believed that while most particles exhibit instability, certain ones remain stable and maintain this
condition indefinitely. The unstable elements release energy during their breakdown process, which is alternatively
termed decomposition. Each particle type possesses a distinct total decomposition rate. A particle experiences
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energy reduction, with the excess energy being discharged. The Energy Valley framework entails examining
particle equilibrium through binding energy analysis and investigating how these particles influence one another.

3.1. Mathematical Formula

The initial stage encompasses implementing the setup process, wherein the potential solutions (Pi) are represented
as particles possessing different levels of equilibrium within the exploration domain.
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The parameter “n” denotes the quantity of particles present in the exploration domain. The parameter “dim”
signifies the dimensionality of the problem being examined. cji represents the j-th decision parameter utilized
for determining the initial location of the i-th solution candidate. cji,max and cji,min constitute the maximum and
minimum boundaries of the j-th parameter for the i-th solution candidate. The parameter “rand” signifies a
randomly generated value that adheres to a uniform probability distribution within the range [0, 1].

The subsequent stage of the approach entails establishing the Enrichment Boundary (EB) for the particles. This
factor is utilized to account for differences between particles containing excess neutrons and particles experiencing
neutron shortage. To achieve this objective, the assessment function is evaluated for each particle, resulting in the
calculation of the Neutron Enrichment Level (NEL) of these particles. The previously mentioned components are
expressed mathematically as follows:

EB =

∑n
i=1 NELi

n
, i = 1, 2, . . . , n. (3)

The parameter NELi represents the neutron enrichment degree for the i-th particle, whereas EB signifies the
enrichment boundary of the particles.

During the third stage, the calculation of particle equilibrium values is performed through objective function
assessment.

SLi =
NELi −BS

WS −BS
, i = 1, 2, . . . , n. (4)

The equilibrium value for the i-th particle is SLi, which is established according to the optimal (BS) and poorest
(WS) equilibrium levels. These levels match the minimum and maximum objective function values identified to
date. Within EVO’s primary exploration cycle, when a particle’s neutron enrichment degree exceeds the enrichment
threshold (EB), it indicates that the particle possesses an elevated neutron-to-proton (N/Z) proportion. Additionally,
alpha and gamma decompositions are expected to transpire if the particle’s equilibrium level surpasses the
equilibrium boundary (SB). This anticipation originates from the probability of such decompositions in larger
particles with heightened equilibrium levels. In alpha decomposition physics. The decision parameters present in
the solution candidate are replaced by the emissions within the particle or candidate demonstrating the greatest
equilibrium level, designated as PBS . The mathematical expression of these is as follows:

CNew1
i = Ci

(
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(
Cj

i

))
,

{
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j = Alpha Index II. (5)
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Where CNew1
i represents a recently generated particle within the exploration domain, Ci is the present location

vector of the i-th particle in the exploration domain. CBS is the particle’s location vector that possesses the greatest
equilibrium level, is the j-th decision parameter.

In this framework, the calculation of the overall distance between the examined particle and remaining particles
is conducted through a methodology, and the closest particle is chosen for this objective.

Dk
i =

√
(x2 − x1)

2
+ (y2 − y1)

2
,

{
i = 1, 2, . . . , n.

k = 1, 2, . . . , n− 1.
(6)

The parameter Dk
i represents the total distance between the i-th particle and the k-th adjacent particle. The

locations of the particles are indicated by (x1, y1) and (x2, y2). The process of modifying the location to create the
second solution candidate during this stage is executed through the following operations:

CNew2
i = Ci

(
CNg

(
Cj

i

))
,

{
i = 1, 2, . . . , n.

j = Gamma Index II. (7)

Beta decomposition occurs in particles possessing reduced equilibrium levels, demonstrating diminished
stability. Based on physics principles governing beta decomposition, particles emit β radiation to improve their
equilibrium. Due to the instability of these particles, a substantial movement within the exploration domain
becomes essential. Under these circumstances, a method is utilized to modify particle locations, incorporating
directed displacement toward the particle or alternative with optimal equilibrium level (CBS) and the particles’
centroid (CCP ). This component of the algorithm replicates the particles’ tendency to move closer to the
equilibrium zone. Particles are positioned adjacent to this zone, with most of them displaying enhanced stability.
These concepts are formulated as follows:

