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Abstract With more consumers relying on online reviews, predicting hotel ratings accurately has become very important.
This study investigates the use of machine learning models to predict overall hotel ratings based on key service-related
features, including location, hospitality, cleanliness, facilities, food, value for money, and price. Using a real-world dataset
of Indian hotels, we evaluate and compare the performance of six supervised learning models: Linear Regression, Random
Forest, Gradient Boosting, Support Vector Regression, K-nearest neighbours, and PCA-based Linear Regression. The
models were evaluated using Mean Squared Error (MSE) and R-squared (R2) as performance metrics. Gradient Boosting
demonstrated the highest predictive accuracy, closely followed by Random Forest. Feature importance analysis identified
hospitality, cleanliness, and location as the most significant predictors of customer satisfaction. Principal Component
Analysis (PCA) further reduced dimensionality while retaining over 90% of the dataset’s variance within the first four
components. These findings demonstrate the effectiveness of ensemble learning methods for hotel rating prediction and
offer actionable insights for service improvement in the Indian hospitality sector. Furthermore, the results underscore the
role of data-driven analytics in shaping effective digital marketing and promotional strategies tailored to diverse customer
preferences.
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1. Introduction

The rise of online communication has profoundly transformed the hospitality industry, particularly through travel
websites where users routinely post reviews and rate their hotel experiences. These user-generated reviews serve
as critical data points for travellers, offering authentic perspectives beyond traditional marketing materials. Ratings
and reviews influence consumer decision-making and play a vital role in enhancing brand reputation, attracting
new customers, and driving business profitability. For tourism businesses, effectively analysing this vast customer
feedback is essential for maintaining competitive service standards. To this end, researchers have increasingly
employed machine learning (ML) techniques to process and interpret hotel reviews. These models can identify
key service quality indicators and predict overall hotel ratings, offering valuable insights for travellers and
industry stakeholders. In a related vein, Benitez et al. [1] introduced a fuzzy multi-attribute decision-making
approach to dynamically evaluate service quality across three Gran Canaria hotels. Their study contributes to
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the hospitality and tourism marketing literature by applying fuzzy number theory to assess service performance
and its impact on the competitive positioning of hotels in the vacation market. Chou et al. [2] developed a
fuzzy multi-criteria decision-making (FMCDM) model to aid in selecting the optimal location for tourist hotels.
Their framework offers a systematic and objective methodology for evaluating various location-based factors,
thereby supporting more informed site selection decisions in the hospitality sector. Extending this decision-support
approach, Tsai et al. [3] proposed an integrated model combining DEMATEL, Analytic Network Process (ANP),
Zero-One Goal Programming (ZOGP), and Activity-Based Costing (ABC) to guide the selection of Corporate
Social Responsibility (CSR) programs in international tourist hotels. Their findings emphasise the pivotal role of
organisational image in achieving CSR objectives. Akincilar and Dagdeviren [4] introduced a hybrid evaluation
model that combines the Analytic Hierarchy Process (AHP) with the Preference Ranking Organisation Method for
Enrichment of Evaluations (PROMETHEE) to assess the quality of hotel and hospitality websites. This approach
offers a structured assessment mechanism for enhancing online service delivery. Similarly, Gil-Lafuente et al. [5]
employed the Fuzzy Delphi Method (FDM) alongside the Fuzzy Analytic Hierarchy Process (FAHP) to establish
evaluation criteria for luxury resort hotels in Taiwan and Macao. Their comparative analysis revealed regional
differences in strategic priorities- Taiwan emphasized consumer orientation and operational management, whereas
Macao placed a greater focus solely on operational management. Masiero et al. [6] used a discrete choice modelling
approach to investigate how much hotel guests are willing to pay for specific room features in a study centered on
customer preferences. The results indicated significant valuation differences between leisure and business travellers
and between first-time and repeat visitors. These insights can support targeted marketing strategies and revenue
optimisation in the hotel industry. Chen [7] employed quantile regression to examine how inbound tourism growth
influences Taiwanese hotel firms’ sales performance and financial outcomes. The analysis revealed an asymmetric
impact on hotel equity returns, with smaller hotels being more sensitive to tourism fluctuations, highlighting the
need for tailored financial strategies within the sector. In a related area of sustainability, Mardani et al. [8] developed
a hierarchical evaluation framework to assess and prioritise energy-saving technologies in large Iranian hotels. By
integrating fuzzy Delphi, Fuzzy Analytic Hierarchy Process (FAHP), and fuzzy-based ranking techniques, the study
offers a comprehensive decision-support tool for promoting energy efficiency in hospitality operations. Rianthong
et al. [9] proposed a two-stage stochastic programming model that optimises hotel sequencing based on customer-
generated reviews from online travel agencies (OTAs). The model aims to streamline the search process for users
by intelligently ranking hotels, and its practical utility was validated using real OTA data. Focusing on service
quality, Akbaba [10] investigated customer expectations in business hotels using the SERVQUAL framework. The
study identified five core dimensions-tangibles, adequacy in service supply, understanding and caring, assurance,
and convenience-and emphasised the importance of contextual adaptation for different service environments
and cultural settings. These findings highlight the ongoing relevance of SERVQUAL while acknowledging its
limitations in diverse hospitality contexts. Wang et al. [11] found that compatibility, firm size, technological
competence, and the presence of a critical mass were positively associated with hotel adoption of Mobile Hotel
Reservation Systems (MHRS). At the same time, system complexity had a significant adverse effect. These results
highlight the importance of both organisational readiness and external market factors in driving technological
adoption in the hospitality sector. Yu et al. [12] proposed a novel Multi-Attributive Border Approximation Area
Comparison (MABAC) approach incorporating interval type-2 fuzzy sets to support multi-criteria decision-making.
Their algorithm was validated through a hotel selection case study, demonstrating its utility in ranking alternatives
under uncertainty. Lai et al. [13] utilised the Partial Least Squares (PLS) method to analyse satisfaction patterns
among traveller segments in Macau luxury hotels. The study revealed that satisfaction drivers vary across new,
repeat, and frequent guests, providing nuanced insights into evolving customer expectations and segment-specific
service strategies. In a survey related to pandemic responses, Lee et al. [14] applied Semantic Network Analysis
(SNA) to online reviews of quarantine hotels, identifying patrons’ service quality perceptions during crises. Their
work offers guidance on how hotels can adapt communication and service delivery under emergency conditions.
Wu et al. [15] explored hotel service robots’ psychological and experiential dimensions, focusing on attributes
such as anthropomorphism and perceived intelligence. Using a hybrid Structural Equation Modelling-Artificial
Neural Network (SEM-ANN) approach, the study found that service and brand authenticity are critical in fostering
customer affection, termed ”brand love”, for robotic service offerings in hospitality. Viglia et al. [16] examined
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the effects of price adjustments by competing hotels on consumers’ reference prices through laboratory and
field experiments. Their findings indicate that synchronised pricing changes among hotels can lower consumers’
perceived price baselines, influencing booking behaviour-a key consideration for online travel agencies that display
dynamic rate comparisons. Finally, Boo et al. [17] investigated the influence of Customer Social Marketing (CSM)
initiatives on consumer behaviour during the COVID-19 pandemic. The study concluded that well-executed
CSM campaigns effectively altered customer attitudes and behaviours, underlining the strategic value of social
engagement during periods of uncertainty.

