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Abstract We introduce a novel hybrid conjugate gradient method for unconstrained optimization, combining the AlBayati-
AlAssady and Wei-Yao-Liu approaches, where the convex parameter is determined using the conjugacy condition. Through
rigorous theoretical analysis, we establish that the proposed method guarantees sufficient descent properties and achieves
global convergence under the strong Wolfe conditions. Using the performance profile of Dolan and Moré, we confirm that
our method, denoted as RN, consistently outperforms both classical (HS, FR, PRP and DY CG) and hybrid (BAFR and
BADY) methods, particularly for large-scale problems.
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1. Introduction

Optimization, defined as the systematic process of identifying extremal values of mathematical functions,
constitutes a cornerstone of quantitative analysis across scientific and engineering disciplines.
When discussing unconstrained optimization, we examine problems where we aim to minimize a function without
any restrictions on the variables.
In this paper, we study a general nonlinear unconstrained optimization problem.
This means we are free to explore all possible values for our variables without constraints, formulated as:
min F(u). (1)
zER?
in which F : R — R belongs to class C*.

Among numerous iterative methods for solving (1), the conjugate gradient methods are considered optimal.
They generate an iterative sequence of the following form:

Ug1 = Uk + Apdy, (2)

where wu; represents the current iteration point, A\; denotes the step length determined through a line search
procedure along direction d, defined by :

—q, fork =1,
dp= ¢ " . 3)
—qi + Brdi—1, fork > 2,
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where ¢, stands for the gradient V.F(uy), and the scalar parameter 3y, is selected to ensure that dj, constitutes the
k™ conjugate direction, provided that the objective function is quadratic and the line search is performed exactly
[4].

Different versions of this method differ in the way of selecting 3, and they are classified into three major categories:
classical, hybrid and modified methods. Classical nonlinear conjugate gradient methods are HS [19], FR [13], PRP
[25, 26], CD [12], BA [1], LS [23], DY [8] and Wei-Yao-Liu [28]. Their formulas of g}, are given by :

B 1Y
HS = k;l -, Hestenes — Stiefel )
dk Yk
2
FR _ M, Fletcher — Reeves ®)
|l ||
prp _ Gip1Vk oy
L = TR Polak — Ribiere — Polyak (6)
_ 2
op _ el ooy, %
95 dy,
pa _ |lyxll? ,
v = —5—, AlBayati — AlAssady ()
dy Y
~Q 1Y
LS = %, Liu — Storey &)
qy, A
BRY = s Dai — Yuan 10)
k - dT ’
k Yk

where yr. = (¢x+1 — qr) represents the gradient difference.

It is noteworthy that these methods are equivalent when applied to strongly convex quadratic functions under exact
line search.

Note that the convergence behavior of all nonlinear CG methods cited above under strong Wolfe’s rule [29, 30] has
been widely studied by numeros authors [4].

After that, in 2006, Wei et al. [28] introduced a novel variant of CGM, designated as the WYL method.

This approach is a modification of the PRP method, with the parameter given by the following formula:

T llgr+all
iy1 (Qk-‘rl ~ al qk

llax1?

WYL _

L ,  (Wei—Yao-Liu) (1)

In 2011, Huang et al. [20] proposed a modified version of the WYL method, further enhancing its robustness and
global convergence. Hybridization of CGM via convex combinations has emerged as a significant research direction
in optimization science. Recent studies have established strong theoretical foundations for these hybrid methods,
demonstrating that they maintain crucial essential properties such as sufficient descent conditions and convergence
under appropriate line search criteria. This line of research continues to attract considerable scholarly interest, as it
advances the methodology of nonlinear optimization, with applications extending to image restoration, regression
analysis, robot control and portfolio selection. [2, 5, 16, 17, 14, 18]

Various hybridization techniques that combine the WYL method with other formulations have been extensively
documented in the optimization literature. For instance, in 2014, [24] discussed the adaptation of the WYL method
and its variants for multiobjective optimization, enabling the computation of Pareto optimal solutions without
relying on subjective weighting schemes. In 2016, [31] proposed a hybrid method combining the WYL and
Dai-Liao approaches, demonstrating global convergence under Wolfe line search conditions. In 2019, [21] showed
that the hybridization of PRP and WYL methods enhances convergence for a range of optimization problems. In
2024, [2] applied and further modified the WYL formula for robot control, achieving superior efficiency compared
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382 A NOVEL HYBRID CONJUGATE GRADIENT ALGORITHM

to the classical version. Most recently, in 2024 [14] introduced a significant hybrid approach that combines the
WYL and CD (Conjugate Descent) methods, where the convex parameter 6, is determined using the conjugacy
condition df , ,y = 0.

Similarly, numerous BA-based hybrid methods as a hybrid approach that combines the BA and other CGM, in
2020 we cite BA-FR [9] and BA-DY [15] hybrid CGM.

Another notable hybridization, combining BA and HZ methods, was proposed in 2025 [6], demonstrating
promising results.

Some of hese hybrid approaches employ the following parameter formulations:

BV EPRE — max(BL7, B E); (12)
BEYYECD = 9, 857 + (1 - 0,) B X (13)
BEATE = 0,854 + (1 - 60)B¢ T, (14)
PAPY = 00804 + (1 - 0,) B8P, (15)
B = 01887 + (1 - 0,) 877, (16)

All these formulations preserve the descent property under strong Wolfe conditions while demonstrating superior
numerical performance compared to traditional methods. They maintain sufficient descent properties and global
convergence under appropriate conditions.

To effectively combine the strengths of both BA and WYL methods and develop a more efficient algorithm,
where the combination parameter is computed to satisfy the conjugacy condition. These new algorithms generate
sufficient descent directions and exhibit global convergence under strong Wolfe conditions.

We evaluate the method’s performance using the Dolan and Moré performance profile. These experiments include
30 standard benchmark functions selected from [3, 7] and show that RN method outperforms both classical (HS,
FR, PRP and DY CG) and hybrid (BAFR and BADY) methods, particularly for large-scale problems.

The remainder of this manuscript is structured as follows: Section 2 introduces the novel formulation of the
parameter and delineates the corresponding algorithmic framework. Additionally, we provide a comprehensive
analysis of the descent properties exhibited by the derived search direction, followed by a rigorous demonstration
of the algorithm’s global convergence characteristics under strong Wolfe line search conditions.

Section 3 presents extensive numerical experiments evaluating the performance of our algorithm against established
methods in the field. The final section concludes the paper with a summary of our findings.

2. New hybrid CG

In this part, a newly proposed CG method is introduced.
The approach constructs a hybrid CG parameter, 37V, as a convex combination of the Al-Bayati & Al-Assady
(BA) and Wei-Yao-Liu (WYL) parameters:

BN — 0,884 + (1 —6,)8V Y L. (17)

Note that 6y, is a scalar parameter bounded by 0 < ), < 1 and here, 374 and B} YL are given by (11) .
The search direction d*"} is defined recursively:

— fork=0
dRN _ dk+1, ) 18
s { —qk+1 + B]deka for k > 17 ( )

where g, = V.F (uy) denotes the gradient.

The step size Ay in the iteration ug41 = uy, + Axdy, is determined using the strong Wolfe conditions SWC [29, 30]:
F(uk, + Medy) < Fug) + pArgp d, (19)
gt 1 di| < olgf dyl,
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with constants 0 < p < o < 1.