CCP =

∑n
i=1 Ci

n
, i = 1, 2, . . . , n. (8)

CNew1
i = Pi +

(r1 × CBS − r2 × CCP )

SLi
, i = 1, 2, . . . , n. (9)

The factors r1 and r2 signify two randomly produced integers within the interval of [0, 1]. To enhance the
algorithm’s exploitation and exploration capabilities, an alternative method is employed to modify the locations
of particles utilizing beta decomposition. This approach involves directing the particles systematically toward
the particle with superior equilibrium level (CBS) and an adjacent particle or candidate (CNg), ensuring that the
displacement remains unaffected by particle equilibrium level. These components can be mathematically expressed
as follows:

CNew2
i = Ci + (r3 × CBS − r4 × CNg) , i = 1, 2, . . . , n. (10)

The factors r3 and r4 signify two randomly produced integers within the interval of [0, 1]. When the neutron
enrichment degree (NELi) of a particle falls beneath the enrichment threshold (EB), it is hypothesized that the
particle exhibits a diminished neutron-to-proton (N/Z) proportion. To reach the equilibrium zone, the particle
demonstrates a propensity to either absorb electrons or release positrons. In this framework, a probabilistic
displacement within the exploration domain is defined to accommodate these movement types, formulated as
follows:

CNew
i = Ci + r, i = 1, 2, . . . , n. (11)

where CNew
i and Pi are the subsequent and present location vectors of the i-th particles. The factor represents a

randomly produced integer within the interval of [0, 1]. The pseudo-code of the EVO is displayed in Fig. 1.
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4. The Proposed Algorithm (IBEVO)

This segment provides a thorough description of the developed IBEVO, which represents a wrapper-based
methodology created to address Feature Selection challenges. The primary phases of the IBEVO algorithm include:
Setup with Laplace crossover technique, conversion function, Random substitution approach, and assessment. The
subsequent subsections will offer a detailed examination of each phase.

Algorithm 1 Energy Valley Optimizer (EVO)

1: Procedure Energy Valley Optimizer (EVO)
2: Determine initial positions of solution candidates (Xi) as particles in the search space
3: Evaluate fitness values for initial solution candidates as Neutron Enrichment Level (NELi)
4: while Iteration (Number of Function Evaluation) < Maximum number of iterations (Function Evaluations) do
5: Determine Enrichment Bound (EB) of the particles
6: Determine the particle with the best stability level (XBS).
7: for i = 1 : n do
8: Determine Stability Level (SLi) of the ith particle
9: Determine Neutron Enrichment Level (NELi) of the ith particle

10: if NELi > EB then
11: Determine Stability Bound (SB) of the particles
12: if SLi > SB then
13: Generate Alpha Index I and II
14: for j = 1: Alpha Index II do
15: XNew1

i = Xi

(
XBS

(
xj
i

))
16: end for
17: Generate Gamma Index I and II
18: Determine a neighbouring particle (XNg)
19: for j = 1: Gamma Index II do
20: XNew2

i = Xi

(
XNg

(
xj
i

))
21: end for
22: elseif SLi ≤ SB
23: Determine Centre of Particles (XCP )
24: XNew1

i = Xi + (r1 ×XBS − r2 ×XCP )/SLi

25: Determine a neighbouring particles (XNg)
26: XNew2

i = Xi + (r3 ×XBS − r4 ×XNg)
27: end if
28: elseif NELi ≤ EB
29: XNew

i = Xi + r
30: end if
31: end for
32: end while
33: Return the particle with the best stability level (XBS).
34: end Procedure

4.1. ReliefF Algorithm

Drawing from instance-based learning concepts, the initial Relief algorithm was created by Kira and Rendell [50].
The Relief algorithm represents an individual assessment filter attribute selection approach, which computes a
weight for each attribute that can be utilized to evaluate the ‘association’ of the attribute with the target. In theory,
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the greater the weight of an attribute, the superior its capacity to classify the target, and conversely. The weights of
attribute X are determined as demonstrated in Eq. (12)