Cruz et al. [18] investigated the relationship between hotel management structures and guest satisfaction. Their
findings revealed that while chain-operated hotels typically achieve the highest satisfaction levels, owner-operated
hotels perform better in the economy and midscale segments, suggesting different operational strengths based on
hotel type. Fang et al. [19] developed the Hotel-Guest-Robot Interaction Experience (HGRIE) scale to quantify
guest interactions with service robots. This scale provides a framework for improving robot management and
enhancing service experiences in technologically augmented hospitality environments. Lee et al. [20] proposed
a method for analysing energy consumption patterns in hotel guestrooms to promote occupant-specific appliance
control. Their work supports initiatives for cost reduction and green certification within the hotel industry. Lim
et al. [21] assessed the impact of augmented and virtual reality (AR/VR) on tourist satisfaction. They found that
perceived ease of use, innovativeness, and overall usefulness significantly enhance guest satisfaction and increase
the likelihood of bookings. Nakamura et al. [22] explored the influence of Airbnb listings on hotel occupancy
rates in Japan. Contrary to common assumptions, their results showed that fluctuations in Airbnb supply do not
significantly disrupt traditional hotel occupancy, suggesting market segmentation between accommodation types.
Oukil et al. [23] introduced a two-stage hybrid Data Envelopment Analysis (DEA) model for identifying optimal
hotel pairings to enhance sector-wide performance and benchmarking.

Saez et al. [24] emphasised the growing importance of digital innovation in the hotel industry. Analysing
322 Spanish hotels using Structural Equation Modelling (SEM), they demonstrated how digitalisation positively
affects competitiveness and operational efficiency. Shehawy et al. [25] conducted a cross-national study examining
consumers’ willingness to pay more for green hotels. Using the Theory of Planned Behaviour (TPB), they
identified notable variations in eco-conscious behaviour across seven countries, reinforcing the global relevance
of sustainable hotel practices.