It is evident that, if 6, = 0 then BEN = VYL and if 0), = 1 then BEN = gBA.

We consider two possibilities for selecting the parameter 6y:

In this approach, 6y, is selected to ensure that the conjugacy condition is satisfied at each iteration.
From the recurrence relation in (18), we have:

APtV = =g + 8P = =g + 068 di + (1 — 0) 8 Py,
llgr+all
2 af 1 (g1 — Q)
= g O |C‘ly’“|| di, + (1 — ) quHQ”qk” dy..

Multiplying both sides of the recurrence relation above by y;, and imposing the conjugacy condition
di  yr = 0 yields

T llgr+all
Yk Qg1 (Qhr1 — o ar)
O:*q{_i,_lyk‘i»@k”TH dT (1*0]@) ZHQkH dzyk,
dTy llg |l
Simplifying this expression yields:
llqs 1
- Tpr (Qk+1 Mo g )
qk;-‘,-lyk - ||qk;||2 dk,‘ Yk
0 =
g T Nags |
o Terr (k41 g,k
[l g1l
qu+1H H ” (qk+1‘1k)
. llax H2 di v
0, —
r [
lag41l12— ” ” (qk+1qk)
s 12— quu2
qk+1
lawll® ary 1 yx— (|Qk+1|2 I || +H H qk+1‘1k dFyy
- Jk+1
llax 11 yklr“<lqk+1|2 g+ ”qkﬂqk> F Yk
We obtain :
o Nl gl ue = Ulaea P llanll = larrallady  ax) diun
=
lael® Nlyell? = (e lPllaell = llaeallad  ar) di v
To ensure numerical stability, we regularize 67V as
0., if0< o <1,
ofN =<0, iferm <o, (20)
1 if6;" > 1.

)
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3. RN ALGORITHM

In this part, we present the RN algorithm.

Algorithm 1: RN CG Algorithm
Step 1.
Select ug € R™ and 0 < p < o < 1. Calculate F(ug) and g9 = V.F(up). Define dg = —qo.
Step 2.
If ||gx|| o < €, then stop. Otherwise, go to step 3.
Step 3.
Using SWC (19), calculate the stepsize A, then compute uy1 = ux + A\pdy. Calculate F(uy1) and
Qk+1 = VF (tpy1)
Step 4. Calculate 0, = 07N (20).
Step 5. Calculate 37N = 0,824 + (1 — 0,) BV Y L.
Step 6: : If ¢/, qx| > 0.2||qi+1(|? then set
diN = —qr41 and Mg 1 = 1, else caleulate df'Y, = —qii1 + Brdi.
Step 7: Put £k = k£ + 1 and go to Step 2.

4. Convergence Analysis

Global convergence is established by initially demonstrating the theorem that follows, which proves the sufficient
descent of RN direction.
In this section, we assume that:

Assumption 1
1) Let
F={uwelR"| Flu) <F(ur)}

be bounded.
2) In some neighborhood N of T', 7 € C! and q = 57.F is Lipschitz continuous, i.e.,

3L > O such that ||g(u1) — q(ue2)|| < Lljug — uz||, VYui,ug €T. 21
Under Assumption 1, we obtain :
dB, M >0: |lu| < B, and llg (u) || < M, Yu el (22)

Theorem 1
The direction generated by RN CG algorithm satisfies the sufficient descent condition:

ardi™ < —cllaell?, VE > 0. (23)
Proof
We will demonstrate this result using mathematical induction.
If k = 0, then g7 dB®N = — ||go|%, so (23) holds.
On the other hand, for k¥ > 0, we have :
A = —qepr + BN dy.

= —qry1 + (1= 0x) BV E + 0,854 die
= (1= 0p)(—qrs1 + BV EdL) + 01 (—qryr + BEAdR).
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It follows that:
Al = 0pdft + (1 — 0p)a) V.
Multiplying by g7 41 from the left, we get
qgw—ldkR-]s-Vl = akaT-s-ldkBﬁ + (1 —6k) qz‘+1de+}IL' (24)

Firstly if 6), = 0, the direction d7*" becomes identical to the descent direction of WYL, yielding:

dit = dPE = =gy + B Py,

where they proved in [28] that
G di = —ab e + BY Y gl dy
o B (@1 — Hﬁ’;:ﬁuq )

= - ||qk+1|| + ||qu2 k+1dk

< —c1 |lgesa|?, forall k. (25)
Secondly, if 8, = 1, we have :

dk+1 dk+1 —Qk+1 T ﬁfAdk

The descent property of the BA method was previously established in the literature [9], however, a complete proof
is provided here for completeness and clarity. where they proved in [9] that

@b 1dP < —collgesa)? (26)

where co =1 —w > 0.
In fact, let
dBd = —qr1 + BPAdx

Upon left multiplication by ¢}’ 41» it follows that

G dith = =@l den + B0 gl di
2
k
= —graa] !;; I qF,1dy forall k.
r Yk
By invoking the strong Wolfe condition (19), we obtain:
T o lyll?
d, <
Ap+10k > 1—o dfyk’
Combining this with the Lipschitz condition (21):
L
G dity < —llarnl® + — U\|5k||2

Under Assumption 1 (||sx|| — 0), there exists w € (0, 1) such that:

oL?
1-—

H5k|| < wllgetl?

Consequently:
G dify < —(1=w)llaerl® = —ezllara .

where co =1 —w > 0.
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Finally, if 0 < 65 < 1, then :
n,meR:0<n <0 < <1, 27)

From formulas (24) and (27), we conclude
G ity < mak o dP8 + (1 —m) gl di "
Let ¢ = n1c2 + (1 — 12) ¢1, then from (25) and (26) we finally get

2
G it < —cllgesall”-

O
Lemma 1
Under Assumption 1, consider any CGM defined by (2) and (3), with step length A\; determined through the SWL
(19). If
1

D o <o

k>0 ”dkH
Then

lim inf ||¢x|| = 0.

k— o0
Proof
For the proof, see [4] . O
Lemma 2

Assuming that Assumption 1 is satisfied, if dj, is a descent direction and )\, satisfies

Gpi1di > oqi dy,: where : 0 < o < 1,

then ( v
1—0)q; d
N > ———k 28
R TPAE (28)
Proof
For the proof of Lemma 2, refer to the work in [22]. ]
The following theorem establishes the global convergence properties of our proposed method.

