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Abstract We introduce a novel hybrid conjugate gradient method for unconstrained optimization, combining the AlBayati-
AlAssady and Wei-Yao-Liu approaches, where the convex parameter is determined using the conjugacy condition. Through
rigorous theoretical analysis, we establish that the proposed method guarantees sufficient descent properties and achieves
global convergence under the strong Wolfe conditions. Using the performance profile of Dolan and Moré, we confirm that
our method, denoted as RN, consistently outperforms both classical (HS, FR, PRP and DY CG) and hybrid (BAFR and
BADY) methods, particularly for large-scale problems.
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1. Introduction

Optimization, defined as the systematic process of identifying extremal values of mathematical functions,
constitutes a cornerstone of quantitative analysis across scientific and engineering disciplines.
When discussing unconstrained optimization, we examine problems where we aim to minimize a function without
any restrictions on the variables.
In this paper, we study a general nonlinear unconstrained optimization problem.
This means we are free to explore all possible values for our variables without constraints, formulated as:

min
x∈Rn

F(u). (1)

in which F : Rn 7→ R belongs to class C1.
Among numerous iterative methods for solving (1), the conjugate gradient methods are considered optimal.
They generate an iterative sequence of the following form:

uk+1 = uk + λkdk, (2)

where uk represents the current iteration point, λk denotes the step length determined through a line search
procedure along direction dk defined by :

dk =

{
−qk, for k = 1,

−qk + βkdk−1, for k ≥ 2,
. (3)
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where qk stands for the gradient ∇F(uk), and the scalar parameter βk is selected to ensure that dk constitutes the
kth conjugate direction, provided that the objective function is quadratic and the line search is performed exactly
[4].
Different versions of this method differ in the way of selecting βk and they are classified into three major categories:
classical, hybrid and modified methods. Classical nonlinear conjugate gradient methods are HS [19], FR [13], PRP
[25, 26], CD [12], BA [1], LS [23], DY [8] and Wei-Yao-Liu [28]. Their formulas of βk are given by :

βHS
k =

qTk+1yk

dTk yk
, Hestenes− Stiefel (4)

βFR
k =

||qk+1||2

||qk||2
, F letcher −Reeves (5)

βPRP
k =

qTk+1yk

∥qk∥2
, Polak −Ribiere− Polyak (6)

βCD
k =

−||qk+1||2

qTk dk
, F letcher (7)

βBA
k =

||yk||2

dTk yk
, AlBayati−AlAssady (8)

βLS
k =

−qTk+1yk

qTk dk
, Liu− Storey (9)

βDY
k =

∥qk+1∥2

dTk yk
, Dai− Y uan (10)

where yk = (qk+1 − qk) represents the gradient difference.
It is noteworthy that these methods are equivalent when applied to strongly convex quadratic functions under exact
line search.
Note that the convergence behavior of all nonlinear CG methods cited above under strong Wolfe’s rule [29, 30] has
been widely studied by numeros authors [4].
After that, in 2006, Wei et al. [28] introduced a novel variant of CGM, designated as the WYL method.
This approach is a modification of the PRP method, with the parameter given by the following formula:

βWYL
k =

qTk+1

(
qk+1 − ∥qk+1∥

∥qk∥ qk

)
∥qk∥2

, (Wei–Yao–Liu) (11)

In 2011, Huang et al. [20] proposed a modified version of the WYL method, further enhancing its robustness and
global convergence. Hybridization of CGM via convex combinations has emerged as a significant research direction
in optimization science. Recent studies have established strong theoretical foundations for these hybrid methods,
demonstrating that they maintain crucial essential properties such as sufficient descent conditions and convergence
under appropriate line search criteria. This line of research continues to attract considerable scholarly interest, as it
advances the methodology of nonlinear optimization, with applications extending to image restoration, regression
analysis, robot control and portfolio selection. [2, 5, 16, 17, 14, 18]
Various hybridization techniques that combine the WYL method with other formulations have been extensively
documented in the optimization literature. For instance, in 2014, [24] discussed the adaptation of the WYL method
and its variants for multiobjective optimization, enabling the computation of Pareto optimal solutions without
relying on subjective weighting schemes. In 2016, [31] proposed a hybrid method combining the WYL and
Dai–Liao approaches, demonstrating global convergence under Wolfe line search conditions. In 2019, [21] showed
that the hybridization of PRP and WYL methods enhances convergence for a range of optimization problems. In
2024, [2] applied and further modified the WYL formula for robot control, achieving superior efficiency compared
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to the classical version. Most recently, in 2024 [14] introduced a significant hybrid approach that combines the
WYL and CD (Conjugate Descent) methods, where the convex parameter θk is determined using the conjugacy
condition dTk+1yk = 0.
Similarly, numerous BA-based hybrid methods as a hybrid approach that combines the BA and other CGM, in
2020 we cite BA-FR [9] and BA-DY [15] hybrid CGM.
Another notable hybridization, combining BA and HZ methods, was proposed in 2025 [6], demonstrating
promising results.
Some of hese hybrid approaches employ the following parameter formulations:

βWYLPRP
k = max(βPRP

k , βWYL
k ); (12)

βWYLCD
k = θkβ

CD
k + (1− θk)β

WYL
k ; (13)

βBAFR
k = θkβ

BA
k + (1− θk)β

FR
k , (14)

βBADY
k = θkβ

BA
k + (1− θk)β

DY
k , (15)

βBAHZ
k = θkβ

HZ
k + (1− θk)β

BA
k , (16)

All these formulations preserve the descent property under strong Wolfe conditions while demonstrating superior
numerical performance compared to traditional methods. They maintain sufficient descent properties and global
convergence under appropriate conditions.
To effectively combine the strengths of both BA and WYL methods and develop a more efficient algorithm,
where the combination parameter is computed to satisfy the conjugacy condition. These new algorithms generate
sufficient descent directions and exhibit global convergence under strong Wolfe conditions.
We evaluate the method’s performance using the Dolan and Moré performance profile. These experiments include
30 standard benchmark functions selected from [3, 7] and show that RN method outperforms both classical (HS,
FR, PRP and DY CG) and hybrid (BAFR and BADY) methods, particularly for large-scale problems.
The remainder of this manuscript is structured as follows: Section 2 introduces the novel formulation of the
parameter and delineates the corresponding algorithmic framework. Additionally, we provide a comprehensive
analysis of the descent properties exhibited by the derived search direction, followed by a rigorous demonstration
of the algorithm’s global convergence characteristics under strong Wolfe line search conditions.
Section 3 presents extensive numerical experiments evaluating the performance of our algorithm against established
methods in the field. The final section concludes the paper with a summary of our findings.