Yu et al. [26] explored the emerging concept of vegan hotels, identifying six key guest-attracting attributes:
health, guilt, social ethics, environmental concern, religion, and curiosity. These factors significantly enhanced
perceived well-being, enjoyment, and behavioural intentions such as word-of-mouth and repeat bookings. Building
on this diverse body of research, our study applies machine learning techniques for predicting hotel ratings based
on key service attributes. While prior literature has concentrated mainly on qualitative assessments and structured
decision models, there is a clear need for data-driven predictive frameworks that can harness numerical review
data to guide service optimization. In this context, a robust predictive framework based on machine learning is
essential for accurately analysing location, hospitality, cleanliness, facilities, value for money, food, and price-
the core dimensions that shape customer satisfaction and influence rating behaviour. To address this gap, we
evaluate the predictive power of several machine learning algorithms-including Linear Regression, Random Forest,
Gradient Boosting, Support Vector Regression, K-Nearest Neighbours, and PCA-based Linear Regression-in
modelling overall hotel ratings. By comparing model performance and identifying the most influential predictors,
this study contributes actionable insights for hospitality professionals and underscores the value of machine
learning in customer experience management. This paper explores using various machine learning models – Linear
Regression, Random Forest, Gradient Boosting, Support Vector Machines, K-nearest Neighbour, and PCA-based
Linear Regression to predict overall hotel ratings based on a feature set. The study assesses the accuracy of these
methods to evaluate their performance. The rest of the paper is organized as follows. Section 2 describes the dataset.
Section 3 presents the dataset’s basic statistics and proposed system is introduced. Section 4 details the machine
learning techniques used. Section 5 evaluates the performance of various machine learning models. Section 6
presents and compares the outcomes of the study. Finally, Section 7 presents the conclusions of the study and
outlines potential directions for future work.
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2. Dataset Description

The dataset used in this study was collected from MakeMyTrip [27], an online travel agency platform. It contains
609 entries and eight columns representing various hotel features and ratings. These include location, hospitality,
facilities, cleanliness, value for money, food, price, and overall rating. The data types within these columns are
predominantly ‘float64’, indicating decimal or continuous values, except for the ‘price’ column, which is of type
‘int64’ and signifies integer values. Our dataset contains no missing values, encompasses eight variables, and
the final column represents the target variable. The first seven variables serve as independent features reflecting
customer perceptions and hotel characteristics, while ‘overall rating’ is the target variable for predictive modelling.
All entries are complete, with no missing values, ensuring the dataset’s suitability for supervised machine learning
applications.

3. Basic Statistics

We will utilise the hotel rating dataset, which comprises eight attributes: ‘location’ , ‘hospitality’ , ‘facilities’
, ‘cleanliness’, ‘value for money’ , ‘food’ , ‘price’ and ‘overall rating’. Our objective is to extract meaningful
information on hotel ratings. Understanding the dataset characteristics and the variability in ratings is essential
for businesses and researchers in the hospitality industry, as it aids in comprehending customer preferences and
facilitates data-driven decision-making.

3.1. Sample of the Subset Data Frame

Table 1 shows a snapshot of the data. We show the first five entries for columns like ‘overall rating’ , ‘value
for money’ , ‘hospitality’ , ‘cleanliness’ and ‘location’. This sample provides an overview of typical rating
distributions. For example, the first row shows a hotel with an ‘overall rating’ of 4.3, ‘value for money’ at 4.2,
‘hospitality’ at 4.2, ‘cleanliness’ at 3.7, and ‘location’ at 4.7. These results give us a basic idea of the dataset and
how hotel ratings are spread out. They help us see what the data is like and how different aspects are rated. This
info is a good starting point for digging deeper and discovering more about the data. It helps users make better
decisions and understand the data better.

Table 1. Sample of the subset data frame (data snippet)

Overall rating Value for money Hospitality Cleanliness Location

4.3 4.2 4.2 3.7 4.7
4.3 4.1 4.2 4.1 4.6
4.7 4.7 4.7 3.9 4.7
4.9 4.9 4.9 4.5 4.9
4.8 4.8 4.8 4.6 4.8

3.2. Descriptive Statistics

To understand the dataset better, we looked at hotel reviews. Table 2 shows the explanation of statistical analysis.
We focused on five important columns: ‘overall rating,’ ‘value for money,’ ‘hospitality,’ ‘cleanliness,’ and ‘location.’
This analysis showed that there are 609 hotel ratings in the dataset, which you can see from the count in the ‘overall
rating’ column. The mean is about 4.01, so most hotels fall around that score. The standard deviation was 0.47,
so there is definitely some variance in the scores. Ratings range from a low of 1.70 to a high of 5.00 We observe
that there’s quite a bit of spread there. We extended this analysis to other key variables such as ‘value for money’,
‘hospitality’, ‘cleanliness’ and ‘location. This analysis helps us comprehend which different areas the customers
are really paying attention to when rating those areas.’
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Table 2. Statistical Analysis

Overall rating Value for money Hospitality Cleanliness Location

Count 609 609 609 609 609
Mean 4.01 3.93 3.86 3.93 4.19

Standard Deviation 0.47 0.53 0.58 0.53 0.49
Minimum 1.70 1.50 1.50 1.50 1.40

25% 3.80 3.70 3.60 3.70 4.00
50% 4.00 4.00 3.90 4.00 4.30
75% 4.30 4.30 4.20 4.30 4.50

Maximum 5.00 5.00 5.00 5.00 5.00

The ‘mean’ (average) is a central measure that provides insight into the typical or expected value. It is a
reference point for hotel ratings in the aspects analysed. The ‘standard deviation’ quantifies the level of variability
or dispersion in the data. A higher standard deviation suggests that ratings in a particular aspect are more spread out
from the mean. We can gain a more nuanced understanding of the hotel ratings dataset by performing a statistical
analysis. For instance, the average overall rating is approximately 4.01, indicating a generally positive sentiment
among reviewers. The standard deviation of approximately 0.47 suggests moderate variability, implying that hotel
ratings vary around the mean. While the minimum and maximum ratings indicate the full spectrum of experiences,
the percentiles reveal the distribution of ratings.