Theorem 2
Consider the RN CG algorithm and suppose that assumption 1 holds. Then either ¢, = 0, for some k, or

lim inf |/gx]| = 0. (29)

k—o0

Proof
Consider the RN conjugate gradient method and suppose that Assumption 1 holds. Suppose that g, # 0, for all &.
We prove (29) by contradiction. Assume that (29) does not hold, then

Ft>0: gl 2 t, V&, (30)
according to the relation (19) and (23), we obtain:
qt di, > c(1—0)|lqrl]? > c(1 — o)t (31)
By using the Lipschitz condition, we get:

el = llgk+1 — aill < LB, (32)
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where B = max{||z — y||,x,y € '} is the diameter of T.
In other hand, let :

dk+1
1Yl = qu+1 _ Nany ”qu
ol
qdk
Qek+1 — Qk + Qi — g H
ol

< 2||gr+1 — x|
<2LB

We have
A = =@ + OB i + (1= 01) 8 Hdy,

since, 0 < 0 < 1, we obtain:
A
IR < Mlgeall + UBEA + 1B FD I -

e have: l? _ LPsl? LB
BA Yk L?||s L“B
i = < < . 33
|57 = |dlye| = (1 —0o)et? = (1 = o)ct? (33)
Otherwise
T llgr+all
BIYL| = ’qkﬂ(q’““ i qk)‘ 2MLB )
g [lqw]? -
Using the above relations (33) and (34), we obtain:
L?’B? 2MLBY skl
M| < A+ 1B di || < M
A5 < gkl + B4+ Dl < M+ (= + = )
LB(LB+2M(1—-o0)c), B
<M —
< M+ ( (1—o0)ct? ) A
< (, forall k
where 2 ( )
LB*(LB+2M(1—o0)c
=M
¢ * (1—o0)et? (35)
Therefore we obtain
= +o00. (36)
> T
By applying Lemma 1, we conclude that:
lim inf gel| = 0. 37
This contradicts (30) , and thus we have proved (29) . ]

5. Experimental results

In this section, we evaluate the performance of our proposed RN algorithm for solving unconstrained optimization
problems of the form presented in equation (1).

To assess the effectiveness and convergence characteristics of our RN algorithm, we conducted comprehensive
numerical experiments on a benchmark suite of 30 well-established test problems drawn from [3, 7] given in table
1 . The evaluation encompasses problems of varying complexity across low, medium, and high dimensions, with
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problem sizes ranging from n = 2 to n = 10000.

We compare the performance of our RN method against two classes of conjugate gradient algorithms: classical
conjugate gradient methods (HS, FR, PRP, and DY) [19, 13, 25, 26, 8] and hybrid conjugate gradient methods
(BADY and BAFR) [15, 9], all implemented under the strong Wolfe conditions (19).

Table 1. List of Test Problems with Initial Points Employed in the Computational Framework

No. Test Functions Dimensions Initial Points
1 Rosenbrock 2,5,10 (=1.2,-1.2) forn = 2, (1.2,...,1.2) for n > 2
2 Sphere 2 (0.5,0.5)
3 Sum of Squares 2,5, 10, 100, 1500, 5000, 10000 1, 1,...,1)
4 Zakharov 2,5, 10, 100, 1500, 5000, 10000 1, 1,...,1)
5 Dixon-Price 2,5, 10, 1500 2,2,..,2)
6 Quadratic Function QF1 2, 5, 10, 100, 1000, 1500, 5000 (1, 1,...,1)
7 Raydan 1 2,5, 10, 100, 1500, 5000 (0.5,0.5,...,0.5)
8  Raydan?2 2 (1, 1)
9  Extended Rosenbrock 2, 5, 10, 100, 1000, 1500, 5000 (-1.2,-1.2,...,-1.2)
10  Extended DENSCHNF 2,5, 10, 100, 1000, 1500, 5000 1, 1,...,1)
11 Extended Tridiagonal 2, 5,10, 1500 (0, 0,...,0)
12 Extended Himmelblau 2, 5, 10, 100, 1000, 1500 1, 1,...,1)
13 DBVF 2,5,10 (0.1, 0.1,...,0.1)
14 BRYBND 2,5, 10, 100 (-1, -1,...,-1)
15  Perturbed Quadratic 2,5, 10, 100 0.5, 0.5,...,0.5)
16 TRIDIA 2,5,10, 100 1, 1,...,.1)
17  Extended Penalty 2,5,10, 100, 1000 (1, 1,...,1)
18 BALF 2,5, 10, 100, 1000 (0.5,0.5,...,0.5)
19  Diagonal 1 2,5,10, 100 2,2,..,2)
20  Diagonal 2 2,5,10, 100 2,2,...,2)
21  Diagonal 3 2,5, 10, 100, 1000 (0, 0.,...,0)
22 Diagonal 4 2,5, 10, 100, 1000 1, 1,...,1)
23 Extended Diagonal 100, 1000 (1, 1,...,1)
24  Beale 2, 1500 (1, 1)
25  Booth 2, 1500 0,0
26  Ackley 2,5,10 2,2,..,2)
27  Rastrigin 2 (1.5,1.5
28  Griewank 2,5,10 (10, 10.,...,10)
29  Matyas 2,5 (1, 1) for n=2, modified for n;2
30  Schwefel 2,5, 10, 1500 (400, 400,...,400)

The codes are written in Python 3.13 and run on a Lenovo Thinkpad PC with AMD Ryzen 7 PRO 5850U Processor
with Radeon Graphics 1.90 GHz and 16.0 GB RAM and Windows 10 Professional 64 bits operating system.

We stop the program when ||¢x |0 < € holds or the number of iterations atteind 5000.

We restart by taking the direction of the steepest descent if either the denominator of /3 is zero or the Powell restart
criterion [27] | g/ 1 gk |> 0.2 || gt ||? is satisfied.

We used the parameters values of p = 10~* and o = 0.9 for the SWC.

Numerical results are compared based on the number of iterations, CPU time and the number of evaluation of the
function and they are given in Tables 2, 3 and 4 whose columns have the following meanings:

Function : the name of the function test problem;

Dim : the dimension of the problem;

€ : stop criteria;

NOI : the number of iterations;

NFEV : denotes the number of function evaluation.

CPU : denotes the total CPU time which should be taken to compute all of these problems.

To rigorously assess and compare the performance of the tested optimization methods, we adopt the performance
profiles of Dolan and Moré [11] as our primary evaluation metric. This approach provides a comprehensive and
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statistically robust means of comparing the relative efficiency and reliability of a set of solvers over a collection
of benchmark problems. Let S denote the set of solvers, P the set of test problems, n, the number of solvers,
and 7, the number of problems. For each problem p € P and each solver s € S, let a,, , represent the numerical
performance measure of interest, such as the number of iterations or CPU time required to solve problem p with
solver s. The performance ratio r,, , for solver s on problem p is defined as:

ap.s
min{a, s :s€ S}

Tp,s =

By definition, 7, ¢ > 1 for all p and s, and a value of 1 indicates that solver s achieved the best performance for
that particular problem.
The performance profile for solver s is the cuamulative distribution function:

1
os(\) = ni HpeP: Tps < A
p

where A > 1 is a scaling factor and o (\) represents, for each A, the fraction of problems where the performance
ratio of solver s does not exceed A\. When plotted, these profiles visually convey the comparative strengths of the
solvers: a curve higher and to the left indicates that the solver was able to solve a larger proportion of problems
closer to the best possible performance.

6. Commentaires

Our numerical experiments conducted on 30 test functions listed in table (1) and selected from [3, 7], are
summarized in in Tables (2), (3), (4) and (5).

The results show that the RN method demonstrates a remarkable competitive advantage over all tested optimization
algorithms.

When compared to classical conjugate gradient methods, RN achieves a success rate of 97.3%, significantly
outperforming Fletcher-Reeves (FR) at 82.1%, Polak-Ribiere-Polyak (PRP) at 85.5%, Hestenes-Stiefel (HS) at
89.0%, and Dai-Yuan (DY) at 88.2%. The performance profiles reveal that RN’s curve consistently maintains the
highest position across all performance ratios A, indicating superior efficiency in terms of number of iterations,
CPU time and function evaluations.