2. New hybrid CG

In this part, a newly proposed CG method is introduced.
The approach constructs a hybrid CG parameter, βRN

k , as a convex combination of the Al-Bayati & Al-Assady
(BA) and Wei-Yao-Liu (WYL) parameters:

βRN
k = θkβ

BA
k + (1− θk)β

WYL
k . (17)

Note that θk is a scalar parameter bounded by 0 ≤ θk ≤ 1 and here, βBA
k and βWYL

k are given by (11) .
The search direction dRN

k+1 is defined recursively:

dRN
k+1 =

{
−qk+1, for k = 0,

−qk+1 + βRN
k dk, for k ≥ 1,

(18)

where qk = ∇F(uk) denotes the gradient.
The step size λk in the iteration uk+1 = uk + λkdk is determined using the strong Wolfe conditions SWC [29, 30]:

F(uk + λkdk) ≤ F(uk) + ρλkq
T
k dk,

|qTk+1dk| ≤ σ|qTk dk|,
(19)
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with constants 0 < ρ < σ < 1.
It is evident that, if θk = 0 then βRN

k = βWYL
k and if θk = 1 then βRN

k = βBA
k .

We consider two possibilities for selecting the parameter θk:
In this approach, θk is selected to ensure that the conjugacy condition is satisfied at each iteration.
From the recurrence relation in (18), we have:

dBAWY L
k+1 = −qk+1 + βBAWY L

k dk = −qk+1 + θkβ
BA
k dk + (1− θk)β

WYL
k dk,

= −qk+1 + θk
||yk||2

dTk yk
dk + (1− θk)

qTk+1(qk+1 − ∥qk+1∥
∥qk∥ qk)

∥qk∥2
dk.

Multiplying both sides of the recurrence relation above by yk and imposing the conjugacy condition
dTk+1yk = 0 yields

0 = −qTk+1yk + θk
||yk||2

dTk yk
dTk yk + (1− θk)

qTk+1(qk+1 − ∥qk+1∥
∥qk∥ qk)

∥qk∥2
dTk yk,

Simplifying this expression yields:

θk =

qTk+1yk −
qTk+1

(
qk+1 − ∥qk+1∥

∥qk∥ qk

)
∥qk∥2

dTk yk

∥yk∥2 −
qTk+1

(
qk+1 − ∥qk+1∥

∥qk∥ qk

)
∥qk∥2

dTk yk

θk =

qTk+1yk−


∥qk+1∥2−

∥qk+1∥
∥qk∥

(qTk+1qk)

∥qk∥2
dT
k yk



∥yk∥2−


∥qk+1∥2−

∥qk+1∥
∥qk∥

(qT
k+1

qk)

∥qk∥2
dT
k yk



=

∥qk∥2 qTk+1yk−

∥qk+1∥2−
∥qk+1∥
∥qk∥

qTk+1qk

dT
k yk

∥qk∥2 ∥yk∥2−

∥qk+1∥2−
∥qk+1∥
∥qk∥

qTk+1qk

dT
k yk

We obtain :

θrnk =
∥qk∥3 qTk+1yk −

(
∥qk+1∥2∥qk∥ − ∥qk+1∥qTk+1qk

)
dTk yk

∥qk∥3 ∥yk∥2 −
(
∥qk+1∥2∥qk∥ − ∥qk+1∥qTk+1qk

)
dTk yk

To ensure numerical stability, we regularize θRN
k as:

θRN
k =


θrnk , if 0 < θrnk < 1,

0, if θrnk ≤ 0,

1, if θrnk ≥ 1.

(20)
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3. RN ALGORITHM

In this part, we present the RN algorithm.

Algorithm 1: RN CG Algorithm
Step 1.
Select u0 ∈ Rn and 0 < ρ < σ < 1. Calculate F(u0) and q0 = ∇F(u0). Define d0 = −q0.
Step 2.
If ∥qk∥∞ ≤ ϵ, then stop. Otherwise, go to step 3.
Step 3.
Using SWC (19), calculate the stepsize λk, then compute uk+1 = uk + λkdk. Calculate F(uk+1) and
qk+1 = ∇F(uk+1)

Step 4. Calculate θk = θRN
k (20).

Step 5. Calculate βRN
k = θkβ

BA
k + (1− θk)β

WYL
k .

Step 6: : If |qTk+1qk| ≥ 0.2∥qk+1∥2 then set
dRN
k+1 = −qk+1 and λk+1 = 1, else calculate dRN

k+1 = −qk+1 + βkdk.
Step 7: Put k = k + 1 and go to Step 2.

4. Convergence Analysis

Global convergence is established by initially demonstrating the theorem that follows, which proves the sufficient
descent of RN direction.
In this section, we assume that:

Assumption 1
1) Let

Γ = {u ∈ Rn | F(u) ≤ F(u1) }

be bounded.

2) In some neighborhood N of Γ, F ∈ C1 and q = ▽F is Lipschitz continuous, i.e.,

∃L > 0 such that ∥q(u1)− q(u2)∥ ≤ L∥u1 − u2∥, ∀u1, u2 ∈ Γ. (21)

Under Assumption 1, we obtain :

∃B, M > 0 : ∥u∥ ≤ B, and ||q (u) || ≤ M, ∀u ∈ Γ (22)

Theorem 1
The direction generated by RN CG algorithm satisfies the sufficient descent condition:

qTk d
RN
k ≤ −c||qk||2, ∀k ≥ 0. (23)

Proof
We will demonstrate this result using mathematical induction.
If k = 0, then qT0 d

RN
0 = −∥q0∥2, so (23) holds.

On the other hand, for k > 0, we have :

dRN
k+1 := −qk+1 + βRN

k dk

= −qk+1 +
(
(1− θk)β

WYL
k + θkβ

BA
k

)
dk

= (1− θk)(−qk+1 + βWYL
k dk) + θk(−qk+1 + βBA

k dk).
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It follows that:
dRN
k+1 = θkd

BA
k + (1− θk)d

WYL
k .

Multiplying by qTk+1 from the left, we get

qTk+1d
RN
k+1 = θkq

T
k+1d

BA
k+1 + (1− θk) q

T
k+1d

WYL
k+1 . (24)

Firstly if θk = 0, the direction dRN
k becomes identical to the descent direction of WYL, yielding:

dRN
k+1 = dWYL

k+1 = −qk+1 + βWYL
k dk,

where they proved in [28] that

qTk+1d
WYL
k+1 = −qTk+1qk+1 + βWYL

k qTk+1dk

= −∥qk+1∥2 +
qTk+1(qk+1 − ∥qk+1∥

∥qk∥ qk)

∥qk∥2
qTk+1dk

≤ −c1 ∥qk+1∥2 , for all k. (25)

Secondly, if θk = 1, we have :
dRN
k+1 = dBA

k+1 = −qk+1 + βBA
k dk.

The descent property of the BA method was previously established in the literature [9], however, a complete proof
is provided here for completeness and clarity. where they proved in [9] that

qTk+1d
BA
k+1 ≤ −c2∥qk+1∥2 (26)

where c2 = 1− ω > 0.
In fact, let

dBA
k+1 = −qk+1 + βBA

k dk.

Upon left multiplication by qTk+1, it follows that

qTk+1d
BA
k+1 = −qTk+1qk+1 + βBA

k qTk+1dk

= −∥qk+1∥2 +
||yk||2

dTk yk
qTk+1dk for all k.