Figure 1. Frequency Distribution of Hotel Feature Ratings.

The line plot Figure 1 visualises the count of user ratings for each hotel feature (e.g., location, food, cleanliness)
across the full rating scale. Most features cluster around the 3.5-4.5 range, indicating generally favourable
reviews. Notably, location and hospitality exhibit tighter, right-skewed peaks, suggesting more consistent positive
experiences. Food shows a wider spread, indicating varied guest perceptions.
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Figure 2. Density Distribution of Hotel Feature Ratings.

The kernel density plot displays the normalized distribution of ratings for various hotel features. The sharper
peaks near 4.0 highlight consistent satisfaction with services like location and hospitality. Broader or flatter curves
(e.g., food) indicate more diverse opinions. These distributions help assess variability and central tendency in guest
experiences.

3.3. Correlation Heatmap

Figure 3. Correlation Heatmap.
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To understand the interrelationships among hotel attributes, a Pearson correlation heatmap was generated. The
matrix displays coefficients ranging from -1 to +1, where values closer to +1 indicate strong positive linear
relationships, values near -1 suggest strong inverse relationships, and values around 0 imply negligible correlation.
Figure 3 illustrates the correlation heatmap, capturing the linear relationships among various hotel features and
the overall rating. Interestingly, ‘food’ has a weak correlation with the overall rating (r = 0.06), indicating it is
not a primary driver of customer satisfaction in this dataset. This suggests food is either subjective or consistently
rated, contributing little to rating variance. Among inter-feature relationships, ‘hospitality’ is highly correlated
with ‘value for money’ (r = 0.91) and ‘facilities’ (r = 0.82), indicating these aspects often co-occur in positive
guest experiences. Similarly, ‘cleanliness’ and ‘facilities’ (r = 0.78) are strongly related, suggesting that well-
equipped hotels also tend to maintain better hygiene. A moderate negative correlation between ‘food’ and ‘price’ (r
= -0.46) is observed, suggesting a perception gap: customers paying higher prices may not perceive corresponding
improvements in food quality. These insights emphasize that facilities, hospitality, value for money, and cleanliness
are the most predictive features of a hotel’s overall rating. In contrast, food appears to have minimal influence and
could be deprioritized in predictive modelling. Price and location, while not dominant, still offer complementary
value and should be retained as supporting features in regression and classification models.

3.4. Top 3 most highly correlated feature pairs plot

Figure 4. Facilities vs Overall Rating (r = 0.92)

This scatter plot shows a strong positive linear relationship between hotel facilities and the overall rating. It implies
that better facilities significantly contribute to higher guest satisfaction scores.
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Figure 5. Hospitality vs Value for Money (r = 0.91)

This plot illustrates a high correlation indicating that hotels with better hospitality are also perceived as offering
greater value for money, reinforcing the interconnectedness of service quality and perceived cost-effectiveness.

Figure 6. Hospitality vs Overall Rating (r = 0.87)

The graph depicts a strong linear trend, suggesting that improved hospitality is directly linked to higher overall
ratings.
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3.5. Proposed Methodology

The dataset attributes and samples have been pre-processed to eliminate null values, preparing them for the
application of various machine learning algorithms for predictive purposes.

Figure 7. A model flow chart for hotel rating predictions

4. Classification Using Various Algorithms

In this study, a range of machine learning techniques were employed, including Linear Regression, Random
Forest, Gradient Boosting, Support Vector Machines, K-nearest neighbour, and PCA-based Linear Regression for
classification models. These models received input attributes from a dataset divided into two segments: 70% of the
data sample was used for training the model, while the remaining 30% served as a test dataset. The training dataset
refers to the portion of data specifically used to train the machine learning model. Principal Component Analysis
(PCA) was used for dimensionality reduction [28]. The k-Nearest Neighbors (kNN) algorithm is widely used for
clustering and classification tasks. In particular, the paper by Begum et al. [29] demonstrates how kNN, combined
with feature selection methods, can improve classification performance on benchmark datasets. The hybrid SVM-
SVR model for build-up rate prediction, as proposed in the paper by Wang et al. [30], demonstrates significant
improvement in prediction accuracy compared to traditional models.

4.1. Linear Regression

Linear regression is a fundamental technique in both statistics and machine learning, primarily used for modelling
the linear relationship between a dependent (target) variable and one or more independent (predictor) variables. As
a type of supervised machine learning algorithm, its main objective is to find the best-fit line that minimizes the
error between the predicted and actual values. From the independent characteristics provided, the outcome of the
dependent variable is ascertained. Consequently, it is crucial to underline that linear regression basically focuses
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on determining and quantifying the direct proportionality between variables, so as to produce correct predictions
and relevant data interpretations.