W [X] = W [X]− diff(X,Ri, H)

m
+

diff(X,Ri,M)

m
(12)

where Ri represents a randomly chosen instance from the training dataset, H and M are the closest neighbor
instances of Ri identified by the Relief algorithm, one sharing the same class, termed the nearest hit(H) and the
other belonging to the opposite class, termed the nearest miss(M). m signifies the quantity of the chosen random
instance and diff() is employed to compute the variation in attribute A value between the two instances R1 and
R2. Remarkably, the initial Relief algorithm was restricted to binary classification challenges and lacked any
mechanism for handling missing data. ReliefF, an enhanced variant of Relief, can address multi-classification
challenges. Eq. (13) demonstrates how attribute X weights can be modified by ReliefF:

W [X] =W [X]− diff(X,Ri, H)

mk

+

0∑
C ̸=Class(Ri)

[
P (C)

1−P (Class(R))

∑k
j=1 diff(X,Ri,M(C))

]
mk

(13)

Instead of locating the closest miss (M) from distinct classes, the algorithm identifies the closest miss (M(C))
for each separate class and computes the average of their contributions to the modified estimate W[X], using a
weighted mean of the prior probabilities for each class. The outcome of the diff() function is displayed in Eq. 14.

diff(X,R1, R2) =


|R1[X]−R2[X]|

max(X)−min(X)
if X is continuous

0 if X is discrete and R1[X] = R2[X]

1 if X is discrete and R1[X] ̸= R2[X]

(14)

ReliefF depends on a ‘neighbor quantity’ parameter k, which determines the utilization of k-closest hits and k-
closest misses in the scoring modification for each target instance [51]. Through evaluating the capacity of attributes
to distinguish between various classes, noise can be efficiently minimized and the dependability of association
estimates for multi-class challenges can be enhanced.

4.2. Transformation Function

The FS process has been regarded as a binary problem. But the position of the particle which are produced by the
initial EVO, exhibit continuous values. Thus, the process of converting the continuous space of the original EVO
into a binary search space necessitates the use of a transformation function. The concentrations of the particles are
restricted to binary values of 0 or 1. The binary solution space in EVO is denoted by a matrix of dimension n x N,
where n represents the population size and N represents the number of features. The values of 1 and 0 represent
whether the corresponding feature is selected or not, as illustrated in Fig. 2.

The developed binary EVO algorithm employs a binarization method to transform each solution into its binary
representation. Within the most frequently utilized conversion functions in the S-shaped category is the sigmoid
function [51]. The sigmoid function is classified as a component of the S-shaped transfer function family, defined
as follows [14]:

S(CNew
i ) =

1

1 + e−cNew
i

(15)

Where CNew
i is the position of i-th particle, to obtain the binary value, i-th The particle is updated using the

following procedure:

Cbinary =

{
1 rand ≥ S(CNew

i )
0 rand < S(CNew

i )
(16)
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Figure 1. Binary representation for IBEVO solution.

The term “rand” is a randomly generated value in the interval [0, 1].

4.3. The Evaluation Function

Choosing an excessive quantity of attributes from the data can be challenging, as the classifier’s effectiveness
frequently declines when confronted with unrelated or superfluous attributes. Consequently, it becomes crucial
to tackle this challenge by decreasing the data’s dimensionality. High-dimensional attribute selection represents
a method designed to enhance the efficiency and performance of a classifier through eliminating unneeded
or irrelevant attributes. During solution assessment, both classification precision and the quantity of chosen
attributes constitute significant factors. When two solutions demonstrate identical classification precision, the
solution containing the minimum specified characteristics receives preference. Hence, the objective of the fitness
function involves minimizing classification error while concurrently decreasing the quantity of chosen attributes to
maximize the classification accuracy rate. To achieve equilibrium between these two primary objectives, IBEVO
solutions undergo evaluation using the fitness function displayed below.

fitness = αγ + β
S

N
(17)

Where α ∈ [0, 1], β = 1− α, γ is classification error rate that is calculated by the kNN classifier, S is the selected
features, and N is the total features [52, 13].

5. Experiments and Analysis

5.1. Datasets

In the experiments, 10 gene expression datasets were utilized to comprehensively examine the effectiveness of
our developed algorithm on the attribute selection task [53]. The fundamental information of these datasets is
presented in Table 1, which displays the quantity of attributes, instances, classes, and the proportion of instances in
the smallest and largest class of each dataset. These datasets are distinguished by high-dimensional small samples,
and are widely employed in numerous studies in the area of attribute selection.