By invoking the strong Wolfe condition (19), we obtain:

qTk+1dk ≤ σ

1− σ

∥yk∥2

dTk yk
,

Combining this with the Lipschitz condition (21):

qTk+1d
BA
k+1 ≤ −∥qk+1∥2 +

σL2

1− σ
∥sk∥2

Under Assumption 1 (∥sk∥ → 0), there exists ω ∈ (0, 1) such that:

σL2

1− σ
∥sk∥2 ≤ ω∥qk+1∥2

Consequently:
qTk+1d

BA
k+1 ≤ −(1− ω)∥qk+1∥2 = −c2∥qk+1∥2.

where c2 = 1− ω > 0.
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Finally, if 0 < θk < 1, then :
∃ η1, η2 ∈ R : 0 < η1 ≤ θk ≤ η2 < 1, (27)

From formulas (24) and (27), we conclude

qTk+1d
RN
k+1 ≤ η1q

T
k+1d

BA
k+1 + (1− η2) q

T
k+1d

WYL
k+1 ,

Let c = η1c2 + (1− η2) c1, then from (25) and (26) we finally get

qTk+1d
RN
k+1 ≤ −c ∥qk+1∥2 .

Lemma 1
Under Assumption 1, consider any CGM defined by (2) and (3), with step length λk determined through the SWL
(19). If ∑

k≥0

1

∥dk∥2
< ∞,

Then
lim
k→∞

inf ∥qk∥ = 0.

Proof
For the proof, see [4] .

Lemma 2
Assuming that Assumption 1 is satisfied, if dk is a descent direction and λk satisfies

qTk+1dk ≥ σqTk dk, : where : 0 < σ < 1,

then

λk ≥ (1− σ)qTk dk
L|dk|2

. (28)

Proof
For the proof of Lemma 2, refer to the work in [22].

The following theorem establishes the global convergence properties of our proposed method.

Theorem 2
Consider the RN CG algorithm and suppose that assumption 1 holds. Then either qk = 0, for some k, or

lim inf
k→∞

∥qk∥ = 0. (29)

Proof
Consider the RN conjugate gradient method and suppose that Assumption 1 holds. Suppose that qk ̸= 0, for all k.
We prove (29) by contradiction. Assume that (29) does not hold, then

∃ t > 0 : ∥qk∥ ≥ t, ∀ k, (30)

according to the relation (19) and (23), we obtain:

qTk dk > c(1− σ)∥qk∥2 > c(1− σ)t2. (31)

By using the Lipschitz condition, we get:

∥yk∥ = ∥qk+1 − qk∥ ≤ LB, (32)

Stat., Optim. Inf. Comput. Vol. 15, January 2026



R. MELLAL AND N. SELLAMI 387

where B = max{∥x− y∥, x, y ∈ Γ} is the diameter of Γ.
In other hand, let :

∥Yk∥ =

∥∥∥∥qk+1 −
∥qk+1∥
∥qk∥

qk

∥∥∥∥
=

∥∥∥∥qk+1 − qk + qk − ∥qk+1∥
∥qk∥

qk

∥∥∥∥
≤ 2 ∥qk+1 − qk∥
≤ 2LB

We have
dRN
k+1 = −qk+1 + θkβ

BA
k dk + (1− θk)β

WYL
k dk,

since, 0 < θk < 1, we obtain:
∥dRN

k+1∥ ≤ ∥qk+1∥+ (|βBA
k |+ |βWYL

k |)∥dk∥.

We have : ∣∣βBA
k

∣∣ = ||yk||2∣∣dTk yk∣∣ ≤ L2∥s∥2

(1− σ)ct2
≤ L2B2

(1− σ)ct2
. (33)

Otherwise ∣∣βWYL
k

∣∣ =
∣∣∣qTk+1(qk+1 − ∥qk+1∥

∥qk∥ qk)
∣∣∣

∥qk∥2
≤ 2MLB

t2
. (34)

Using the above relations (33) and (34), we obtain:

∥dRN
k+1∥ ≤ ∥qk+1∥+ (|βBA

k |+ |βWYL
k |)∥dk∥ ≤ M +

(
L2B2

(1− σ)ct2
+

2MLB

t2

)
∥sk∥
λ

≤ M + (
LB (LB + 2M(1− σ)c)

(1− σ)ct2
)
B

λ

≤ ζ, for all k

where

ζ = M +
LB2 (LB + 2M(1− σ)c)

(1− σ)cλt2
(35)

Therefore we obtain ∑
k≥0

1

∥dRN
k+1∥2

= +∞. (36)

By applying Lemma 1, we conclude that:
lim inf

k→∞
∥qk∥ = 0. (37)

This contradicts (30) , and thus we have proved (29) .

5. Experimental results

In this section, we evaluate the performance of our proposed RN algorithm for solving unconstrained optimization
problems of the form presented in equation (1).
To assess the effectiveness and convergence characteristics of our RN algorithm, we conducted comprehensive
numerical experiments on a benchmark suite of 30 well-established test problems drawn from [3, 7] given in table
1 . The evaluation encompasses problems of varying complexity across low, medium, and high dimensions, with
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problem sizes ranging from n = 2 to n = 10000.
We compare the performance of our RN method against two classes of conjugate gradient algorithms: classical
conjugate gradient methods (HS, FR, PRP, and DY) [19, 13, 25, 26, 8] and hybrid conjugate gradient methods
(BADY and BAFR) [15, 9], all implemented under the strong Wolfe conditions (19).

Table 1. List of Test Problems with Initial Points Employed in the Computational Framework

No. Test Functions Dimensions Initial Points

1 Rosenbrock 2, 5, 10 (−1.2,−1.2) for n = 2, (1.2,...,1.2) for n > 2
2 Sphere 2 (0.5, 0.5)
3 Sum of Squares 2, 5, 10, 100, 1500, 5000, 10000 (1, 1,...,1)
4 Zakharov 2, 5, 10, 100, 1500, 5000, 10000 (1, 1,...,1)
5 Dixon-Price 2, 5, 10, 1500 (2, 2,...,2)
6 Quadratic Function QF1 2, 5, 10, 100, 1000, 1500, 5000 (1, 1,...,1)
7 Raydan 1 2, 5, 10, 100, 1500, 5000 (0.5, 0.5,...,0.5)
8 Raydan 2 2 (1, 1)
9 Extended Rosenbrock 2, 5, 10, 100, 1000, 1500, 5000 (-1.2, -1.2,...,-1.2)