Against hybrid methods, RN establishes clear dominance with its 97.3% success rate compared to BAFR’s 91.6%
and BADY’s 78.4%. The method’s exceptional performance is particularly evident on challenging problems such
as the Rosenbrock function, where RN successfully converged across all dimensions while PRP completely failed,
and on high-dimensional instances of Sum of Squares and Zakharov functions where classical methods frequently
exceeded the 5000 iteration limit. Analysis using the performance profile of More and Dolan given by figures (1a)
and (1b) which evaluates methods based on the number of iterations, number of evaluation functions and CPU,
reveals that RN consistently maintains the leading curve and successfully solves the majority of test functions,
across both classical and hybrid conjugate gradient methods. When compared with classical methods HS, FR,
PRP and DY, RN demonstrates the highest curve position across all metrics, achieving optimal performance
on the largest proportion of BAFR demonstrates intermediate performance with approximately 91.6 % success
rate, while BADY shows the poorest performance among hybrid methods at 78% success rate. The performance
profiles validate that RN achieves the optimal combination of efficiency and reliability, confirming its 97.3%
success rate and establishing it as the most effective method for unconstrained optimization across diverse problem
landscapes. Despite its exceptional performance, the RN method presents certain limitations including increased
computational complexity per iteration due to the dynamic calculation of the convex parameter 6 through the
conjugacy condition, and potential sensitivity to parameter selection in specific problem instances. Additionally, the
hybrid approach requires greater implementation complexity and marginally higher memory overhead compared
to classical conjugate gradient methods.
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7. Conclusion

In this work, we have introduced and analyzed a novel hybrid conjugate gradient method denoted RN CGM.
The RN method is based on a convex combination of the BA and WYL methods, with its parameter specifically
chosen to satisfy the conjugacy condition. We provided a rigorous convergence analysis under SW conditions
and demonstrated that the proposed algorithm satisfy the sufficient descent property, thereby ensuring global
convergence. Extensive numerical experiments on a diverse set of test functions revealed that the RN method,
in particular, outperforms several established algorithms including classical (HS, FR, PRP and DY) and hybrid
CGM (BAFR and BADY) in terms of both efficiency and robustness. Performance profiles further highlighted

Figure 1. Performance Profile of RN based on NOI, CPU and NFEV

RN’s superiority with respect to success rate, iteration count, and computational time.
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Table 2. Comparison of: FR vs PRP vs HS vs DY vs RN Methods on 30 Test Functions

Function Dim € FR PRP HS DY RN

NOI | NFEV CPU NOI | NFEV CPU NOI | NFEV CPU NOI | NFEV CPU | NOI | NFEV | CPU

2 1075 212 21202 | 0.0567 | Failed | 500001 1.2545 67 6702 0.0260 151 15102 | 0.0358 | 104 | 10402 | 0.0246
5

Rosenbrock s | 107 | 218 | 21802 | 0.0854 | Failed | 500001 | 1.6564 | 118 | 11802 | 0.0366 | 320 | 32002 | 0.1057 | 187 | 18702 | 0.0582
10 | 107 | 899 | 89902 | 0.3721 | Failed | 500001 | 1.7546 | 177 | 17702 | 0.0560 | 489 | 48902 | 0.2097 | 180 | 18002 | 0.0685

Sphere 2 [10°| 1 102 | 0.0001 1 102 | 0.0001 1 102 | 0.0001 1 102 | 00001 | 1 102 | 0.0001
2 | 10°| 33 | 3302 | 0004 | 2 202 | 0.0001 19 | 1902 | 0.0009 | 18 | 1802 | 0.0007 | 2 | 202 | 0.0001

SumSauar 5 |10 | 54 | 5402 | 00026 | 32 | 3202 | 00028 | 68 | 6802 | 0.0053 | 35 | 3502 | 0.0027 | 32 | 3202 | 0.0038
umsquares 10 | 1076 | 113 | 11302 | 00105 | 60 | 6002 | 0.0040 | 70 | 7002 | 0.0048 | 44 | 4402 | 0.0029 | 34 | 3402 | 0.0024
100 | 10~ | Failed | 20001 | 0.1359 | Failed | 20001 | 0.1126 | 100 | 10002 | 0.0546 | 99 | 9902 | 0.0547 | 141 | 14102 | 0.0807

1500 | 101 | 353 | 35302 | 4.6787 | Failed | 500001 | 458.0429 | 177 | 17702 | 2.0455 | 157 | 15702 | 1.8062 | 229 | 22902 | 2.7073

5000 | 10-1 | 464 | 46402 | 32.52 | Failed | 100001 | 67123 | 335 | 33502 | 2124 | 326 | 32602 | 2246 | 386 | 38602 | 24.49

10000 | 101 | 814 | 81402 | 211.10 | Failed | 100001 | 168648 | 543 | 54302 | 147.02 | 472 | 47202 | 133.46 | 530 | 53002 | 14542

2 | 10°°| 32 | 3202 | 00054 | 10 | 1002 | 00022 | 15 | 1502 | 0.0025 | 18 1802 | 0.0029 | 10 | 1002 | 0.0020

Jakharoy 5 [1075| 38 | 3802 | 00075 | 111 | 11102 | 00230 | 145 | 14502 | 0.0336 | 25 | 2502 | 0.0065 | 90 | 9002 | 0.0208
10 | 107 | 67 | 6702 | 00191 | 675 | 67502 | 02066 | 57 | 5702 | 0.0124 | 102 | 10202 | 0.0296 | 154 | 15402 | 0.0429

100 | 1075 | Failed | 20001 | 0.1316 | Failed | 20001 | 0.1249 | Failed | 20001 | 0.7076 | Failed | 20001 | 0.1323 | 152 | 15202 | 0.0998

1500 | 101 | 222 | 22202 | 0.3224 | Failed | 500001 | 26.1667 | 30 | 3002 | 0.0593 | 3469 | 346902 | 4.6746 | 195 | 19502 | 0.2659

5000 | 1071 | 99 | 9902 | 042 | Failed | 100001 | 13.19 | Failed | 100001 | 12.44 | Failed | 100001 | 4.04 | 220 | 22002 | 0.87

10000 | 101 | 169 | 16902 | 1.83 | Failed | 100001 | 53.92 | Failed | 100001 | 33.51 83 | 8302 | 105 | 574 | 57402 | 23.71

2 | 10°| 91 | 9102 | 0.0181 | 99 | 9902 | 00169 | 25 | 2502 | 00094 | 51 | 5102 | 0.0100 | 30 | 3002 | 0.0059

Dixon-Price 5 | 1076 | 1027 | 102702 | 03053 | 140 | 14002 | 00220 | 97 | 9702 | 0.0178 | 196 | 19602 | 0.0440 | 53 | 5302 | 0.0075
10 | 107 | 134 | 13402 | 00328 | 168 | 16802 | 00317 | 75 | 7502 | 00200 | 225 | 22502 | 0.0639 | 81 | 8102 | 0.0173

1500 | 10~ | Failed | 500001 | 269.31 | Failed | 500001 | 216279 | 1801 | 180102 | 73.02 | 619 | 61902 | 26.89 | 539 | 53902 | 21.93

2 [10°| 10 1002 | 0.0011 | 9 902 | 0.0008 7 1702 | 0.0016 | 10 | 1002 | 0.0011 | 9 | 902 | 0.0018

5 |10°| 1 1102 | 00011 | 21 | 2102 | 00020 | 32 | 3202 | 00036 | 10 | 1002 | 0.0010 | 21 | 2102 | 0.0023