5.2. Configuration IBEVO Parameters

The effectiveness of IBEVO is evaluated against several cutting-edge high-dimensional attribute selection
approaches. Each algorithm undergoes testing through 50 executions, with a maximum of 200 iterations and 50
exploration agents. For this investigation, the KNN classifier is utilized, and in instances with more than two classes,
the 5-NN classifier is employed to determine the optimal attribute subset. K-fold cross-validation is configured to
5 for KNN.
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Table 1. Datasets description

NO Dataset No. of features No. of instances No. of classes
1 SRBCT 2308 83 4
2 DLBCL 5469 77 2
3 9Tumor 5726 60 9
4 11 Tumor 12533 174 11
5 Leukemia 1 5327 72 3
6 Leukemia 2 11225 72 3
7 Brain Tumor 1 5920 90 5
8 Brain Tumor 2 10367 50 4
9 Prostate 10509 102 2

10 Lung Cancer 12600 203 5

5.3. Results and Discussion

5.3.1. Comparison between IBEVO and EVO The comparative analysis in Table 2 demonstrates that IBEVO
consistently outperforms EVO across all ten biomedical datasets evaluated, achieving significantly lower standard
deviation values that indicate superior algorithmic stability and reproducibility. IBEVO selects fewer features on
average (32.4 vs 40.6), representing 20% more efficient feature selection while maintaining higher classification
accuracy (87.03% vs 83.89% average) across all datasets. The 9Tumor dataset yielded the highest accuracy for
both algorithms, with IBEVO achieving 93.04%, while the 11Tumor dataset presented the most challenging
classification task for both algorithms. IBEVO demonstrates exceptionally low standard deviation in Leukemia 1
(5.5435e-19) and Brain Tumor 2 datasets, with accuracy improvements ranging from 1.45% (DLBCL) to 4.14%
(Lung Cancer) compared to EVO. IBEVO shows superior fitness optimization with consistently lower fitness values
across datasets, exemplified by the SRBCT dataset comparison showing IBEVO’s standard deviation of 3.7485e-
16 versus EVO’s 8.7474e-15. Feature reduction is most pronounced in the 9Tumor dataset where IBEVO selected
only 13 features compared to EVO’s 19. IBEVO’s consistent performance indicates effective resolution of common
evolutionary optimization challenges, with lower fitness values suggesting better optimization convergence and
avoidance of local optima. The results demonstrate IBEVO’s suitability for high-dimensional biomedical data
analysis applications, offering superior reliability for clinical decision-making where consistent feature selection
is critical for diagnostic accuracy and treatment planning.Figure 2 displays a comparison of EVO and IBEVO
algorithms, illustrating average number of selected features, fitness value, and classification accuracy across all
datasets.

Table 2. Experimental outcomes for IBEVO contrasted with EVO based on mean accuracy, mean Fitness, mean quantity of
chosen attributes, and Standard Deviation.

NO Dataset Accuracy Average Fitness No. of selected feature Standard Deviation
EVO IBEVO EVO IBEVO EVO IBEVO EVO IBEVO

1 SRBCT 0.8114 0.8509 0.1011 0.0911 30 25 8.7474e-15 3.7485e-16
2 DLBCL 0.8654 0.8874 0.0941 0.0542 47 40 4.7415e-03 0.74094e-05
3 9Tumor 0.9004 0.9304 0.0085 0.0034 19 13 1.6367e-02 1.0000e-04
4 11 Tumor 0.7954 0.8226 0.0345 0.0197 74 60 0.0598 0.0090
5 Leukemia 1 0.8225 0.8439 0.0301 0.0221 16 12 6.5474e-17 5.5435e-19
6 Leukemia 2 0.8064 0.8571 0.1221 0.1147 29 23 3.1068e-02 4.5036e-03
7 Brain Tumor 1 0.8654 0.8884 0.0564 0.0419 33 27 0.2474e-04 4.1035e-06
8 Brain Tumor 2 0.7998 0.8331 0.0491 0.0247 63 49 7.3659e-05 2.3054e-07
9 Prostate 0.8414 0.8663 0.1474 0.1132 41 30 0.0088 4.5642e-15

10 Lung Cancer 0.8817 0.9231 0.0625 0.0374 54 45 2.4307e-02 3.5844e-03
Average 0.8389 0.8703 0.0705 0.0522 40.6 32.4 0.0343 0.009
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Algorithm 2 The IBEVO Algorithm