10 Extended DENSCHNF 2, 5, 10, 100, 1000, 1500, 5000 (1, 1,...,1)
11 Extended Tridiagonal 2, 5, 10, 1500 (0, 0,...,0)
12 Extended Himmelblau 2, 5, 10, 100, 1000, 1500 (1, 1,...,1)
13 DBVF 2, 5, 10 (0.1, 0.1,...,0.1)
14 BRYBND 2, 5, 10, 100 (-1, -1,...,-1)
15 Perturbed Quadratic 2, 5, 10, 100 (0.5, 0.5,...,0.5)
16 TRIDIA 2, 5, 10, 100 (1, 1,...,1)
17 Extended Penalty 2, 5, 10, 100, 1000 (1, 1,...,1)
18 BALF 2, 5, 10, 100, 1000 (0.5, 0.5,...,0.5)
19 Diagonal 1 2, 5, 10, 100 (2, 2,...,2)
20 Diagonal 2 2, 5, 10, 100 (2, 2,...,2)
21 Diagonal 3 2, 5, 10, 100, 1000 (0, 0,...,0)
22 Diagonal 4 2, 5, 10, 100, 1000 (1, 1,...,1)
23 Extended Diagonal 100, 1000 (1, 1,...,1)
24 Beale 2, 1500 (1, 1)
25 Booth 2, 1500 (0, 0)
26 Ackley 2, 5, 10 (2, 2,...,2)
27 Rastrigin 2 (1.5, 1.5)
28 Griewank 2, 5, 10 (10, 10,...,10)
29 Matyas 2, 5 (1, 1) for n=2, modified for n¿2
30 Schwefel 2, 5, 10, 1500 (400, 400,...,400)

The codes are written in Python 3.13 and run on a Lenovo Thinkpad PC with AMD Ryzen 7 PRO 5850U Processor
with Radeon Graphics 1.90 GHz and 16.0 GB RAM and Windows 10 Professional 64 bits operating system.
We stop the program when ∥qk∥∞ < ϵ holds or the number of iterations atteind 5000.
We restart by taking the direction of the steepest descent if either the denominator of β is zero or the Powell restart
criterion [27] | qTk+1gk |≥ 0.2 ∥ qk+1 ∥2 is satisfied.
We used the parameters values of ρ = 10−4 and σ = 0.9 for the SWC.
Numerical results are compared based on the number of iterations, CPU time and the number of evaluation of the
function and they are given in Tables 2, 3 and 4 whose columns have the following meanings:
Function : the name of the function test problem;
Dim : the dimension of the problem;
ϵ : stop criteria;
NOI : the number of iterations;
NFEV : denotes the number of function evaluation.
CPU : denotes the total CPU time which should be taken to compute all of these problems.
To rigorously assess and compare the performance of the tested optimization methods, we adopt the performance
profiles of Dolan and Moré [11] as our primary evaluation metric. This approach provides a comprehensive and
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statistically robust means of comparing the relative efficiency and reliability of a set of solvers over a collection
of benchmark problems. Let S denote the set of solvers, P the set of test problems, ns the number of solvers,
and np the number of problems. For each problem p ∈ P and each solver s ∈ S, let ap,s represent the numerical
performance measure of interest, such as the number of iterations or CPU time required to solve problem p with
solver s. The performance ratio rp,s for solver s on problem p is defined as:

rp,s =
ap,s

min{ap,s : s ∈ S}
.

By definition, rp,s ≥ 1 for all p and s, and a value of 1 indicates that solver s achieved the best performance for
that particular problem.

The performance profile for solver s is the cumulative distribution function:

σs(λ) =
1

np
|{p ∈ P : rp,s ≤ λ}| ,

where λ ≥ 1 is a scaling factor and σs(λ) represents, for each λ, the fraction of problems where the performance
ratio of solver s does not exceed λ. When plotted, these profiles visually convey the comparative strengths of the
solvers: a curve higher and to the left indicates that the solver was able to solve a larger proportion of problems
closer to the best possible performance.

6. Commentaires

Our numerical experiments conducted on 30 test functions listed in table (1) and selected from [3, 7], are
summarized in in Tables (2), (3), (4) and (5).
The results show that the RN method demonstrates a remarkable competitive advantage over all tested optimization
algorithms.
When compared to classical conjugate gradient methods, RN achieves a success rate of 97.3%, significantly
outperforming Fletcher-Reeves (FR) at 82.1%, Polak-Ribiere-Polyak (PRP) at 85.5%, Hestenes-Stiefel (HS) at
89.0%, and Dai-Yuan (DY) at 88.2%. The performance profiles reveal that RN’s curve consistently maintains the
highest position across all performance ratios λ, indicating superior efficiency in terms of number of iterations,
CPU time and function evaluations.
Against hybrid methods, RN establishes clear dominance with its 97.3% success rate compared to BAFR’s 91.6%
and BADY’s 78.4%. The method’s exceptional performance is particularly evident on challenging problems such
as the Rosenbrock function, where RN successfully converged across all dimensions while PRP completely failed,
and on high-dimensional instances of Sum of Squares and Zakharov functions where classical methods frequently
exceeded the 5000 iteration limit. Analysis using the performance profile of More and Dolan given by figures (1a)
and (1b) which evaluates methods based on the number of iterations, number of evaluation functions and CPU,
reveals that RN consistently maintains the leading curve and successfully solves the majority of test functions,
across both classical and hybrid conjugate gradient methods. When compared with classical methods HS, FR,
PRP and DY, RN demonstrates the highest curve position across all metrics, achieving optimal performance
on the largest proportion of BAFR demonstrates intermediate performance with approximately 91.6 % success
rate, while BADY shows the poorest performance among hybrid methods at 78% success rate. The performance
profiles validate that RN achieves the optimal combination of efficiency and reliability, confirming its 97.3%
success rate and establishing it as the most effective method for unconstrained optimization across diverse problem
landscapes. Despite its exceptional performance, the RN method presents certain limitations including increased
computational complexity per iteration due to the dynamic calculation of the convex parameter θ through the
conjugacy condition, and potential sensitivity to parameter selection in specific problem instances. Additionally, the
hybrid approach requires greater implementation complexity and marginally higher memory overhead compared
to classical conjugate gradient methods.
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(a) Performance Profile RN vs Classical CG

(b) Performance Profile RN vs Hybrid CG

Figure 1. Performance Profile of RN based on NOI, CPU and NFEV

7. Conclusion

In this work, we have introduced and analyzed a novel hybrid conjugate gradient method denoted RN CGM.
The RN method is based on a convex combination of the BA and WYL methods, with its parameter specifically
chosen to satisfy the conjugacy condition. We provided a rigorous convergence analysis under SW conditions
and demonstrated that the proposed algorithm satisfy the sufficient descent property, thereby ensuring global
convergence. Extensive numerical experiments on a diverse set of test functions revealed that the RN method,
in particular, outperforms several established algorithms including classical (HS, FR, PRP and DY) and hybrid
CGM (BAFR and BADY) in terms of both efficiency and robustness. Performance profiles further highlighted
RN’s superiority with respect to success rate, iteration count, and computational time.
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Table 2. Comparison of: FR vs PRP vs HS vs DY vs RN Methods on 30 Test Functions

Function Dim ϵ FR PRP HS DY RN
NOI NFEV CPU NOI NFEV CPU NOI NFEV CPU NOI NFEV CPU NOI NFEV CPU

Rosenbrock
2 10−6 212 21202 0.0567 Failed 500001 1.2545 67 6702 0.0260 151 15102 0.0358 104 10402 0.0246
5 10−6 218 21802 0.0854 Failed 500001 1.6564 118 11802 0.0366 320 32002 0.1057 187 18702 0.0582
10 10−6 899 89902 0.3721 Failed 500001 1.7546 177 17702 0.0560 489 48902 0.2097 180 18002 0.0685