Quadratic-QF1 10 |10 | 28 | 2802 | 0.0041 | 13 1302 | 00028 | 41 | 4102 | 00077 | 18 1802 | 0.0027 | 13 | 1302 | 0.0029
100 | 1076 | 67 | 6702 | 01131 | 62 | 6202 | 0.1167 | 142 | 14202 | 02639 | 38 | 3802 | 0.0641 | 59 | 5902 | 0.1102

1000 | 1073 | 127 | 12702 | 4.2392 | Failed | 20001 | 62574 | Failed | 20001 | 6.8460 | 111 | 11102 | 3.1244 | 150 | 15002 | 4.6312
1500 | 101 | 194 | 19402 | 26.9728 | Failed | 20001 | 19.7245 | 151 | 15102 | 157204 | 149 | 14902 | 15.0424 | 127 | 12702 | 12.4793

5000 | 101 | 213 | 21302 | 8417 | 137 | 13702 | 103.59 | 118 | 11802 | 3954 | 124 | 12402 | 4551 | 167 | 16702 | 59.52

2 |10°] 28 | 2802 | 0.0016 | 8 802 | 0.0005 | 99 | 9902 | 0.0045 | 14 | 1402 | 0.0007 | 8 | 802 | 0.0005

Ravdan] s 10| 92 | 9202 | 00089 | 27 | 2702 | 00021 | 65 | 6502 | 0.0050 | 27 | 2702 | 0.0019 | 27 | 2702 | 0.0022
Y 10 | 107 | 38 | 3802 | 00061 | 52 | 5202 | 00079 | 73 | 7302 | 00106 | 29 | 2902 | 0.0041 | 30 | 3002 | 0.0046
100 | 1076 | 187 | 18702 | 0.4737 | Failed | 20001 | 04320 | 94 | 9402 | 0.1927 | 70 | 7002 | 0.1326 | 131 | 13102 | 0.2788

1500 | 10- | 186 | 18602 | 936 | 177 | 17702 | 1426 | 134 | 13402 | 616 | 133 | 13302 | 601 | 154 | 15402 | 7.09

5000 | 101 | 496 | 49602 | 193.80 | Failed | 100001 | 5557.29 | 256 | 25602 | 67.67 | 283 | 28302 | 77.68 | 230 | 23002 | 63.30

Raydan2 2 (10| 1 102 | 00002 | 1 102 | 0.0001 I 102 | 0.0001 I 102 | 0.0001 | 1 102 | 0.0002
2 | 10° | 212 | 21202 | 0.0368 | Failed | 500001 | 0.7873 | 67 | 6702 | 00196 | 151 | 15102 | 0.0244 | 104 | 10402 | 0.0149

5 1076 85 8502 0.0113 | Failed | 500001 | 0.7033 178 17802 | 0.0302 224 22402 | 0.0358 | 778 | 77802 | 0.1169
10 1075 | 509 50902 | 0.1286 | Failed | 500001 1.0247 69 6902 0.0232 156 15602 | 0.0326 | 104 | 10402 | 0.0202
100 | 107¢ | Failed | 20001 | 0.3212 | Failed | 20001 0.2462 67 6702 0.1393 151 15102 | 0.2010 | 104 | 10402 | 0.1266
1000 | 1073 179 17902 | 2.5359 | Failed | 20001 2.5217 69 6902 1.4614 165 16502 | 22148 | 104 | 10402 | 1.2666
1500 | 10! | Failed | 20001 | 10.5158 | 200 20001 8.3525 69 6902 4.8984 104 10402 | 4.2498 | 162 | 16202 | 7.1407
1500 | 107t 24 2402 0.46 23 2302 1.40 51 5102 1.94 127 12702 2.58 59 5902 1.04
5000 | 107! 24 2402 2.18 29 2902 7.98 51 5102 10.44 128 12802 13.53 59 5902 7.13

Extended Rosenbrock

2 10-° 19 1902 0.0014 35 3502 0.0022 23 2302 0.0031 214 21402 | 0.0203 30 3002 | 0.0029
5 1076 19 1902 0.0013 37 3702 0.0025 23 2302 0.0033 220 22002 | 0.0222 32 3202 | 0.0025

Extended DENSCHNF | 1\ 150 | 25 | 2202 | 0.0024 | 37 | 3702 | 00042 | 23 | 2302 | 00056 | 232 | 23202 | 0.0426 | 32 | 3202 | 0.0039
100 | 10| 16 | 1602 | 0.0125 | 35 | 3502 | 00306 | 21 | 2102 | 0.0169 | Failed | 20001 | 02570 | 30 | 3002 | 0.0263
1000 | 103 | 22 | 2202 | 02045 | 37 | 3702 | 03557 | 23 | 2302 | 0.4286 | Failed | 20001 | 27050 | 32 | 3202 | 0.2829
1500 |10 | 10 | 1002 | 012 | 12 | 1202 | 036 9 | 902 | o012 | 67 | 6702 | 130 | & | 802 | 011
5000 | 1071 | 11 | 1102 | 065 | 12 | 1202 | 483 9 | o2 | o064 | 75 | 7502 | 736 | 8 | 802 | 055
7 (10 1 102 | 00001 | 1 102 | 00001 | 1 102 ] 00000 | 1 102 | 00000 | T | 102 | 0.0001

5 10-¢ 53 5302 0.0074 121 12102 0.0258 225 22502 | 0.0320 39 3902 0.0050 | 121 | 12102 | 0.0171
10 1076 | 1288 | 128802 | 0.6668 | 1638 | 163802 | 0.6375 121 12102 | 0.0405 100 10002 | 0.0330 | 217 | 21702 | 0.0757
1500 | 10! 123 12302 | 1346.25 37 3702 1535.48 71 7102 610.83 88 8802 723.28 35 3502 | 317.18

Extended Tridiagonal

2 107 28 2802 0.0032 21 2102 0.0024 32 3202 0.0049 62 6202 0.0068 18 1802 | 0.0023
Extended Himmelblau 5 10’6‘ 29 2902 0.0032 22 2202 0.0026 32 3202 0.0049 62 6202 0.0070 18 1802 | 0.0022
10 10-¢ 31 3102 0.0055 22 2202 0.0042 32 3202 0.0080 62 6202 0.0113 20 2002 | 0.0039
100 | 1076 28 2802 0.0356 21 2102 0.0292 30 3002 0.0546 60 6002 0.0825 18 1802 | 0.0255
1000 | 1073 31 3102 0.5807 22 2202 0.4318 32 3202 0.8910 20 2002 0.4193 62 6202 1.2571
1500 | 1071 16 1602 0.25 14 1402 0.43 26 2602 0.59 27 2702 0.43 11 1102 0.18

2 107° 27 2702 0.0068 66 6602 0.0190 38 3802 0.0152 38 3802 0.0101 62 6202 | 0.0162

DBVE 5 1076 | 304 30402 | 0.1744 | 1583 | 158302 | 0.8913 116 11602 | 0.0748 184 18402 | 0.0966 | 189 | 18902 | 0.0975
6

10 10~ 812 81202 | 0.9963 | Failed | 500001 | 5.8602 480 48002 | 0.5284 705 70502 | 0.8860 | 679 | 67902 | 0.7837

2 10°° 12 1202 0.0020 15 1502 0.0025 28 2802 0.0097 8 802 0.0014 15 1502 | 0.0029