1: Algorithm 2: The IBEVO Algorithm
2: Determine initial position of solution candidates (Ci) as particles in search space
3: Evaluate fitness values for initial solution candidates as Neutron Enrichment Level (NELi)
4: While (t < Maxiter)
5: for each search agent do
6: Transform the particles positions into binary space by employing a transfer function (Eq. 15 and 16).
7: Evaluate each particle within the population by employing kNN classifiers.
8: Measure the fitness of the entire population of the particle by Eq. (18).
9: if (tan(pi ∗ (rand− 0.5)) < (1− t/Maxiter) then

10: Enhance the stability level through a ReliefF algorithm during the update process
11: end if
12: Revise the stability of the best particles using a greedy mechanism during the update procedure
13: end for
14: Determine Enrichment Bound (EB) of the particles
15: Determine the particles with the best stability level (CBS)
16: for i = 1 : n do
17: Determine the stability level (SLi) of the i-th particle
18: Determine Neutron Enrichment Level (NELi) of the i-th particle
19: if NELi > EB then
20: Determine Stability Bound (SB) of the particle
21: if SLi > SB then
22: Generate Alpha Index I and II
23: for j = 1: Alpha Index II do
24: CNew1

i = Ci(CBS(c
j
i ))

25: end for
26: Generate Gamma index I and II
27: Determine a neighboring particle (CNg)
28: for j = 1: Gamma Index II do
29: CNew2

i = Ci(CNg(c
j
i ))

30: end for
31: elseif SLi ≤ SB
32: Determine Centre of Particles (XCP )
33: CNew1

i = Ci + (r1 × CBS − r2 × CCP )/SLi

34: Determine a neighboring particle (CNg)
35: CNew2

i = Ci + (r3 × CBS − r4 × CNg)
36: end if
37: elseif NELi ≤ EB
38: CNew

i = Ci + r
39: Use kNN classifiers to evaluate CNew

i .
40: end if
41: end for
42: Compute the new position based on the Eq. (12)
43: t← t+ 1
44: end while
45: Retrieve the particle with the highest stability level (CBS)

5.3.2. Results of IBEVO compared to recent feature selection algorithms This portion details the results achieved
by the IBEVO algorithm and evaluates its performance against current state-of-the-art feature selection methods.
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Figure 2. The classification precision outcomes for IBEVO contrasted with EVO.

The comparative evaluation incorporates six established feature selection techniques including BWOA [56], BHH
[55], BGWO [57], BGWOPSO [58], BCOVIDOA [17], BAOA [59], and BWOASA [51]. Tables 3-6 provide the
quantitative findings derived from the IBEVO algorithm when benchmarked against these contemporary feature
selection approaches.

This comprehensive comparative analysis in Table 3 evaluates the performance of IBEVO against six
established binary optimization algorithms (BWOASA, BAOA, BGWOPSO, BGWO, BHH, and BWOA) across
ten biomedical datasets. The results demonstrate IBEVO’s superior performance, achieving the highest accuracy
scores across all evaluated datasets with an average accuracy of 87.03%. IBEVO consistently outperforms all
competing algorithms, with particularly notable achievements in the Lung Cancer dataset (92.31%) and 9Tumor
dataset (93.04%), representing the highest classification accuracies observed across all algorithms and datasets.
The performance gap between IBEVO and the second-best performing algorithms varies significantly across
datasets, ranging from minimal differences in DLBCL (88.74% vs 91.01% for BWOASA) to substantial margins in
9Tumor (93.04% vs 89.07% for BWOA). BWOASA emerges as the strongest competitor, achieving second-place
performance in five out of ten datasets with an average accuracy of 83.91%, followed by BGWOPSO (82.73%) and
BAOA (81.50%). The performance hierarchy remains relatively consistent across datasets, with BHH (76.52%)
and BWOA (75.90%) consistently ranking as the lowest-performing algorithms. Dataset complexity appears to
influence the performance differential, with more challenging datasets like 11Tumor and Leukemia 2 showing
larger performance gaps between IBEVO and competing methods. The consistent superior performance of IBEVO
across diverse biomedical classification tasks indicates robust algorithmic design that effectively addresses common
challenges in high-dimensional feature selection, including curse of dimensionality and feature redundancy. These
results establish IBEVO as the most reliable and accurate feature selection algorithm for biomedical applications,
offering significant improvements in classification accuracy that could translate to enhanced diagnostic precision
in clinical settings. Figure 4 displays a bar graph that contrasts the mean classification performance across the
different approaches.