Sphere 2 10−6 1 102 0.0001 1 102 0.0001 1 102 0.0001 1 102 0.0001 1 102 0.0001

SumSquares

2 10−6 33 3302 0.0014 2 202 0.0001 19 1902 0.0009 18 1802 0.0007 2 202 0.0001
5 10−6 54 5402 0.0026 32 3202 0.0028 68 6802 0.0053 35 3502 0.0027 32 3202 0.0038
10 10−6 113 11302 0.0105 60 6002 0.0040 70 7002 0.0048 44 4402 0.0029 34 3402 0.0024

100 10−6 Failed 20001 0.1359 Failed 20001 0.1126 100 10002 0.0546 99 9902 0.0547 141 14102 0.0807
1500 10−1 353 35302 4.6787 Failed 500001 458.0429 177 17702 2.0455 157 15702 1.8062 229 22902 2.7073
5000 10−1 464 46402 32.52 Failed 100001 671.23 335 33502 21.24 326 32602 22.46 386 38602 24.49
10000 10−1 814 81402 211.10 Failed 100001 1686.48 543 54302 147.02 472 47202 133.46 530 53002 145.42

Zakharov

2 10−6 32 3202 0.0054 10 1002 0.0022 15 1502 0.0025 18 1802 0.0029 10 1002 0.0020
5 10−6 38 3802 0.0075 111 11102 0.0230 145 14502 0.0336 25 2502 0.0065 90 9002 0.0208
10 10−6 67 6702 0.0191 675 67502 0.2066 57 5702 0.0124 102 10202 0.0296 154 15402 0.0429

100 10−6 Failed 20001 0.1316 Failed 20001 0.1249 Failed 20001 0.7076 Failed 20001 0.1323 152 15202 0.0998
1500 10−1 222 22202 0.3224 Failed 500001 26.1667 30 3002 0.0593 3469 346902 4.6746 195 19502 0.2659
5000 10−1 99 9902 0.42 Failed 100001 13.19 Failed 100001 12.44 Failed 100001 4.04 220 22002 0.87
10000 10−1 169 16902 1.83 Failed 100001 53.92 Failed 100001 33.51 83 8302 1.05 574 57402 23.71

Dixon-Price
2 10−6 91 9102 0.0181 99 9902 0.0169 25 2502 0.0094 51 5102 0.0100 30 3002 0.0059
5 10−6 1027 102702 0.3053 140 14002 0.0220 97 9702 0.0178 196 19602 0.0440 53 5302 0.0075
10 10−6 134 13402 0.0328 168 16802 0.0317 75 7502 0.0200 225 22502 0.0639 81 8102 0.0173

1500 10−1 Failed 500001 269.31 Failed 500001 2162.79 1801 180102 73.02 619 61902 26.89 539 53902 21.93

Quadratic-QF1

2 10−6 10 1002 0.0011 9 902 0.0008 17 1702 0.0016 10 1002 0.0011 9 902 0.0018
5 10−6 11 1102 0.0011 21 2102 0.0020 32 3202 0.0036 10 1002 0.0010 21 2102 0.0023
10 10−6 28 2802 0.0041 13 1302 0.0028 41 4102 0.0077 18 1802 0.0027 13 1302 0.0029

100 10−6 67 6702 0.1131 62 6202 0.1167 142 14202 0.2639 38 3802 0.0641 59 5902 0.1102
1000 10−3 127 12702 4.2392 Failed 20001 6.2574 Failed 20001 6.8460 111 11102 3.1244 150 15002 4.6312
1500 10−1 194 19402 26.9728 Failed 20001 19.7245 151 15102 15.7204 149 14902 15.0424 127 12702 12.4793
5000 10−1 213 21302 84.17 137 13702 103.59 118 11802 39.54 124 12402 45.51 167 16702 59.52

Raydan1

2 10−6 28 2802 0.0016 8 802 0.0005 99 9902 0.0045 14 1402 0.0007 8 802 0.0005
5 10−6 92 9202 0.0089 27 2702 0.0021 65 6502 0.0050 27 2702 0.0019 27 2702 0.0022
10 10−6 38 3802 0.0061 52 5202 0.0079 73 7302 0.0106 29 2902 0.0041 30 3002 0.0046

100 10−6 187 18702 0.4737 Failed 20001 0.4320 94 9402 0.1927 70 7002 0.1326 131 13102 0.2788
1500 10−1 186 18602 9.36 177 17702 14.26 134 13402 6.16 133 13302 6.01 154 15402 7.09
5000 10−1 496 49602 193.80 Failed 100001 5557.29 256 25602 67.67 283 28302 77.68 230 23002 63.30

Raydan2 2 10−6 1 102 0.0002 1 102 0.0001 1 102 0.0001 1 102 0.0001 1 102 0.0002

Extended Rosenbrock

2 10−6 212 21202 0.0368 Failed 500001 0.7873 67 6702 0.0196 151 15102 0.0244 104 10402 0.0149
5 10−6 85 8502 0.0113 Failed 500001 0.7033 178 17802 0.0302 224 22402 0.0358 778 77802 0.1169
10 10−6 509 50902 0.1286 Failed 500001 1.0247 69 6902 0.0232 156 15602 0.0326 104 10402 0.0202

100 10−6 Failed 20001 0.3212 Failed 20001 0.2462 67 6702 0.1393 151 15102 0.2010 104 10402 0.1266
1000 10−3 179 17902 2.5359 Failed 20001 2.5217 69 6902 1.4614 165 16502 2.2148 104 10402 1.2666
1500 10−1 Failed 20001 10.5158 200 20001 8.3525 69 6902 4.8984 104 10402 4.2498 162 16202 7.1407
1500 10−1 24 2402 0.46 23 2302 1.40 51 5102 1.94 127 12702 2.58 59 5902 1.04
5000 10−1 24 2402 2.18 29 2902 7.98 51 5102 10.44 128 12802 13.53 59 5902 7.13

Extended DENSCHNF

2 10−6 19 1902 0.0014 35 3502 0.0022 23 2302 0.0031 214 21402 0.0203 30 3002 0.0029
5 10−6 19 1902 0.0013 37 3702 0.0025 23 2302 0.0033 220 22002 0.0222 32 3202 0.0025
10 10−6 22 2202 0.0024 37 3702 0.0042 23 2302 0.0056 232 23202 0.0426 32 3202 0.0039

100 10−6 16 1602 0.0125 35 3502 0.0306 21 2102 0.0169 Failed 20001 0.2570 30 3002 0.0263
1000 10−3 22 2202 0.2045 37 3702 0.3557 23 2302 0.4286 Failed 20001 2.7050 32 3202 0.2829
1500 10−1 10 1002 0.12 12 1202 0.86 9 902 0.12 67 6702 1.30 8 802 0.11
5000 10−1 11 1102 0.65 12 1202 4.83 9 902 0.64 75 7502 7.36 8 802 0.55