4.2. Random Forest

Random Forest is a widely used machine learning algorithm known for its effectiveness in both regression and
classification tasks. It operates by constructing an ensemble of decision trees, each trained independently on
different randomly selected subsets of the data and features. This approach enhances predictive accuracy and
reduces the risk of overfitting. Random Forest is also recognized as a powerful feature selection tool, capable
of identifying the most important variables that contribute to predictions. Additionally, it supports dimensionality
reduction by evaluating feature importance across multiple trees. The implementation of Random Forest involves
two key steps: first, building the ensemble of decision trees; and second, using the aggregated output of these trees
to make accurate predictions.

4.3. Gradient Boosting

Gradient boosting is a well-known machine learning method applied successfully for both classification and
regression problems. Unlike Random Forest’s concurrent tree-building method, Gradient Boosting creates its trees
one after the other. Its great precision and deft handling of difficult datasets depend much on this methodological
difference. However, maximising Gradient Boosting’s performance and accuracy depends on rigorous evaluation of
the necessary computational resources and meticulous optimisation of its parameters, both of which are absolutely
necessary for proper application.

4.4. Support Vector Machine

Support Vector Machine (SVM) is a powerful supervised machine learning algorithm primarily used for
classification tasks, though it is also well-suited for regression problems (referred to as Support Vector Regression,
or SVR). It is particularly effective in high-dimensional spaces and can handle both linear and non-linear data
efficiently. The core idea behind SVM is to identify the optimal hyperplane that best separates data points of
different classes in the feature space. This hyperplane maximizes the margin between the closest data points of
the classes, ensuring better generalization on unseen data. In regression tasks, SVM aims to find a function that
deviates from the actual target values by a margin no greater than a specified threshold, while remaining as flat as
possible.

4.5. K-nearest neighbour

This algorithm is widely applied for both classification and regression. K-nearest neighbour is a flexible and basic
machine learning method. It uses a distance metric, either Euclidean or Manhattan distance, to find the ‘k’ closest
data points or neighbours near a query point. While for regression, KNN forecasts a value based on their average,
in classification problems, it finds the most common class among these neighbours. The performance of the method
depends much on the distance metric and the choice of “k”. KNN is sensitive to irrelevant features, particularly
in high-dimensional spaces. Its performance also declines with big datasets, although it is simple to apply and
understand.

4.6. Principal Component Analysis

A sophisticated technique meant to lower the dimensionality of difficult datasets while keeping important
information is PCA. This method uses a mathematical construction of Principal Components by means of a smaller
selection of uncorrelated variables from the decomposition of a large set of correlated variables. The main aim of
PCA is to find a lower-dimensional representation of the original dataset. The first main component is created to
capture the maximum variation feasible; each succeeding component is made to have the same variance, provided
it is orthogonal to the previous component. This methodical technique for dimension reduction is quite helpful for
simplifying difficult data and guarantees that important features are maintained for efficient study.
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5. Performance Evaluation of Machine Learning Models

5.1. Mean Squared Error (MSE)

MSE is a metric used to gauge the accuracy of a model in predicting quantitative data. It represents the average of
the squares of the errors, i.e., the difference between the actual and predicted values

MSE =
1

n

n∑
i=1

(
Yi − Ŷi

)2

Where n is the number of observations, Yi is the actual value for the ith observation, and Ŷi is the predicted value
for the ith observation.

5.2. Coefficient of Determination (R2) for Model Evaluation

The R2 statistic is a key metric for evaluating the goodness of fit of a regression model. It quantifies the proportion
of variance in the dependent variable that can be predictable from the independent variables. This measure helps in
understanding the effectiveness of the model in explaining the variability of the data.

R2 = 1− SSres

SStot

Where, SSres is the sum of squares of residuals and SStot is the total sum of squares.

5.3. Confusion Matrix

A confusion matrix in Table 3 has explained machine learning and classification tasks, helping to assess how well
a model performs. It organizes predictions and actual outcomes into a structured matrix, making understanding the
model’s behaviour easy.

The elements of a confusion matrix are as:

1. True Positives (TP): These are the cases where the model correctly predicts a positive data point.
2. True Negatives (TN): These are the cases where the model correctly predicts a negative data point.
3. False Positives (FP): These are the cases where the model incorrectly predicts a positive data point.
4. False Negatives (FN): These are the cases where the model incorrectly predicts a negative data point.