BRYBND 5 10’§ Failed 500001 | 3.0214 118 11802 0.0331 209 20902 | 0.0653 2§84 288402 | 1.5261 118 | 11802 | 0.0346
10 1076 | Failed | 500001 | 8.0405 124 12402 0.0849 173 17302 | 0.1351 | Failed | 500001 | 7.7655 | 119 | 11902 | 0.0866

100 | 107 | Failed | 20001 | 14.5154 120 12002 4.4273 125 12502 | 5.0962 | Failed | 20001 | 14.7362 | 103 | 10302 | 3.9309

2 10-° 28 2802 0.0014 4 402 0.0002 18 1802 0.0012 27 2702 0.0013 4 402 0.0003

PerturbedQuad 5 1076 38 3802 0.0026 30 3002 0.0018 64 6402 0.0052 35 3502 0.0038 30 3002 | 0.0059
10 10-6 40 4002 0.0051 56 5602 0.0088 66 6602 0.0115 31 3102 0.0032 35 3502 | 0.0044

100 | 1075 | Failed | 20001 | 0.2613 | Failed | 20001 0.2246 117 11702 | 0.1357 92 9202 0.0931 135 | 13502 | 0.1482

2 107C | Failed | 500001 | 1.2554 39 3902 0.0035 25 2502 0.0048 164 16402 | 0.0171 29 2902 | 0.0046

TRIDIA 5 10’§ 312 31202 | 0.0865 111 11102 0.0245 57 5702 0.0124 256 25602 | 0.0715 52 5202 | 0.0113

10 1076 | 1447 | 144702 | 1.5322 358 35802 0.2010 79 7902 0.0465 | 2006 | 200602 | 1.8281 85 8502 | 0.0441

100 | 107 | Failed | 20001 | 12.2863 59 5902 2.1308 69 6902 2.6164 | Failed | 20001 | 11.5398 | 40 4002 1.4651

2 10-° 1 102 0.0002 1 102 0.0001 1 102 0.0001 1 102 0.0001 1 102 0.0001

ExtendedPenalty 100 l(l’fi 2 202 0.0010 2 202 0.0010 3 302 0.0146 2 202 0.0009 2 202 0.0010
1000 | 103 9 902 0.0800 5 502 0.0329 9 902 1.0982 5 502 0.0493 10 1002 | 0.0704
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Table 3. Comparison of: FR vs PRP vs HS vs DY vs RN Methods on 30 Test Functions

Function Dim € FR PRP HS DY RN

NOI | NFEV | CPU | NOI | NFEV | CPU | NOI | NFEV | CPU | NOI | NFEV | CPU | NOI | NFEV | CPU

2 10-° 9 902 | 0.0006 10 1002 | 0.0007 | 18 1802 | 0.0057 23 2302 | 0.0012 | 10 1002 | 0.0007
5 10-¢ 35 3502 | 0.0031 12 1202 | 0.0013 | 23 2302 | 0.0022 18 1802 | 0.0016 | 12 1202 | 0.0012

BALF 10 |10 9 | 902 |o00012| 11 | 1102 | 00018 | 20 | 2002 | 00150 | 24 | 2402 | 0.0028 | 11 | 1102 | 0.0020
100 |106| o | 902 |00080| 10 | 1002 | 00095 | 18 | 1802 | 0.1193 | 22 | 2202 | 00171 | 10 | 1002 | 0.0095

1000 | 10| 9 | 902 | 01901 | 11 | 1102 | 01993 | 20 | 2002 | 34014 | 11 | 1102 | 02447 | 24 | 2402 | 04223

2 [10-| 33 | 3302 [00001 | 2 | 202 | 00000 | 19 | 1902 | 0.0008 | 18 | 1802 | 0.0006 | 2 | 202 | 0.000I

Diagonall | 5. | 10°°| 54 | 5402 00032 | 32 | 3202 00016 | 68 | 6802 | 0.0035 | 35 | 3502 | 0.0017 | 32 | 3202 | 0.0019
10 [ 105 | 113 | 11302 | 00107 | 60 | 6002 | 00051 | 70 | 7002 | 0.0056 | 44 | 4402 | 0.0033 | 34 | 3402 | 0.0028

100 | 1076 | Failed | 20001 | 0.1500 | Failed | 20001 | 0.1274 | 100 | 10002 | 0.0642 | 99 | 9902 | 0.0604 | 125 | 12502 | 0.0800

7 [10°] 18 | 1802 [ 00010 8 | 802 | 00006 21 | 2102 | 00035 | 14 | 1402 | 0.0008 | 8 | 802 | 0.0007

Diagonalz | 5 | 107 | 78 | 7802 | 00119 | 31 | 3102 | 00042 | 33 | 3302 | 0.00SI | 24 | 2402 | 00031 | 31 | 3102 | 0.0044

10 | 1076 60 6002 | 0.0182 56 5602 | 0.0152 | 66 6602 | 0.0185 32 3202 | 0.0086 | 37 3702 | 0.0183
100 | 1076 152 15202 | 0.7901 | Failed | 20001 | 0.7612 | 118 | 11802 | 0.4500 | 121 12102 | 0.6386 | 144 | 14402 | 0.5248

2 10°° 66 6602 | 0.0058 2 202 | 0.0001 | 80 8002 | 0.0181 64 6402 | 0.0093 2 202 | 0.0002
5 1076 71 7102 | 0.0074 81 8102 | 0.0151 | 81 8102 | 0.0198 68 6802 | 0.0080 | 81 8102 | 0.0155
Diagonal4 10 | 1076 73 7302 | 0.0103 86 8602 | 0.0250 | 86 8602 | 0.0213 68 6802 | 0.0111 | 86 8602 | 0.0214
100 | 10°6 63 6302 | 0.0283 76 7602 | 0.0676 | 73 7302 | 0.0655 57 5702 | 0.0251 | 76 7602 | 0.0700
1000 | 1073 69 6902 | 0.7038 84 8402 | 1.6597 | 75 7502 | 1.5925 82 8202 | 1.6060 | 66 6602 | 0.7537

100 | 107 64 6402 | 0.0748 72 7202 | 0.1885 | 74 7402 | 0.1899 62 6202 | 0.0748 | 72 7202 | 0.1893

ExtendedDiag | 105y | 1o-3 | 74 | 7402 | 22058 | 82 | 8202 | 52970 | 84 | 8402 | 5.0847 | 82 | 8202 | 53388 | 72 | 7202 | 2.3409
Beale 2 [10°| 55 | 5502 |0.0057 | 708 | 70802 | 0.0588 | 63 | 6302 | 0.0131 | 54 | 5402 | 0.0043 | 117 | 11702 | 0.0104
1500 | 1071 | 9 902 | 00027 | 21 | 2102 |0.0137 | 25 | 2502 | 0.0129 | 9 902 | 00011 | 7 | 702 |0.0012

Booth 2 [10°| 44 | 4402 | 0.0030 | 39 | 3902 | 0.0019 | 17 | 1702 | 0.0008 | 20 | 2902 | 0.0021 | 25 | 2502 | 0.0018
1500 | 101 | 7 702 | 0.0009 | 6 602 | 0.0007 | 6 | 602 |0.0007| 10 | 1002 | 0.001 | 10 | 1002 | 0.0011

2 [10°| 18 | 1802 |0.0416 | 25 | 2502 | 0.0207 | 45 | 4502 | 0.0765 | 12 | 1202 | 0.0079 | 25 | 2502 | 0.0208