Extended Tridiagonal

2 10−6 1 102 0.0001 1 102 0.0001 1 102 0.0001 1 102 0.0001 1 102 0.0001
5 10−6 53 5302 0.0074 121 12102 0.0258 225 22502 0.0320 39 3902 0.0050 121 12102 0.0171
10 10−6 1288 128802 0.6668 1638 163802 0.6375 121 12102 0.0405 100 10002 0.0330 217 21702 0.0757

1500 10−1 123 12302 1346.25 37 3702 1535.48 71 7102 610.83 88 8802 723.28 35 3502 317.18

Extended Himmelblau

2 10−6 28 2802 0.0032 21 2102 0.0024 32 3202 0.0049 62 6202 0.0068 18 1802 0.0023
5 10−6 29 2902 0.0032 22 2202 0.0026 32 3202 0.0049 62 6202 0.0070 18 1802 0.0022
10 10−6 31 3102 0.0055 22 2202 0.0042 32 3202 0.0080 62 6202 0.0113 20 2002 0.0039

100 10−6 28 2802 0.0356 21 2102 0.0292 30 3002 0.0546 60 6002 0.0825 18 1802 0.0255
1000 10−3 31 3102 0.5807 22 2202 0.4318 32 3202 0.8910 20 2002 0.4193 62 6202 1.2571
1500 10−1 16 1602 0.25 14 1402 0.43 26 2602 0.59 27 2702 0.43 11 1102 0.18

DBVF

2 10−6 27 2702 0.0068 66 6602 0.0190 38 3802 0.0152 38 3802 0.0101 62 6202 0.0162
5 10−6 304 30402 0.1744 1583 158302 0.8913 116 11602 0.0748 184 18402 0.0966 189 18902 0.0975
10 10−6 812 81202 0.9963 Failed 500001 5.8602 480 48002 0.5284 705 70502 0.8860 679 67902 0.7837

BRYBND

2 10−6 12 1202 0.0020 15 1502 0.0025 28 2802 0.0097 8 802 0.0014 15 1502 0.0029
5 10−6 Failed 500001 3.0214 118 11802 0.0331 209 20902 0.0653 2884 288402 1.5261 118 11802 0.0346
10 10−6 Failed 500001 8.0405 124 12402 0.0849 173 17302 0.1351 Failed 500001 7.7655 119 11902 0.0866

100 10−6 Failed 20001 14.5154 120 12002 4.4273 125 12502 5.0962 Failed 20001 14.7362 103 10302 3.9309

PerturbedQuad

2 10−6 28 2802 0.0014 4 402 0.0002 18 1802 0.0012 27 2702 0.0013 4 402 0.0003
5 10−6 38 3802 0.0026 30 3002 0.0018 64 6402 0.0052 35 3502 0.0038 30 3002 0.0059
10 10−6 40 4002 0.0051 56 5602 0.0088 66 6602 0.0115 31 3102 0.0032 35 3502 0.0044

100 10−6 Failed 20001 0.2613 Failed 20001 0.2246 117 11702 0.1357 92 9202 0.0931 135 13502 0.1482

TRIDIA

2 10−6 Failed 500001 1.2554 39 3902 0.0035 25 2502 0.0048 164 16402 0.0171 29 2902 0.0046
5 10−6 312 31202 0.0865 111 11102 0.0245 57 5702 0.0124 256 25602 0.0715 52 5202 0.0113
10 10−6 1447 144702 1.5322 358 35802 0.2010 79 7902 0.0465 2006 200602 1.8281 85 8502 0.0441

100 10−6 Failed 20001 12.2863 59 5902 2.1308 69 6902 2.6164 Failed 20001 11.5398 40 4002 1.4651

ExtendedPenalty

2 10−6 1 102 0.0002 1 102 0.0001 1 102 0.0001 1 102 0.0001 1 102 0.0001
100 10−6 2 202 0.0010 2 202 0.0010 3 302 0.0146 2 202 0.0009 2 202 0.0010
1000 10−3 9 902 0.0800 5 502 0.0329 9 902 1.0982 5 502 0.0493 10 1002 0.0704
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Table 3. Comparison of: FR vs PRP vs HS vs DY vs RN Methods on 30 Test Functions

Function Dim ϵ FR PRP HS DY RN
NOI NFEV CPU NOI NFEV CPU NOI NFEV CPU NOI NFEV CPU NOI NFEV CPU

BALF

2 10−6 9 902 0.0006 10 1002 0.0007 18 1802 0.0057 23 2302 0.0012 10 1002 0.0007
5 10−6 35 3502 0.0031 12 1202 0.0013 23 2302 0.0022 18 1802 0.0016 12 1202 0.0012
10 10−6 9 902 0.0012 11 1102 0.0018 20 2002 0.0150 24 2402 0.0028 11 1102 0.0020
100 10−6 9 902 0.0080 10 1002 0.0095 18 1802 0.1193 22 2202 0.0171 10 1002 0.0095

1000 10−3 9 902 0.1901 11 1102 0.1993 20 2002 3.4014 11 1102 0.2447 24 2402 0.4223

Diagonal1

2 10−6 33 3302 0.0011 2 202 0.0001 19 1902 0.0008 18 1802 0.0006 2 202 0.0001
5 10−6 54 5402 0.0032 32 3202 0.0016 68 6802 0.0035 35 3502 0.0017 32 3202 0.0019
10 10−6 113 11302 0.0107 60 6002 0.0051 70 7002 0.0056 44 4402 0.0033 34 3402 0.0028
100 10−6 Failed 20001 0.1500 Failed 20001 0.1274 100 10002 0.0642 99 9902 0.0604 125 12502 0.0800

Diagonal2

2 10−6 18 1802 0.0010 8 802 0.0006 21 2102 0.0035 14 1402 0.0008 8 802 0.0007
5 10−6 78 7802 0.0119 31 3102 0.0042 33 3302 0.0051 24 2402 0.0031 31 3102 0.0044
10 10−6 60 6002 0.0182 56 5602 0.0152 66 6602 0.0185 32 3202 0.0086 37 3702 0.0183
100 10−6 152 15202 0.7901 Failed 20001 0.7612 118 11802 0.4500 121 12102 0.6386 144 14402 0.5248

Diagonal4

2 10−6 66 6602 0.0058 2 202 0.0001 80 8002 0.0181 64 6402 0.0093 2 202 0.0002
5 10−6 71 7102 0.0074 81 8102 0.0151 81 8102 0.0198 68 6802 0.0080 81 8102 0.0155
10 10−6 73 7302 0.0103 86 8602 0.0250 86 8602 0.0213 68 6802 0.0111 86 8602 0.0214
100 10−6 63 6302 0.0283 76 7602 0.0676 73 7302 0.0655 57 5702 0.0251 76 7602 0.0700

1000 10−3 69 6902 0.7038 84 8402 1.6597 75 7502 1.5925 82 8202 1.6060 66 6602 0.7537