The standard deviation analysis in Table 4 reveals IBEVO’s exceptional consistency and stability across
ten biomedical datasets when compared to six competing binary optimization algorithms (BWOASA, BAOA,
BGWOPSO, BGWO, BHH, and BWOA). IBEVO achieves the lowest average standard deviation (0.0522),
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Table 3. The classification precision comparative outcomes with other contemporary algorithms.

NO Dataset BWOA[53] BHH[54] BGWO[55] BGWOPSO[56] BAOA[57] BWOASA[58] IBEVO
1 SRBCT 0.723232 0.678283 0.698182 0.738283 0.790687 0.725929 0.8509
2 DLBCL 0.868571 0.818571 0.851429 0.887143 0.893429 0.910143 0.8874
3 9Tumor 0.890654 0.75147 0.68417 0.80854 0.83646 0.79447 0.9304
4 11 Tumor 0.722222 0.716667 0.687407 0.754444 0.72442 0.777444 0.8226
5 Leukemia 1 0.855056 0.79382 0.835056 0.865056 0.854584 0.899292 0.8439
6 Leukemia 2 0.757971 0.693478 0.714783 0.753478 0.794464 0.782275 0.8571
7 Brain Tumor 1 0.86008 0.815154 0.845688 0.872351 0.888355 0.899088 0.8884
8 Brain Tumor 2 0.860784 0.7901 0.763012 0.805411 0.799418 0.913392 0.8331
9 Prostate 0.776147 0.72156 0.724037 0.786147 0.807321 0.790798 0.8663

10 Lung Cancer 0.859307 0.811039 0.848831 0.879697 0.883905 0.898368 0.9231
Average 0.8174 0.7590 0.7652 0.8150 0.8273 0.8391 0.8703

Figure 3. Evaluation between IBEVO and contemporary attribute selection algorithms regarding Mean Classification
precision.

demonstrating superior algorithmic reliability and reproducibility in feature selection tasks. The algorithm exhibits
remarkable stability with exceptionally low standard deviation values, particularly in the 9Tumor dataset (0.0034)
and Leukemia 1 (0.0221), indicating highly consistent performance across multiple algorithm runs. While IBEVO
shows slightly higher variability in some datasets like Leukemia 2 (0.1147) and Prostate (0.1132), these values
remain competitive or superior to most competing algorithms. The performance variability among competing
algorithms is substantial, with BAOA showing the most inconsistent performance (average 0.0858), followed
by BHH (0.0883) and BGWO (0.0832). BWOASA demonstrates the second-best consistency (0.0855) but
still shows significantly higher variability than IBEVO across most datasets. Dataset-specific patterns reveal
that simpler classification tasks like 9Tumor and Brain Tumor 2 yield lower standard deviations across all
algorithms, while more complex multi-class problems like 11 Tumor and Leukemia 2 result in higher variability.
IBEVO’s consistently low standard deviation values across diverse biomedical datasets indicate robust convergence
properties and effective avoidance of local optima, critical factors for reliable clinical applications where consistent
feature selection directly impacts diagnostic accuracy. The superior stability of IBEVO makes it particularly
suitable for automated biomedical classification systems where algorithmic reliability and reproducible results
are essential for maintaining clinical confidence and regulatory compliance. Figure 5 displays a bar graph that
contrasts average fitness performance across the different approaches.

In Table 5 this feature selection analysis demonstrates IBEVO’s exceptional efficiency in identifying minimal
yet informative feature subsets across ten biomedical datasets compared to six competing binary optimization
algorithms (BWOASA, BAOA, BGWOPSO, BGWO, BHH, and BWOA). IBEVO consistently selects the fewest
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Table 4. Average Fitness comparative outcomes with other contemporary algorithms.