Ackley 5 [10¢| 8 802 | 00032 | 11 | 1102 | 00054 | 21 | 2102 | 0.0411 | 8 802 | 0.0036 | 11 | 1102 | 0.0033

10 [10°¢| 8 802 | 0.0024 | 11 | 1102 | 00034 | 21 | 2102 | 0.0564 | 7 702 | 0.0041 | 11 | 1102 | 0.0035

Rastrigin 2 [10°] 1 102 00002 1 102 | 00001 | 1 102 | 00000 | 1 102 00001 | 1 102 | 0.0001

2 10-% ] 602 | 60202 | 0.1511 25 2502 | 0.0027 | 26 2602 | 0.0032 | Failed | Failed | Failed | 26 2602 | 0.0033
5 1076 | 830 | 83002 | 0.2685 52 5202 | 0.0073 | 50 5002 | 0.0080 | 696 | 69602 | 0.1685 | 43 4302 | 0.0065
Griewank 10 | 107° | Failed | Failed | Failed 125 12502 | 0.0483 | 124 | 12402 | 0.0265 | Failed | Failed | Failed | 127 | 12702 | 0.0368

106 52 5202 | 0.0014 87 8702 | 0.0071 | 87 8702 | 0.0102 42 4202 | 0.0018 | 87 8702 | 0.0126

10°° 24 2402 | 0.0023 55 5502 | 0.0039 | 55 5502 | 0.0052 14 1402 | 0.0008 | 55 5502 | 0.0056

1076 25 2502 | 0.0026 57 5702 | 0.0047 | 57 5702 | 0.0049 14 1402 | 0.0016 | 57 5702 | 0.0051
10 | 107 25 2502 | 0.0039 58 5802 | 0.0078 | 58 5802 | 0.0079 14 1402 | 0.0020 | 58 5802 | 0.0085

1500 | 107! 12 1202 0.19 27 2702 0.41 27 2702 0.41 7 702 0.11 27 2702 0.43

2

Matyas 5 1076 52 5202 | 0.0021 87 8702 | 0.0106 | 87 8702 | 0.0075 42 4202 | 0.0010 | 87 8702 | 0.0075
2
5

Schwefel
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Table 4. Performance Comparison: BADY vs BAFR vs RN Methods (30 Test Functions)
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Function Dim € BADY BAFR RN
NOI | NFEV | CPU | NOI | NFEV | CPU | NOI | NFEV | CPU
2 | 10 © | Failed | 500001 | 2.81 434 | 43402 | 0.12 | 104 | 10402 | 0.02
Rosenbrock 5 | 107¢ | Failed | 500001 | 3.83 218 | 21802 | 009 | 187 | 18702 | 0.08
10 | 1075 | Failed | 500001 | 3.91 899 | 89902 | 035 | 180 | 18002 | 0.06
Sphere 2 |10°] 1 102 | 0.0001 i 102 | 0.0001 | 1 102 | 0.0001
2 | 10°| 34 3402 | 0.001 33 3302 | 0.002 2 202 | 0.0001
5 | 1076 | 254 | 25402 | 0.02 54 5402 | 0.003 | 32 | 3202 | 0.003
100 |10°] 99 9902 | 0.009 | 113 | 11302 | 0.01 34 | 3402 | 0.003
SumSquares 100 | 106 | 251 | 25102 | 0.16 255 | 25502 | 0.19 | 155 | 15502 | 0.11
1500 | 1071 | 311 | 31102 | 9.99 217 | 21702 | 699 | 229 | 22902 | 7.28
2000 | 1071 | 418 | 41802 | 187606 | 426 | 42602 | 19.4882 | 381 | 38102 | 17.9099
10000 | 1071 | 603 | 60302 | 174.94 | 623 | 62302 | 185.14 | 530 | 53002 | 147.20
2 | 10°° | 1071 | 107102 | 035 32 3202 | 0.004 | 10 | 1002 | 0.002
5 | 10-¢ | Failed | 500001 | 2.60 38 3802 | 0.009 | 90 | 9002 0.02
Jakharov 10 |10°5] 63 6302 0.02 69 6902 0.02 | 154 | 15402 | 0.04
100 | 1075 | Failed | 500001 | 5.94 145 | 14502 | 009 | 163 | 16302 | 0.12
2000 | 1071 | 257 | 25702 | 1.0337 | 203 | 20302 | 0.8637 | 520 | 52002 | 2.0222
10000 | 1071 | 170 | 17002 | 220 | 460 | 46002 | 541 | 574 | 57402 | 9.41
2 | 10°© | Failed | 500001 | 1.77 91 9102 0.01 30 | 3002 | 0.004
Dixon-Price 5 | 1076 | 4560 | 456002 | 1.88 | 1027 | 102702 | 032 53 | 5302 0.01
10 | 106 | 617 | 61702 | 021 134 | 13402 | 0.03 81 | 8102 0.03
100 | 1075 | Failed | 500001 | 25.58 | Failed | 500001 | 19.47 | 1413 | 141302 | 2.89
1500 | 1071 | 743 | 74302 | 81.50 | 424 | 42402 | 4638 | 539 | 53902 | 58.86
2 [10°] 10 1002 | 0.0008 | 10 1002 | 0.001 9 902 | 0.0007
Ouadratic-OF1 5 110%| 12 1202 | 0.001 11 1102 | 0001 | 21 | 2102 | 0.002
10 |10°] 29 2902 | 0.004 28 2802 | 0.004 | 13 | 1302 | 0.003
100 | 107 | 67 6702 0.14 77 7702 0.15 71 | 7102 0.14
1500 | 1071 | 27 2702 1.19 27 2702 1.16 27 | 2702 1.16
1500 | 1071 | 62 6202 7.66 60 6002 7.46 59 | 5902 7.19
2 | 10°| 380 | 38002 | 005 28 2802 | 0.001 8 802 | 0.0004
Ravdan] 5 | 106 | 145 | 14502 | 0.03 9 9202 0.01 27 | 2702 | 0.004
ayda 10 | 1076 | 35 3502 | 0.006 38 3802 | 0.006 | 30 | 3002 | 0.005
100 | 1075 | Failed | 500001 | 151.27 | Failed | 500001 | 141.48 | 191 | 19102 | 1.64
1500 | 1071 | 203 | 20302 | 27.45 | 183 | 18302 | 24.82 | 154 | 15402 | 2031
Raydan2 2 [10°] 1 102 | 0.0001 1 102 | 0.0002 | 1 102 | 0.0002
2 | 10°© | Failed | 500001 | 1.81 434 | 43402 | 0.06 | 104 | 10402 | 0.02
Extended Rosenbrock | 3| 107 | Failed | 500001 | 2.66 85 8502 002 | 778 | 77802 | o0.14
10 | 1075 | Failed | 500001 | 3.12 493 | 49302 | 0.15 | 104 | 10402 | 0.02
100 | 1075 | Failed | 500001 | 22.13 | 550 | 55002 | 098 | 106 | 10602 | 0.13
1500 | 10°1 | 74 7402 3.50 122 | 12202 | 579 59 | 5902 274
2 | 10°| 25 2502 | 0.002 19 1902 | 0.002 | 30 | 3002 | 0.003
5 | 106 25 2502 | 0.002 19 1902 | 0001 | 32 | 3202 | 0.002
Extended DENSCHNE | 1 16 | 16 2602 | 0.003 2 2202 | 0.003 | 32 | 3202 | 0.004
100 | 1076 | 28 2802 0.03 33 3302 0.03 36 | 3602 0.04
1500 | 1071 | 8 802 0.28 8 802 0.29 8 802 0.29
2 [10°] 1 102 | 0.0002 1 102 | 0.0002 | 1 102 | 0.0001
Extended Tridiasonal 5 1106 30 3002 | 0.004 53 5302 | 0.008 | 121 | 12102 | 0.02
& 10 | 1075 | Failed | 500001 | 4.88 | 1256 | 125602 | 0.67 | 217 | 21702 | 0.08
100 | 1076 | Failed | 500001 | 342.92 | 2920 | 292002 | 123.67 | 2891 | 289102 | 85.87
1500 | 10-1 | 33 3302 | 3455.82 | 31 3102 | 59345 | 35 | 3502 | 638.09
2 | 10°| 34 3402 | 0.003 28 2802 | 0.003 | 18 | 1802 | 0.002
Extonded Himmelblau | 5 | 1076 | 34 3402 0.01 29 2902 | 0.005 | 18 | 1802 | 0.004
10 | 106 | 35 3502 | 0.007 3] 3102 | 0.006 | 20 | 2002 | 0.004
100 | 1075 | 37 3702 0.07 32 3202 0.06 21 | 2102 0.04
1500 | 101 | 11 1102 0.61 1 1102 0.61 1| 1102 0.60
2 | 10°| 40 | 4002 | 0.008 27 2702 | 0.007 | 62 | 6202 0.01
DBVE 5 | 107¢ | Failed | 500001 | 4.50 310 | 31002 | 024 | 189 | 18902 | 0.12
10 | 1076 | Failed | 500001 | 8.03 807 | 80702 | 106 | 679 | 67902 | 0.84
oiai., U[)llm. U’lj. COi pm. oI 195, Jdal 1u4ry 020
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Table 5. Performance Comparison: BADY vs BAFR vs RN Methods (30 Test Functions)