ExtendedDiag 100 10−6 64 6402 0.0748 72 7202 0.1885 74 7402 0.1899 62 6202 0.0748 72 7202 0.1893
1000 10−3 74 7402 2.2958 82 8202 5.2970 84 8402 5.0847 82 8202 5.3388 72 7202 2.3409

Beale 2 10−6 55 5502 0.0057 708 70802 0.0588 63 6302 0.0131 54 5402 0.0043 117 11702 0.0104
1500 10−1 9 902 0.0027 21 2102 0.0137 25 2502 0.0129 9 902 0.0011 7 702 0.0012

Booth 2 10−6 44 4402 0.0030 39 3902 0.0019 17 1702 0.0008 29 2902 0.0021 25 2502 0.0018
1500 10−1 7 702 0.0009 6 602 0.0007 6 602 0.0007 10 1002 0.001 10 1002 0.0011

Ackley

2 10−6 18 1802 0.0416 25 2502 0.0297 45 4502 0.0765 12 1202 0.0079 25 2502 0.0208
5 10−6 8 802 0.0032 11 1102 0.0054 21 2102 0.0411 8 802 0.0036 11 1102 0.0033
10 10−6 8 802 0.0024 11 1102 0.0034 21 2102 0.0564 7 702 0.0041 11 1102 0.0035

Rastrigin 2 10−6 1 102 0.0002 1 102 0.0001 1 102 0.0001 1 102 0.0001 1 102 0.0001

Griewank

2 10−6 602 60202 0.1511 25 2502 0.0027 26 2602 0.0032 Failed Failed Failed 26 2602 0.0033
5 10−6 830 83002 0.2685 52 5202 0.0073 50 5002 0.0080 696 69602 0.1685 43 4302 0.0065
10 10−6 Failed Failed Failed 125 12502 0.0483 124 12402 0.0265 Failed Failed Failed 127 12702 0.0368

Matyas
2 10−6 52 5202 0.0014 87 8702 0.0071 87 8702 0.0102 42 4202 0.0018 87 8702 0.0126
5 10−6 52 5202 0.0021 87 8702 0.0106 87 8702 0.0075 42 4202 0.0010 87 8702 0.0075

Schwefel

2 10−6 24 2402 0.0023 55 5502 0.0039 55 5502 0.0052 14 1402 0.0008 55 5502 0.0056
5 10−6 25 2502 0.0026 57 5702 0.0047 57 5702 0.0049 14 1402 0.0016 57 5702 0.0051
10 10−6 25 2502 0.0039 58 5802 0.0078 58 5802 0.0079 14 1402 0.0020 58 5802 0.0085

1500 10−1 12 1202 0.19 27 2702 0.41 27 2702 0.41 7 702 0.11 27 2702 0.43
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Table 4. Performance Comparison: BADY vs BAFR vs RN Methods (30 Test Functions)

Function Dim ϵ BADY BAFR RN
NOI NFEV CPU NOI NFEV CPU NOI NFEV CPU

Rosenbrock
2 10−6 Failed 500001 2.81 434 43402 0.12 104 10402 0.02
5 10−6 Failed 500001 3.83 218 21802 0.09 187 18702 0.08
10 10−6 Failed 500001 3.91 899 89902 0.35 180 18002 0.06

Sphere 2 10−6 1 102 0.0001 1 102 0.0001 1 102 0.0001

SumSquares

2 10−6 34 3402 0.001 33 3302 0.002 2 202 0.0001
5 10−6 254 25402 0.02 54 5402 0.003 32 3202 0.003
10 10−6 99 9902 0.009 113 11302 0.01 34 3402 0.003

100 10−6 251 25102 0.16 255 25502 0.19 155 15502 0.11
1500 10−1 311 31102 9.99 217 21702 6.99 229 22902 7.28
2000 10−1 418 41802 18.7606 426 42602 19.4882 381 38102 17.9099

10000 10−1 603 60302 174.94 623 62302 185.14 530 53002 147.20

Zakharov

2 10−6 1071 107102 0.35 32 3202 0.004 10 1002 0.002
5 10−6 Failed 500001 2.60 38 3802 0.009 90 9002 0.02
10 10−6 63 6302 0.02 69 6902 0.02 154 15402 0.04

100 10−6 Failed 500001 5.94 145 14502 0.09 163 16302 0.12
2000 10−1 257 25702 1.0337 203 20302 0.8637 520 52002 2.0222

10000 10−1 170 17002 2.20 460 46002 5.41 574 57402 9.41

Dixon-Price

2 10−6 Failed 500001 1.77 91 9102 0.01 30 3002 0.004
5 10−6 4560 456002 1.88 1027 102702 0.32 53 5302 0.01
10 10−6 617 61702 0.21 134 13402 0.03 81 8102 0.03

100 10−6 Failed 500001 25.58 Failed 500001 19.47 1413 141302 2.89
1500 10−1 743 74302 81.50 424 42402 46.38 539 53902 58.86

Quadratic-QF1

2 10−6 10 1002 0.0008 10 1002 0.001 9 902 0.0007
5 10−6 12 1202 0.001 11 1102 0.001 21 2102 0.002
10 10−6 29 2902 0.004 28 2802 0.004 13 1302 0.003

100 10−6 67 6702 0.14 77 7702 0.15 71 7102 0.14
1500 10−1 27 2702 1.19 27 2702 1.16 27 2702 1.16
1500 10−1 62 6202 7.66 60 6002 7.46 59 5902 7.19

Raydan1

2 10−6 380 38002 0.05 28 2802 0.001 8 802 0.0004
5 10−6 145 14502 0.03 92 9202 0.01 27 2702 0.004
10 10−6 35 3502 0.006 38 3802 0.006 30 3002 0.005

100 10−6 Failed 500001 151.27 Failed 500001 141.48 191 19102 1.64
1500 10−1 203 20302 27.45 183 18302 24.82 154 15402 20.31

Raydan2 2 10−6 1 102 0.0001 1 102 0.0002 1 102 0.0002

Extended Rosenbrock

2 10−6 Failed 500001 1.81 434 43402 0.06 104 10402 0.02
5 10−6 Failed 500001 2.66 85 8502 0.02 778 77802 0.14
10 10−6 Failed 500001 3.12 493 49302 0.15 104 10402 0.02

100 10−6 Failed 500001 22.13 550 55002 0.98 106 10602 0.13
1500 10−1 74 7402 3.50 122 12202 5.79 59 5902 2.74

Extended DENSCHNF

2 10−6 25 2502 0.002 19 1902 0.002 30 3002 0.003
5 10−6 25 2502 0.002 19 1902 0.001 32 3202 0.002
10 10−6 26 2602 0.003 22 2202 0.003 32 3202 0.004

100 10−6 28 2802 0.03 33 3302 0.03 36 3602 0.04
1500 10−1 8 802 0.28 8 802 0.29 8 802 0.29

Extended Tridiagonal

2 10−6 1 102 0.0002 1 102 0.0002 1 102 0.0001
5 10−6 30 3002 0.004 53 5302 0.008 121 12102 0.02
10 10−6 Failed 500001 4.88 1256 125602 0.67 217 21702 0.08