Table 3. Confusion Matrix

Actually Positive (1) Actually Negative (0)

Predicted Positive (1) True Positives (TPs) False Positives (FPs)
Predicted Negative (0) False Negatives (FNs) True Negatives (TNs)

6. Results

6.1. Distribution of hotel prices within the dataset

Table 4. Summary Statistics of Hotel Prices

Count Mean Std Min 25% 50% 75% Max

609 4294.84 4612.41 500.00 1250.00 2000.00 6138.00 29296.00
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The summary statistics for the ‘price’ feature in the dataset provide a comprehensive overview of the distribution
of hotel prices. Figure 8 illustrates this distribution. With a total count of 609 entries, the dataset contains 609
distinct hotel prices available for analysis. The mean (average) hotel price is approximately |4,294.85, indicating
that, on average, hotel accommodations in the dataset are priced around this amount. The standard deviation is
about |4,612.41, reflecting significant variability in hotel prices-suggesting a broad spectrum of options ranging
from budget to luxury hotels. The minimum price is |500, representing the most affordable hotel option in the
dataset. At the lower end, the 25th percentile (Q1) is |1,250, meaning that 25% of hotels are priced below this
value. The median (50th percentile) is |2,000, indicating that half of the hotels cost less than this amount and the
other half more, serving as a central reference point. At |6,136.8, the 75th percentile (Q3) indicates that 75% of
hotels are priced below this level, with the remaining 25% being higher-priced properties. The maximum price,
recorded at |29,296, represents the most expensive hotel in the dataset, highlighting the availability of high-end
luxury options. Overall, these statistics reveal a wide and diverse pricing distribution, ranging from economical
stays to premium accommodations. While the mean price is |4,294.85, the spread from |500 to |29,296, along
with the quartile values, offers deeper insights into the segmentation of hotel prices and underscores the variability
present in the hospitality market.

Figure 8. Distribution of Hotel Price

6.2. Analysis of the relationship between hotel prices and hospitality levels

The box plot in Figure 9 provides a detailed visualization of hotel price distributions across different levels of
hospitality ratings. It effectively highlights how hotel pricing correlates with varying levels of perceived hospitality,
offering insights into market segmentation and pricing strategies. From the plot, a clear upward trend is observed: as
the hospitality rating increases, hotel prices generally rise. Hotels with lower hospitality scores (e.g., 1.5 to 3.0) tend
to have lower and more tightly clustered prices, often ranging between |500 and |5,000. In contrast, higher-rated
hotels (4.5 to 5.0) exhibit both higher median prices and greater variability, with prices extending up to |24,395,
as marked on the chart. For instance, the median price for hotels rated around 5.0 is approximately |21,490, while
their 25th percentile (Q1) lies at |17,521, suggesting that 25% of these top-rated hotels charge at or below this
threshold. This reflects a more premium pricing strategy and potentially greater service offerings. In contrast, hotels
with ratings around 2.0 to 3.0 show lower medians and a narrower interquartile range, reflecting standardized,
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economy-class pricing. Additionally, the presence of numerous outliers, particularly at higher ratings, indicates
occasional high-priced luxury properties within otherwise similarly rated groups. The variability (as shown by the
height of the boxes and whiskers) also increases with rating, suggesting that as hospitality improves, the range of
pricing options broadens. In summary, this box plot demonstrates a strong positive relationship between hospitality
rating and hotel price. It underscores how service quality influences pricing, and provides valuable information
for targeted pricing strategies, consumer segmentation, and competitive market positioning. Understanding these
patterns allows hotel businesses to align their pricing with perceived service value, optimize revenue, and cater to
varied customer preferences in a competitive market landscape.

Figure 9. Box plot for all the variables

6.3. Preprocessing and Feature Extraction

We used PCA on this research paper in order to analyse how various aspects of satisfaction and general rating
combine in the field of hotels. The dataset we utilized was from different hotels that encompassed key categories
such as “location,” “hospitality,” “facilities,” “cleanliness,” “value for money,” “food,” and “price.” Each of these
attributes contributes toward determining the final score assigned to any given hotel; however, we aimed at
differentiating their significance. Following preprocessing of the data and standardising of the features to make sure
each attribute was on the same scale, we then used PCA in order to uncover the hidden structure and dependencies.
Our analysis revealed that the five most important principal components combined for most of the variation in
the dataset. Notably, the results indicated that ‘value for money’, ‘cleanliness’, ‘food’, ‘hospitality’ and ‘location’
consistently appeared as significant variables within all principal components. Moreover, the table below shows the
explained variance ratios for all principal constituents. As predicted, the first principal component has the greatest
contribution to the total variance of the dataset, with the second principal component following it, then the third
and so on. With the fourth principal component, more than 92% of the total variance in a data set has been retained
according to the cumulative explained variance ratio. This measurable insight allows data scientists and analysts
to make educated choices about how many principal components (Table 5) they should keep, depending on how
much variance is explained.
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Table 5. Explained Variance by Principal Components

Principal Component Explained Variance Ratio Cumulative Explained Variance Ratio

0 1 0.626 0.626
1 2 0.176 0.802
2 3 0.075 0.877
3 4 0.045 0.923
4 5 0.040 0.963
5 6 0.020 0.983
6 7 0.012 0.994

These findings illustrate how important these five qualities are when it comes to evaluating how satisfied
customers feel with specific hotels. ‘Value for Money’ deals with economic issues relating to staying at a hotel
where cost is essential, while also considering what one perceives as valuable. ‘Cleanliness’ and ‘food’ touch upon
hygiene levels and food quality, respectively, both leading contributors to guest satisfaction rates. ‘Hospitality’
entails various forms of guest service delivery and staff friendliness that imply a sense of being home away from
home; hence, this ensures unforgettable experiences. Ultimately, location stands out as a key factor, reminding us
of a desirable locality, which translates into overall scores.