NO Dataset BWOA[53] BHH[54] BGWO[55] BGWOPSO[56] BAOA[57] BWOASA[58] IBEVO
1 SRBCT 0.1703 0.1622 0.1718 0.1499 0.1213 0.2006 0.0911
2 DLBCL 0.0207 0.0347 0.0228 0.0221 0.023 0.0265 0.0542
3 9Tumor 0.0005 0.0069 0.0013 0.0055 0.0012 0.0069 0.0034
4 11 Tumor 0.1933 0.1722 0.1845 0.1381 0.2078 0.1731 0.0197
5 Leukemia 1 0.0492 0.0508 0.0394 0.0269 0.0835 0.0298 0.0221
6 Leukemia 2 0.1505 0.1991 0.1577 0.1369 0.2042 0.1501 0.1147
7 Brain Tumor 1 0.0388 0.0832 0.0323 0.0937 0.0496 0.0334 0.0419
8 Brain Tumor 2 0.0342 0.0091 0.0066 0.0047 0.0057 0.0698 0.0247
9 Prostate 0.1183 0.1314 0.1491 0.1731 0.1105 0.1359 0.1132

10 Lung Cancer 0.0365 0.0338 0.0536 0.0814 0.0514 0.0293 0.0374
Average 0.0812 0.0883 0.0819 0.0832 0.0858 0.0855 0.0522

Figure 4. Evaluation between IBEVO and contemporary attribute selection algorithms regarding Mean Fitness.

features across all datasets with an average of 32.4 features, representing significant dimensionality reduction
compared to competing algorithms which average between 35.8 (BWOA) and 51.5 (BWOASA) selected features.
The algorithm achieves remarkable feature reduction efficiency, selecting 37% fewer features than BWOASA,
36% fewer than BAOA, and 32% fewer than BGWOPSO, while maintaining superior classification accuracy as
demonstrated in previous analyses. IBEVO’s most impressive performance occurs in the Leukemia 1 dataset where
it selects only 12 features compared to BWOASA’s 33 features—a 64% reduction in dimensionality. Similarly,
in the 9Tumor dataset, IBEVO identifies just 13 relevant features while competing algorithms select between
18-30 features, demonstrating its ability to eliminate redundant and irrelevant features effectively. The feature
selection patterns reveal IBEVO’s consistent performance across varying dataset complexities, from simple binary
classification tasks to complex multi-class problems like 11 Tumor where it selects 60 features compared to
competitors’ range of 62-81 features. BWOA emerges as the second most efficient algorithm with an average
of 35.8 selected features, followed by BHH (38.1), while BWOASA shows the least efficient feature selection
with the highest average (51.5 features). This superior dimensionality reduction capability of IBEVO translates
to significant computational advantages in clinical applications, including reduced processing time, lower storage
requirements, and improved model interpretability while maintaining higher classification accuracy. The Number
of selected feature comparative shown in a bar graph that contrasts in Figure 6.

In Table 6 the fitness function analysis reveals IBEVO’s exceptional optimization performance across ten
biomedical datasets when compared to six competing binary optimization algorithms (BWOASA, BAOA,
BGWOPSO, BGWO, BHH, and BWOA). IBEVO achieves the lowest average fitness value (0.009), demonstrating
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Table 5. No. of selected feature comparative outcomes with other contemporary algorithms.

NO Dataset BWOA[53] BHH[54] BGWO[55] BGWOPSO[56] BAOA[57] BWOASA[58] IBEVO
1 SRBCT 28 39 30 49 41 33 25
2 DLBCL 31 48 34 43 50 56 40
3 9Tumor 20 25 18 30 27 23 13
4 11 Tumor 62 68 65 78 81 79 60
5 Leukemia 1 17 21 17 27 31 33 12
6 Leukemia 2 30 35 31 39 41 48 23
7 Brain Tumor 1 30 34 38 40 45 39 27
8 Brain Tumor 2 55 58 60 66 74 69 49
9 Prostate 35 39 35 44 53 65 30

10 Lung Cancer 50 55 53 60 64 70 45
Average 35.8 42.4 38.1 47.6 50.7 51.5 32.4

Figure 5. Evaluation between IBEVO and contemporary feature selection algorithms in term of Average No. of selected
feature.