Function Dim € BADY BAFR RN

NOI | NFEV CPU NOI | NFEV | CPU | NOI | NFEV | CPU

2 10-¢ 11 1102 0.001 12 1202 0.002 15 1502 0.002
5 10~% | Failed | 500001 7.18 Failed | 500001 | 3.44 118 | 11802 0.04

BRYBND 10 10~% | Failed | 500001 14.54 | Failed | 500001 | 8.09 119 | 11902 0.08
100 | 1075 | Failed | 500001 | 741.24 | Failed | 500001 | 511.04 | 124 | 12402 5.91
1500 | 107* 43 4302 | 1021.13 33 3302 | 742.60 | 47 4702 | 1116.57
2 10-° 43 4302 0.002 28 2802 0.001 4 402 0.0004
PerturbedQuad 5 1076 | 386 38602 0.06 38 3802 0.004 30 3002 0.002
10 10-¢ 48 4802 0.006 40 4002 0.004 35 3502 0.004
100 | 1076 | 244 24402 0.41 248 24802 0.38 156 | 15602 0.17
2 10-¢ 36 3602 0.004 | Failed | 500001 1.07 29 2902 0.003
TRIDIA 5 1079 | Failed | 500001 5.27 314 31402 0.10 52 5202 0.02
10 10~% | Failed | 500001 10.79 1470 | 147002 | 1.51 85 8502 0.05
100 | 1075 | Failed | 500001 | 685.82 | 1374 | 137402 | 100.42 | 44 4402 2.42
ExtendedPenalt 10 1076 1 102 0.0001 1 102 0.0002 1 102 0.0001
Y| 100 | 1076 2 202 0.001 2 202 0.002 3 302 0.002
5 10-¢ 32 3202 0.004 35 3502 0.004 12 1202 0.002
BALF 10 10-6 9 902 0.001 9 902 0.001 11 1102 0.002
100 | 10-¢ 9 902 0.02 10 1002 0.01 12 1202 0.02
2 1076 34 3402 0.001 33 3302 0.001 2 202 0.0001
Diaconall 5 1076 | 254 25402 0.03 54 5402 0.006 32 3202 0.003
g 10 10-¢ 99 9902 0.01 113 11302 0.01 34 3402 0.003
100 | 1076 | 251 25102 0.24 255 25502 0.30 133 | 13302 0.12
2 10— 16 1602 0.001 18 1802 0.001 8 802 0.0007
Diagonal2 5 10— 44 4402 0.006 78 7802 0.02 31 3102 0.004
g 10 107 | Failed | 500001 | 25.79 60 6002 0.02 37 3702 0.01
100 | 107% | Failed | 500001 | 350.31 | Failed | 500001 | 324.99 | 205 | 20502 3.71
2 10-9 67 6702 0.006 66 6602 0.006 2 202 0.0001
5 10-¢ 70 7002 0.01 71 7102 0.008 81 8102 0.02
Diagonal4 10 10-¢ 72 7202 0.01 73 7302 0.01 86 8602 0.02

100 | 10— 80 8002 0.10 83 8302 0.10 96 9602 0.21

ExtendedDiag 100 | 107 83 8302 0.27 84 8402 0.31 92 9202 0.59

5 10~% | Failed | 500001 7.88 55 5502 0.01 117 | 11702 0.01

Beale 1500 | 10-1 | 13 1302 | 0.004 7 702 | 0003 | 7 702 | 0.002
Booth 5 [10°| 23 2302 | 0.001 44 | 4402 | 0.002 | 25 | 2502 | 0.001
1500 | 10-' | 10 1002 | 0.002 9 902 | 0.002 | 10 | 1002 | 0.002
10000 | 1071 | 10 1002 | 0.008 9 902 | 0.005 | 10 | 1002 | 0.006
2 [10°| 12 1202 0.01 18 1802 | 003 | 25 | 2502 | 0.02
Ackley 5 |10¢]| 8 802 0.003 8 802 | 0.003 | 11 | 1102 | 0.003
10 [106] 8 802 0.003 8 802 | 0.003 | 11 | 1102 | 0.004
Rastrigin 2 (106 1 102 | 0.0001 i 102 | 0.0001 | 1 102 | 0.0001
2 [ 10°° | 2275 | 227502 | 0.9 602 | 60202 | 0.14 | 26 | 2602 | 0.004
5 | 107¢ | Failed | 500001 | 3.45 830 | 83002 | 027 | 43 | 4302 | 0.007
Griewank 10 | 1075 | Failed | 500001 | 19.14 | Failed | 500001 | 5.18 | 127 | 12702 | 0.04
1500 | 1071 | 6 602 421 6 602 3.98 6 602 4.06
2000 | 1071 | 7 702 | 6.0804 | 7 702 | 6.1092 | 7 702 | 6.2357

10000 | 10! 13 1302 57.82 13 1302 58.23 13 1302 58.02

2 1076 51 5102 0.002 52 5202 0.002 87 8702 0.008
Matyas 5 10-6 51 5102 0.002 52 5202 0.002 87 8702 0.01

5 10-¢ 24 2402 0.002 25 2502 0.003 57 5702 0.006
10 10-6 25 2502 0.004 25 2502 0.004 58 5802 0.008

Schwefel 1500 | 1071 | 27 2702 1.19 27 2702 | 1.16 | 27 | 2702 1.16
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