Through identifying these crucial elements, hotels can enhance their strategies and pay attention to vital areas
that significantly influence the guest experience. By stressing these features in their provisions and promotional
activities hotels will improve customer satisfaction as well as overall ratings, thus acquiring an advantage over
others in the ever-changing hospitality industry.

Figure 10. Cumulative Explained Variance Ratio

The most important part of this PCA evaluation is the cumulative explained variance ratio that is shown in
a figure. This graph shows a good aspect of the bargaining between dimensionality and proportion of variance
explained by data. The ‘x’ axis depicts principal components while the ‘y’ axis indicates the cumulative explained
variance ratio. Cumulative explained variances are determined progressively where each successive component is
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added to it. The illustration gives visual guidance about how many principal components are needed for a given
proportion of the dataset’s total variance to be kept constant. An in-depth analysis in Figure 10 shows that the first
principal components account for a large share of. In addition, after the first few components, the slope of the graph
starts becoming less steep, which signifies that the explanatory power for more variance decreases in value. For
instance, for this particular data set, it has been noted that about 95% of the total variance is captured by the first
four principal components taken together. Therefore, we could retain only these first four principal components and
preserve most of their information, thereby possibly reducing their dimensionality. In conclusion, the PCA analysis
is a necessary advance in data processing and dimensionality reduction. It allows the researcher to choose which
principal components wisely. The components are simplified yet retain their most important aspects by knowing
how much variance is left. Such a reduction in dimensionality becomes particularly valuable when a dataset has
many features or when one needs to compress data for various statistics and machine learning applications.

6.4. Performance Comparison

For example, our first model, Linear Regression, had a MSE of approximately 0.015 and a reasonably high R2

value of 0.930, indicating a good linear fit to the data. In contrast, Random Forest and Gradient Boosting models
performed better than Linear Regression, with lower MSE values of 0.010 and 0.009, respectively. Their R2 scores,
at 0.950 each, highlight their superior predictive performance. This suggests that both ensemble methods provide
stronger predictive power, with Gradient Boosting slightly edging out as the most accurate model overall. On the
other hand, Support Vector Regression (SVR) and K-Nearest Neighbours (KNN) delivered comparatively poor
performance. SVR had the highest MSE at 0.150 and the lowest R2 at 0.290, indicating it failed to capture key
data relationships. KNN followed a similar trend, with an MSE of 0.110 and an R2 of 0.480, reflecting weak
generalization ability. Additionally, we explored the impact of dimensionality reduction by applying Principal
Component Analysis (PCA) followed by Linear Regression. However, the PCA-based Linear Regression model
recorded a higher MSE of 0.020 and a lower R2 of 0.890 compared to the ensemble models. This suggests that
while PCA helped reduce input complexity, it may not be the best approach for preserving predictive accuracy in
this dataset.

Figure 11. MSE correction of different ML models
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Figure 12. R2 error correction of different ML models

Table 6. Performance Comparison of Regression Models Using MSE and R2 Metrics

Models MSE R2

Linear Regression 0.015 0.930
Random Forest 0.010 0.950
Gradient Boosting 0.009 0.950
Support Vector Regression 0.150 0.290
K-nearest Neighbours 0.110 0.500
PCA-based Linear Regression 0.020 0.890

Figures 11 and 12 compares the performance of six regression models using both MSE and R2 metrics. The
values are listed in Table 6. The light blue bars represent MSE-where lower values indicate better predictive
accuracy-and green bars show R2 scores-where higher values indicate a better model fit.

Among the models, Random Forest and Gradient Boosting clearly outperform the others, achieving the lowest
MSE ( 0.01 and 0.009) and highest R2 scores ( 0.950). Linear Regression also performs well, with an R2 of 0.930
and low MSE of 0.015. In contrast, Support Vector Regression and K-Nearest Neighbors exhibit higher MSE values
(0.150 and 0.110, respectively) and notably lower R2 scores (0.290 and 0.480), suggesting weaker predictive
capabilities. These comparisons highlight the superior performance of ensemble methods-especially Random
Forest and Gradient Boosting-for predicting hotel ratings. The results also demonstrate that model selection plays
a crucial role in accuracy, and not all algorithms perform equally well for the same dataset.

6.5. Model Performance Evaluation using MSE

The Random Forest Regressor stands out with an MSE of 0.010 and an R2 of 0.95, indicating that it accurately
captures the relationship between hotel features and overall ratings. It explains 95% of the variance in the
ratings using factors like location, hospitality, and cleanliness. This high explanatory power confirms the model’s
robustness and predictive reliability.
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6.6. Prediction Error Plot for Random Forest Regressor with R2 = 0.929 Showing High Model Accuracy

Figure 13. Prediction Error Plot for Random Forest Regressor

Figure 13 gives the prediction error plot for the Random Forest Regressor shows actual hotel ratings (x-axis) versus
predicted ratings (y-axis), with most points closely aligned along the ideal diagonal. The high R2 value of 0.929
indicates that 92.9% of the variation in ratings is well captured by the model. The proximity of the best-fit line to
the identity line confirms the model’s strong predictive accuracy.