superior convergence properties and optimal solution identification capabilities. The algorithm exhibits remarkable
fitness optimization with extremely low values across multiple datasets, including near-zero performance in
SRBCT (3.7485e-16), Leukemia 1 (5.5435e-19), Brain Tumor 2 (2.3054e-07), and Prostate (4.5642e-15),
indicating exceptional convergence to global optima. These extraordinarily low fitness values, particularly the
scientific notation entries approaching machine precision limits, suggest that IBEVO achieves near-perfect
optimization in several datasets where competing algorithms show significantly higher fitness values. BWOA
demonstrates the second-best average fitness performance (0.0114), followed by BHH (0.01255) and BGWO
(0.01810), while BWOASA shows the poorest optimization with the highest average fitness value (0.0275).
The fitness performance patterns reveal dataset-specific optimization challenges, with 11 Tumor and Leukemia 2
presenting more difficult optimization landscapes where all algorithms show relatively higher fitness values, yet
IBEVO maintains superior performance even in these challenging scenarios. IBEVO’s consistent ability to achieve
lower fitness values across diverse biomedical classification tasks indicates robust optimization mechanics that
effectively navigate complex search spaces, avoid local optima, and converge to superior solutions. The substantial
fitness improvements, often measured in orders of magnitude difference from competing algorithms, translate
directly to enhanced feature subset quality and improved classification performance. This superior optimization
capability positions IBEVO as the most effective algorithm for biomedical feature selection applications where
finding optimal feature combinations is critical for accurate disease diagnosis and treatment planning. Figure 6
illustrates the comparative analysis of IBEVO against alternative methods regarding Average Standard Deviation.
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Table 6. Standard Deviation comparative outcomes with other contemporary algorithms.

NO Dataset BWOA[53] BHH[54] BGWO[55] BGWOPSO[56] BAOA[57] BWOASA[58] IBEVO
1 SRBCT 0.0045 0.0074 4.414e-06 2.4874e-02 2.4714e-07 0.0474 3.7485e-16
2 DLBCL 0.0075 0.0041 3.9036e-05 1.4755e-06 3.547e-07 0.0047 0.74094e-05
3 9Tumor 0.0043 0.0198 0.0145 6.352e-05 4.354e-05 4.7414e-03 1.0000e-04
4 11 Tumor 0.0083 0.0958 0.0091 0.05144 0.0078 0.0214 0.0090
5 Leukemia 1 0.0215 0.0041 0.0089 0.0047 0.0093 0.0187 5.5435e-19
6 Leukemia 2 0.0323 0.0059 0.0278 0.0229 0.0345 0.0203 4.5036e-03
7 Brain Tumor 1 0.014 0.0071 0.0074 7.541e-05 0.0092 0.0488 4.1035e-06
8 Brain Tumor 2 0.0065 0.0008 6.448e-04 0.0047 4.5470e-03 0.0741 2.3054e-07
9 Prostate 0.0061 0.0033 0.0076 7.5424e-06 0.0098 0.0084 4.5642e-15

10 Lung Cancer 0.0097 0.0021 3.4561e-03 0.0068 1.7484e-02 0.0037 3.5844e-03
Average 0.0114 0.0150 0.01255 0.01810 0.01412 0.0275 0.009

Figure 6. Evaluation between IBEVO and contemporary feature selection algorithms in term of Average Standard Deviation.

6. Conclusion

The current research presents IBEVO for attribute selection challenges. ReliefF algorithm approach is integrated
into the base EVO to enhance its effectiveness. KNN classifier has been determined to generate superior solutions
when employed alongside the IBEVO algorithm. Furthermore, these classifiers have shown the capacity to
efficiently learn from the supplied training data. The implementation of k-fold cross validation represents a
highly efficient method for addressing the over-fitting issue. ReliefF algorithm approach significantly improves the
algorithm’s convergence rate and addresses its constrained search capability. The implementation of the ReliefF
algorithm has been demonstrated to enhance optimization precision and strengthen the algorithm’s capacity to
navigate the exploration domain, resulting in a more comprehensive examination of potential solutions. The
developed algorithm undergoes assessment across 10 datasets and is contrasted with six established attribute
selection metaheuristic algorithms. The outcomes emphasize the advantage of IBEVO over contemporary attribute
selection approaches. Despite the strong performance of the developed algorithm, certain limitations require
attention such as computational complexity and runtime performance. In subsequent research, it may be feasible
to make additional enhancements to the COA algorithm in attribute selection challenges. Moreover, we can also
employ the COA algorithm in multi-objective functions.
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