100 10−6 Failed 500001 342.92 2920 292002 123.67 2891 289102 85.87
1500 10−1 33 3302 3455.82 31 3102 593.45 35 3502 638.09

Extended Himmelblau

2 10−6 34 3402 0.003 28 2802 0.003 18 1802 0.002
5 10−6 34 3402 0.01 29 2902 0.005 18 1802 0.004
10 10−6 35 3502 0.007 31 3102 0.006 20 2002 0.004

100 10−6 37 3702 0.07 32 3202 0.06 21 2102 0.04
1500 10−1 11 1102 0.61 11 1102 0.61 11 1102 0.60

DBVF

2 10−6 40 4002 0.008 27 2702 0.007 62 6202 0.01
5 10−6 Failed 500001 4.50 310 31002 0.24 189 18902 0.12
10 10−6 Failed 500001 8.03 807 80702 1.06 679 67902 0.84
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Table 5. Performance Comparison: BADY vs BAFR vs RN Methods (30 Test Functions)

Function Dim ϵ BADY BAFR RN
NOI NFEV CPU NOI NFEV CPU NOI NFEV CPU

BRYBND

2 10−6 11 1102 0.001 12 1202 0.002 15 1502 0.002
5 10−6 Failed 500001 7.18 Failed 500001 3.44 118 11802 0.04

10 10−6 Failed 500001 14.54 Failed 500001 8.09 119 11902 0.08
100 10−6 Failed 500001 741.24 Failed 500001 511.04 124 12402 5.91
1500 10−1 43 4302 1021.13 33 3302 742.60 47 4702 1116.57

PerturbedQuad

2 10−6 43 4302 0.002 28 2802 0.001 4 402 0.0004
5 10−6 386 38602 0.06 38 3802 0.004 30 3002 0.002

10 10−6 48 4802 0.006 40 4002 0.004 35 3502 0.004
100 10−6 244 24402 0.41 248 24802 0.38 156 15602 0.17

TRIDIA

2 10−6 36 3602 0.004 Failed 500001 1.07 29 2902 0.003
5 10−6 Failed 500001 5.27 314 31402 0.10 52 5202 0.02

10 10−6 Failed 500001 10.79 1470 147002 1.51 85 8502 0.05
100 10−6 Failed 500001 685.82 1374 137402 100.42 44 4402 2.42

ExtendedPenalty 10 10−6 1 102 0.0001 1 102 0.0002 1 102 0.0001
100 10−6 2 202 0.001 2 202 0.002 3 302 0.002

BALF

5 10−6 32 3202 0.004 35 3502 0.004 12 1202 0.002
10 10−6 9 902 0.001 9 902 0.001 11 1102 0.002
100 10−6 9 902 0.02 10 1002 0.01 12 1202 0.02

Diagonal1

2 10−6 34 3402 0.001 33 3302 0.001 2 202 0.0001
5 10−6 254 25402 0.03 54 5402 0.006 32 3202 0.003

10 10−6 99 9902 0.01 113 11302 0.01 34 3402 0.003
100 10−6 251 25102 0.24 255 25502 0.30 133 13302 0.12

Diagonal2

2 10−6 16 1602 0.001 18 1802 0.001 8 802 0.0007
5 10−6 44 4402 0.006 78 7802 0.02 31 3102 0.004

10 10−6 Failed 500001 25.79 60 6002 0.02 37 3702 0.01
100 10−6 Failed 500001 350.31 Failed 500001 324.99 205 20502 3.71

Diagonal4

2 10−6 67 6702 0.006 66 6602 0.006 2 202 0.0001
5 10−6 70 7002 0.01 71 7102 0.008 81 8102 0.02

10 10−6 72 7202 0.01 73 7302 0.01 86 8602 0.02
100 10−6 80 8002 0.10 83 8302 0.10 96 9602 0.21

ExtendedDiag 100 10−6 83 8302 0.27 84 8402 0.31 92 9202 0.59

Beale 5 10−6 Failed 500001 7.88 55 5502 0.01 117 11702 0.01
1500 10−1 13 1302 0.004 7 702 0.003 7 702 0.002

Booth 5 10−6 23 2302 0.001 44 4402 0.002 25 2502 0.001
1500 10−1 10 1002 0.002 9 902 0.002 10 1002 0.002

10000 10−1 10 1002 0.008 9 902 0.005 10 1002 0.006

Ackley

2 10−6 12 1202 0.01 18 1802 0.03 25 2502 0.02
5 10−6 8 802 0.003 8 802 0.003 11 1102 0.003

10 10−6 8 802 0.003 8 802 0.003 11 1102 0.004
Rastrigin 2 10−6 1 102 0.0001 1 102 0.0001 1 102 0.0001

Griewank

2 10−6 2275 227502 0.79 602 60202 0.14 26 2602 0.004
5 10−6 Failed 500001 3.45 830 83002 0.27 43 4302 0.007

10 10−6 Failed 500001 19.14 Failed 500001 5.18 127 12702 0.04
1500 10−1 6 602 4.21 6 602 3.98 6 602 4.06
2000 10−1 7 702 6.0804 7 702 6.1092 7 702 6.2357

10000 10−1 13 1302 57.82 13 1302 58.23 13 1302 58.02

Matyas
2 10−6 51 5102 0.002 52 5202 0.002 87 8702 0.008
5 10−6 51 5102 0.002 52 5202 0.002 87 8702 0.01

Schwefel

5 10−6 24 2402 0.002 25 2502 0.003 57 5702 0.006
10 10−6 25 2502 0.004 25 2502 0.004 58 5802 0.008

1500 10−1 27 2702 1.19 27 2702 1.16 27 2702 1.16
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25. E. Polak, G. Ribiere, Note sur la convergence des méthodes de directions conjuguées, Rev. Fran. Infor. Rech. Oper. 16, 35-43, 1969.
26. B. T. Polyak, The conjugate gradient method in extreme problems, U.S.S.R. Comput. Math. Phys. 9, 94-112, 1969.
27. M. J. D. Powell, Restart procedures of the conjugate gradient method, Math. Program. 2, 241–254, 1977.
28. Z. Wei, S. Yao, L. Liu A new conjugate gradient method for unconstrained optimiz. Applied Mathematics and Computation, 2006
29. P. Wolfe, Convergence conditions for ascent methods, SIAM Rev. 11, 226-235, 1969.
30. P. Wolfe, Convergence conditions for ascent methods. II: Some corrections, SIAM Rev. 13, 185-188, 1971.
31. S. Yao, B. Qin, A hybrid Dai–Liao and Wei–Yao–Liu conjugate gradient method for unconstrained optimization, Journal of

Computational and Applied Mathematics, 2016.

Stat., Optim. Inf. Comput. Vol. 15, January 2026


	1 Introduction
	2 New hybrid CG
	3 RN ALGORITHM
	4 Convergence Analysis
	5 Experimental results
	6 Commentaires
	7 Conclusion

