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1. Introduction

Nowadays, the use of connected devices has grown exponentially, generating massive volumes of data
exchanged between IoT devices or between these devices and processing servers.

As data exchange continues to grow at scale, cyberspace is facing an increasing number of threats,
particularly with the rise of more sophisticated attacks. In response to this rapid evolution, it has become
imperative to invest in improving intelligent solutions for intrusion detection, prevention, and attack
prediction. In this context, Machine Learning (ML) and Deep Learning (DL) offer particularly promising
solutions.

This paper presents an in-depth exploration of ML and DL applications aimed at strengthening
cybersecurity, with a particular focus on the Internet of Things (IoT) ecosystem and network traffic
monitoring and analysis. The studies examined aim to improve intrusion detection and prevention
mechanisms using various datasets, advanced algorithms, and robust performance metrics. Researchers
are increasingly combining traditional machine learning (ML) techniques with innovative deep learning
(DL) models to better address the evolving nature of cyber threats. This integration highlights the need for
continuous adaptation and improvement in intrusion detection strategies. Existing approaches range from
the development of effective intrusion detection systems (IDS) within IoT ecosystems and network traffic
analysis, to the design of hybrid ML-DL frameworks and advanced vulnerability detection methodologies.
The common thread of this research is its commitment to strengthening the resilience and effectiveness
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of security frameworks in the face of increasingly dynamic and sophisticated cyber challenges.

The structure of this paper is as follows: The second section presents the process of preparation and
normalization of training and validation data for machine learning (ML) and deep learning (DL) models
aimed to detecting attacks and intrusions. The first step in this process involves collecting training data.
The second step involves the preparation and normalization of the data so that it can be used effectively
by the models. The third phase involves selecting the most relevant and crucial features for predicting
attacks, an essential step, particularly for ML algorithms. Finally, the last step is dedicated to training
and evaluating the model.

The third section focuses on the metrics commonly used to assess the performance of ML and DL models.
The fourth section provides detailed information on the data sources, the information presented, and the
topologies used to collect training datasets for the models.

The fifth section presents a list of related works on attack classification and detection using machine
learning and deep learning models. Finally, the last section discusses future research.

2. Implementation Process of ML and DL Based Intrusion Detection Systems

Intrusion detection poses a significant challenge due to the constantly evolving nature of cyber threats.
Machine learning (ML) and deep learning (DL) techniques present a promising solution to tackle this
issue. The following method outlines a standard approach, from data collection to the operational
implementation of an intrusion detection system, to create robust and adaptive detection frameworks.
Data collection and preprocessing : The first step involves collecting relevant data from diverse
sources, ensuring the inclusion of both normal and intrusion data to maintain a balanced dataset. Once
data is collected, preprocessing is essential, which includes cleaning the data by removing missing or outlier
values and correcting any inconsistencies. Data transformation follows, normalizing numerical data and
encoding categorical variables as needed.

After data collection and preprocessing, one of the critical challenges that arises concerns the distribution
of classes within the datasets.

Unbalanced datasets can severely affect machine learning performance, as algorithms tend to favor the
majority class and produce biased evaluations. Balancing techniques offer potential solutions, but each
comes with trade-offs. Undersampling reduces the size of majority classes, which may cause information
loss, while oversampling methods such as SMOTE can increase the risk of overfitting by replicating
minority patterns. Recent studies confirm that these strategies have a strong impact on performance
metrics. For instance, applying SMOTE to the CSE-CIC-IDS2018 dataset increased Recall for minority
attacks like FTP and SSH brute force by nearly 15%, although it slightly reduced Precision due to
synthetic data variability.[1]. These results highlight the need to adapt preprocessing strategies depending
on whether false positives or false negatives are more critical in the IDS context [2] [3]

Feature selection and Detection Latency: Feature selection is a crucial step to identify the most
relevant features for intrusion detection. Several techniques can be used for this purpose, including
Information Gain (IG), Gain Ratio (GR), ReliefF, Symmetric Uncertainty, Chi-square, and ANOVA
(F-test). The comparative analysis of these methods is summarized in table 1.

After feature selection, the model training and evaluation phase begins, where the dataset is divided
into training, validation, and test sets. Appropriate ML or DL algorithmsare chosen and trained. Model
performance is evaluated using metrics like accuracy, recall, and F1-score, with an emphasis on improving
hyperparameters.

Finally, continuous validation and refinement are essential to sustaining the effectiveness of the system.
This involves monitoring performance in real-world conditions, collecting feedback for model refinement,
and adapting the system to address emerging threats.
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Table 1. Comparative analysis of feature selection methods in IDS

Method

Description

Strengths

Limitations

Information Gain (IG)

Measures entropy
reduction with respect
to target variable.