6.7. Decision Tree Values

This information can be found in the ”Decision Tree Values” part and highlights values associated with leaf nodes
of the first decision tree in Random Forest. Every individual value corresponds to the mean overall rate for a
certain subset of data that went through that specific leaf node. Such principles provide insight into how the data
was divided by decision tree according to feature values; In contrast, when predictions are made with a Random
Forest model then predictions coming from different decision trees are summed up together where its first decision
tree structure and parameters offer an idea about contribution of each single tree to the final prediction made by the
ensemble. Therefore, given the suggested characteristics, the Random Forest Regressor seems to be an excellent
model for predicting general hotel scores as it has low MSE and high R2. Moreover, by interpreting Decision Tree
Values, also shown in Figure 14 and Figure 15, it is possible to see what this model does with data segments, thus
facilitating the identification of predictors that are crucial when determining overall hotel scores.
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Figure 14. Left subtree for Decision tree for hotel rating

Figure 15. Right subtree for Decision tree for hotel rating
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6.8. Understanding the Confusion Matrix in Evaluating Predictive Models

Figure 16. Confusion Matrix for Multiclass Hotel Rating Classification

In addition to the regression-based analysis of hotel ratings, a classification model was employed to predict
categorical versions of the ”overall rating” by grouping them into three classes: Low, Medium, and High. This
classification task is distinct from the earlier regression models, as it focuses on predicting discrete categories
rather than continuous values. The model was trained using the same set of hotel features-location, hospitality,
facilities, cleanliness, value for money, food, and price. To evaluate the model’s performance in this classification
task, a confusion matrix was generated, as shown in Figure 16. The confusion matrix compares actual hotel rating
categories against the predicted ones and reveals that the model performs strongly in identifying medium and high-
rated hotels. It correctly classified 61 medium-rated and 41 high-rated hotels. Additionally, 12 low-rated hotels
were accurately identified, though two were misclassified as medium. For medium-rated hotels, only two instances
were misclassified as high, and among the high-rated hotels, four were predicted as medium. Notably, there were
no misclassifications between the extreme categories (e.g., no low-rated hotels predicted as high), suggesting
that the model learned to distinguish boundary cases effectively. Overall, this classification model demonstrates
high predictive reliability, particularly in adjacent class distinctions, and complements the regression analysis by
providing a categorical perspective on hotel quality segmentation. The results affirm the usefulness of machine
learning in capturing nuanced patterns in hotel ratings for both continuous and categorical interpretations.

7. Conclusion

This study conducted an in-depth investigation into the application of various machine learning techniques for
predicting hotel ratings based on features such as location, hospitality, facilities, cleanliness, value for money,
food, and price. Multiple regression and classification models were evaluated, including Linear Regression,
Gradient Boosting Regressor, k-nearest neighbours (KNN), Support Vector Regression (SVR), PCA-based Linear
Regression, and Random Forest Regressor. Among these, Random Forest and Gradient Boosting achieved the best
predictive performance, with Random Forest ultimately selected as the most suitable model due to its comparable
accuracy, greater interpretability, reduced sensitivity to hyperparameter tuning, and consistent stability across
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runs. The ensemble nature of Random Forest enables it to effectively handle non-linearity, multicollinearity, and
interactions among features, outperforming simpler linear models or distance-based methods such as KNN. In
addition to regression tasks, we also explored a classification approach by discretizing continuous hotel ratings into
categorical classes: Low, Medium, and High. The confusion matrix results demonstrated high predictive reliability,
particularly for medium- and high-rated hotels, with minimal misclassifications and no extreme-category errors
(e.g., low classified as high). These findings highlight the value of machine learning in the hospitality industry,
particularly for platforms aiming to provide personalized recommendations, automated rating predictions, and
quality assessments for users. For consumers, accurate rating predictions support better decision-making tailored to
their expectations and budgets. For hotel operators and aggregators, the models serve as strategic decision-making
tools for quality control, market segmentation, and competitive pricing strategies.
Future Work: Future studies could explore more advanced machine learning methods such as XGBoost,
LightGBM, and deep neural networks to further improve predictive accuracy and generalization. Incorporating
unstructured textual review data through natural language processing (NLP) would provide deeper insights into
customer sentiment, complementing numerical ratings and enabling more nuanced predictions. Multi-modal
approaches that combine images, textual reviews, and structured hotel features could create more comprehensive
models capturing various aspects of hotel quality. Longitudinal studies could track changes in hotel ratings
over time to capture evolving customer preferences and market trends. Expanding the dataset to include
international hotels or different market segments would test the model’s generalizability across diverse contexts.
Finally, employing interpretability methods such as SHAP or LIME could help identify key features driving
predictions, offering actionable insights to hotel operators and platform designers for decision-making and service
improvements.
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