Simple, effective,

widely used.

Biased toward
attributes with many
values.

Gain Ratio (GR)

Normalized IG to

reduce bias.

Corrects IG bias, good
for IoT /SDN.

Less frequently applied;
favors attributes with
few values.

ReliefF

Evaluates feature qual-
ity by distinguishing
similar instances of dif-
ferent classes.

Captures complex
dependencies; robust.

Higher
cost.

computational

Symmetric Uncertainty | Normalized mutual | Symmetric, normalized | Rarely used explicitly
information (balanced | measure of association. | in IDS experiments.
measure).

Chi-square Tests independence | Effective for categorical | Requires discretization

between feature and
class label.

features; efficient.

of continuous variables.

ANOVA (F-test)

Compares group
means for continuous
variables.

Useful for continuous
attributes.

Assumptions of nor-
mality and equal vari-
ances.

feedback

r 3

Data Preprocessing

Model Traming and

Evaluation

Figure 1. Workflow for Implementing Machine Learning and Deep Learning Models

Figure 1 provides a structured framework for the development and deployment of ML and DL-based
intrusion detection systems, emphasizing data collection,data preprocessing, relevant feature selection,
and ongoing system refinement. It is important to highlight that each stage must be adapted to IDS-
specific requirements, particularly with regard to real-time preprocessing, balanced feature selection, and
continuous retraining.

Figure 1 illustrates the ML/DL workflow stages. It is important to highlight that each stage must
be adapted to IDS-specific requirements, particularly with regard to real-time preprocessing, balanced
feature selection, and continuous retraining.

2.1. IoT-Specific Adaptations for Intrusion Detection System

: The deployment of Intrusion Detection Systems (IDS) in Internet of Things (IoT) environments
introduces unique challenges that differ from traditional IT networks. IoT devices are resource-
constrained, rely on various communication protocols, and are exposed to both cyber and physical-layer
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threats. To ensure that Machine Learning (ML) and Deep Learning (DL) approaches are effective in IoT
ecosystems, several specific adaptations have been identified in the literature.

1. Resource limitations and lightweight models : IoT devices generally have limited processing
power, memory, and energy. As a result, complex deep learning architectures such as CNNs or large
ensembles, although accurate, are often impractical for edge deployment. Several studies emphasize the
need for lightweight solutions. For example, study [4] notes that CNNs and RNNs are powerful but resource
intensive, and therefore recommends hybrid approaches where DL is applied for feature extraction while
lightweight ML handles classification.

The study [5] stresses the importance of resource-efficient IDS for IoT devices and suggests compression
and optimization techniques.

2. Distributed and Federated Learning : Centralized training is often impractical in IoT due to
bandwidth and privacy concerns. Federated Learning (FL) has been proposed as an alternative, where
models are trained locally and only updates are aggregated. While not yet widely applied in IDS, its
potential is noted in study [3], which emphasizes distributed resilience in IDS for IoT frameworks.

3. Protocol Diversity and Heterogeneous Traffic Most datasets such as CICIDS2017, CSE-CIC-
IDS2018 do not represent IoT protocols such as Zigbee, Z-Wave, MQTT, or CoAP. The lack of protocol
diversity is acknowledged in [2], which calls for dataset enrichment to cover IoT traffic. Similarly, [6]
highlights the difficulty of building datasets that reflect IoT heterogeneity.

4. Physical and Device-Level Threats IoT devices are exposed to hardware-layer attacks such
as side-channel leakage, fault injection, and backdoors. [5] provides a taxonomy of ML / DL techniques
to detect vulnerabilities and discusses hardware-assisted mechanisms such as TPMs, PUFs, and ARM
TrustZone as complementary layers.

5. Evaluation Criteria for IoT IDS Beyond accuracy, IDS for IoT must be assessed on false positive
rate (FPR), inference latency, memory footprint, and energy consumption. As pointed out in [7], accuracy
alone can be misleading, especially for imbalanced datasets common in IoT scenarios.

In summary, intrusion detection for IoT requires shifting from accuracy-centric designs toward
lightweight, protocol-aware, resource-efficient, and hardware-conscious solutions. Integrating compression
techniques, federated learning, and protocol-specific feature engineering provides a foundation for practical
IDS in IoT ecosystems.

3. Performance Metrics for Evaluating ML and DL Techniques

In machine learning and data science, evaluating the performance of classification models is vital to ensure
their effectiveness and reliability. Classification tasks focus on predicting the category of a given data point,
and performance metrics offer a quantitative evaluation of how closely these predictions match the actual
class labels. Selecting and understanding performance metrics is essential to compare different models,
fine-tuning their parameters, and ultimately choosing the most suitable model for a specific application.
This section delves into various performance metrics used in classification.

Accuracy measures the proportion of correct predictions (true positives and true negatives) relative to
the total number of predictions.

TP +TN
TP+TN+ FP+FN

Accuracy =

(1)
Where:

o TP (True Positive): number of instances correctly classified as positive.

o TN (True Negative): number of correctly classified negative instances.

« FP (False Positive): number of instances incorrectly classified as positive.

o FN (False Negative): number of instances incorrectly classified as negative.
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Precision is defined as the ratio of correct positive results to the total number of positive results
predicted by the model. The mathematical function of precision is defined by the function below.

TP
Precision = ————— 2
recision =~ (2)
Recall refers to the ratio of valid positive outcomes to the total number of relevant samples. The
mathematical function of recall is defined by the function below.

TP
Recall = m (3)

Where:

o TP (True Positive): number of instances correctly classified as positive.
o FN (False Negative): number of instances incorrectly classified as negative.

The F1 score is a performance metric used in classification tasks that combines precision and recall
into a single value. It is especially useful when there is an imbalance between classes or when both false
positives and false negatives carry significant consequences. The mathematical function of the F1 score
is defined by the function below.

precision x recall

Fl-score = 2 x — (4)
precision + recall

Confusion matrix presents values for true positives, false positives, true negatives, and false negatives.
It allows us to understand, on one hand, the different errors made by a prediction algorithm, but more
importantly, to find the several types of errors committed. By analyzing them, it is possible to verify the

results that show how these errors occurred.

TPR

FPR

Figure 2. AUC-ROC Curve for Model Performance Evaluation
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Figure 3. Comparison of ROC and Precision—Recall Curves under Balanced and Imbalanced Class Distributions

ROC curve (Receiver Operating Characteristic curve) and AUC curve (Area Under the Curve): The
ROC curve shows the true positive rate versus the false positive rate. The AUC measures the model’s
ability to distinguish between classes.

The ROC curve is plotted with TPR (True Positive Rate) against the FPR (False Positive Rate) where
TPR is on the y-axis and FPR is on the x-axis.

Accuracy is widely used to evaluate models, but it can be misleading in imbalanced datasets where
predictions are dominated by the majority class. For example, study [1] shows that in intrusion detection,
a model with 99% accuracy may still fail to detect rare and critical attacks such as U2R or Web-based
intrusions. In such cases, Recall is more informative because it reflects the ability to detect minority
classes. Precision, on the other hand, is essential when minimizing false alarms is a priority, as in the real-
time monitoring of critical infrastructures [3]. The F1 score provides a compromise between precision and
recall, but its usefulness decreases when the class distributions are heavily skewed, as noted in analyses
of the CSE-CIC-IDS2018 dataset [1]. To capture trade-offs more effectively, researchers often rely on the
ROC and AUC curves, which illustrate the balance between the True Positive Rate (TPR) and the False
Positive Rate (FPR), Figure 3. However, even a high AUC does not always imply practical utility, since
small increases in FPR can overwhelm security analysts with excessive false alerts [2] [6].

4. Datasets used to train ML and DL models

This section explores the popular datasets used to train and test Intrusion Detection Systems (IDS),
security algorithms, and other cybersecurity and anomaly detection applications.

The CICIDS2017 dataset was created by the Canadian Institute for Cybersecurity (CIC) and
network traffic captures with simulated attacks and normal traffic. This dataset covers several types
of attacks, such as Denial of Service (DoS), Identity Theft (Impersonation), SQL Injection attacks,
and brute-force attacks. This dataset is commonly used to evaluate IDS performance for cybersecurity
research.
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Attack-Network e Y

Figure 4. Architecture of the CICIDS2017 Dataset Generation Framework

Figure 4. illustrates the topology used to simulate attack tools and benign activities in the CICIDS2017
dataset. Although diverse, its laboratory generation limits its representativeness for noisy large-scale IoT
networks.

The CTU-13 is a dataset compiled by the research group at the Czech Technical University (CTU).
It has network traces generated by both real and simulated attack scenarios, with a focus on malicious
activities associated with botnets. CTU-13 is widely used for research on intrusion and anomaly detection
as it covers several types of botnet behaviors.

The KDD CUP 99 is one of the oldest and most widely used datasets for intrusion detection research
created from the DARPA Intrusion Detection Evaluation Program in 1998. The dataset has network
connections labeled as normal or malicious, covering a wide range of attacks. Although KDD CUP 99 is
still used, it has been criticized for its inherent biases and the presence of redundant data, leading to the
development of newer datasets like NSL-KDD.

The NSL-KDD is an enhanced version of KDD CUP 99, designed to address some of the weaknesses
of the original dataset. NSL-KDD is more representative of real-world scenarios and is widely used to
evaluate the performance of intrusion detection systems.

The CSE-CIC-IDS2018 dataset is a collaboration between the Canadian Institute for Cybersecurity
(CIC) and the Communications Security Establishment (CSE) of Canada. It has labeled network traffic
captures, covering several types of attacks such as denial-of-service attacks, SQL injection attacks, and
brute-force attacks. This dataset is used to train and test modern IDS and security systems.

Figure 5. Architecture of the CSE-CIC-IDS2018 Intrusion Detection Framework
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Figure 5. illustrates the topology used to simulate attack tools and benign activities in the CSE-
CIC-IDS2018 dataset This dataset includes a wider diversity of attacks (DDoS, botnets, web attacks).
However, it still lacks native IoT traffic patterns such as Zigbee or MQTT, limiting its direct applicability
to IoT deployments.

The UNSW-NB15 dataset consists of raw network packets that were generated by a tool called IXTA
Perfect Storm in the Cyber Range Laboratory of the Australian Center for Cyber Security (ACCS). It
has a mix of modern normal activities and synthetic contemporary attack behaviors. The dataset includes
nine types of attacks, including Fuzzers, Analysis, Backdoors, Denial of Service (DoS), Exploits, Generic,
Reconnaissance, Shellcodes, and Worms. The tools Argus and Bro-IDS were used, and 12 algorithms
were developed to generate 49 features along with the class label. The dataset has a total of 2,540,044
records stored in four CSV files, with the training set and the test set having 175,341 and 82,332 records,
respectively. The dataset has been used in different studies for intrusion detection, cyber forensics, privacy
preservation, and threat intelligence approaches in different systems such as network systems, the Internet
of Things, SCADA, Industrial IoT, and Industry 4.0.

As shown in Table 2, modern datasets such as CSE-CIC-IDS2018 and UNSW-NB15 offer broader attack
diversity and greater realism than older datasets such as KDD Cup 99 and NSL-KDD.

All datasets summarized in this paper are publicly available and were originally introduced in the cited
studies. While this review does not present new experiments, it offers a consolidated overview of the
characteristics of the dataset as reported in the literature. Although these datasets play a crucial role in
ensuring reproducibility and enabling comparative analysis, they are not fully representative of real-world
intrusion detection scenarios. Table 2 presents the analysis and highlights four key limitations that should
guide the selection of datasets for IDS research. To assist researchers in choosing appropriate datasets for
training ML /DL models, we outline below four major challenges that limit the applicability of existing
datasets to real-world IDS scenarios.

e Severe Class Imbalance: Many widely used datasets suffer from skewed class distributions. For
example, NSL-KDD and CICIDS2017 are dominated by DoS traffic, while minority classes such as
U2R or web-based attacks are underrepresented, leading to biased classifiers [8]. Studies show that
oversampling and SMOTE techniques improve recall on minority classes but often at the expense
of precision [8], highlighting the challenge of designing balanced IDS models.

e Lack of Realistic Network Environments: Several datasets, including CICIDS2017 and CSE-
CIC-IDS2018, were generated in controlled laboratory settings [1]. While they provide diverse
attack types (e.g., brute force, DDoS, infiltration), they fail to capture the heterogeneity and
unpredictability of real IoT and Industry 4.0 environments. IoT-focused datasets such as Bot-IoT
[2] or those generated in testbeds [6, 4] attempt to address this gap but often remain small in scale
or limited in attack diversity.

« Aging and Obsolescence: Legacy datasets such as KDD Cup 99 and NSL-KDD are still frequently
used despite their outdated traffic patterns and unrealistic artifacts [3]. Their continued use risks
producing IDS models that perform well in benchmarks but fail against modern attack vectors,
particularly in IoT ecosystems [5].

e Absence of Standardized Evaluation Protocols: Different studies use the same datasets with
inconsistent preprocessing, feature selection, and train—test splits, making results difficult to compare
[8]. For example, some works use random splits while others rely on temporal splits, producing
divergent outcomes. This lack of uniformity undermines the reliability of reported accuracy metrics
across IDS literature.
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Table 2. Enhanced comparative analysis of public intrusion detection datasets

Dataset Realism / | Attack Scalability IoT Focus Imbalance Limitations Recommended Use Case /
Recency Diversity Severity Attack types included
KDD Cup 99 Outdated (1999) DoS, U2R, R2L, | High No High Redundant Baseline benchmarking
Probe records, unrealistic | only; avoid for modern
traffic IDS. Attacks: DoS, privilege
escalation (remote-to-local
and user-to-root), probing.
NSL-KDD Moderate (2009) Similar to KDD | Medium No High Still outdated, | Academic teaching and
Cup lacks IoT attacks algorithm prototyping.
Attacks: DosS, privilege
escalation (remote-to-local
and user-to-root), probing.
CICIDS2017 Recent (2017) Diverse (DoS, | Medium Partial High (dominated | Generated in lab, | General IDS benchmarking;
Heartbleed, SQLi, by DoS) not fully real- | limited IoT relevance.
Brute force, world Attacks:  DDoS  (LOIC),
Botnet, etc.) Heartbleed, SSH brute force,
SQL injection, botnet (Ares),
XSS, infiltration.
Reference: https://www.unb.
ca/cic/datasets/ids-2017.
html
CSE-CIC-IDS2018 | Very recent (2018) | Broad (DoS, | High Limited Moderate Lacks  emerging | Evaluating ML/DL models on
brute-force, ToT-specific traffic | multi-class attacks. Attacks:
web, infiltration, DDoS, Brute force, DoS, Web
botnet) attack, Infiltration, Botnet,
PortScan.
Reference: https://www.unb.
ca/cic/datasets/ids-2018.
html
UNSW-NB15 Contemporary 9 attack types | High Limited Moderate Synthetic, not | Suitable for modern IDS
(2015) (Dos, Exploits, ToT-native and cyber-forensics. Attacks:
Reconnaissance, Fuzzers, Analysis, Backdoors,
Worms, etc.) DosS, Exploits, Generic,
Reconnaissance, Shellcode,
‘Worms.
CTU-13 Contemporary Botnet-focused Medium No Moderate Limited to botnet | Botnet detection studies.
(2011) scenarios Attacks: Virut, Menti, Rbot,
Murlo, Sogou, NSIS, Neris.
IoT-specific Recent (2020+) IoT-relevant Medium Strong Moderate Often small-scale, | IDS in IoT/Industry 4.0;

datasets (e.g.,
Bot-IoT)

(botnets,
scanning,
force)

brute

limited device

diversity

anomaly detection in con-
strained devices. Attacks: IoT
botnet traffic (Mirai), scan-
ning, brute-force, DoS.

8
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5. Related works

This section reviews a selection of research papers focused on enhancing cybersecurity in IoT environments
and network traffic analysis. The works discussed contribute to the improvement of digital corpus analysis,
attack classification, and detection using Machine Learning (ML) and Deep Learning (DL) models.

The selected papers highlights various approaches to strengthening security measures in IoT ecosystems
and network traffic monitoring. They highlight how ML and DL techniques are being applied to address
the unique challenges posed by IoT devices and the complex nature of modern network traffic. These
studies collectively highlight ongoing efforts to develop more robust and efficient cybersecurity solutions
in the rapidly evolving landscape of IoT and network security.

[2] The study demonstrates that voting techniques (hard and soft voting) enhance the performance
of algorithms such as Random Forest (100 estimators), Decision Tree, KNN (K=5), SVM, Logistic
Regression, and XGBoost (500 trees, learning rate 0.1), achieving 100% accuracy with the XGBoost
model. The models were trained to detect Bot-IoT and Ton-ToT attacks. Bot oversampling and
undersampling techniques are used to balance classes with a similar proportion of labels. In this study
the GNN algorithm is recommended to be used for the detection and classification of such attacks.

[6] The study focuses on capturing the network traffic of IoT devices and analyzing their behavior in
various states and during targeted attacks. The data collected are utilized for several applications including
the identification of IoT devices where the data set trains machine learning algorithms to recognize
different types of IoT devices and their behaviors. Behavioral analysis is conducted to understand how IoT
devices operate in different scenarios, enabling the detection of unusual or suspicious behavior. Intrusion
detection systems are developed using the dataset to identify malicious activities and unauthorized devices
within IoT networks. Furthermore, researchers evaluated the performance of the Random Forest classifier
in identifying devices and their types while also assessing the transferability of trained models across
different laboratories. The dataset also facilitates studies on the transferability of trained models across
diverse datasets which helps evaluate the generalization of security measures in various IoT configurations.
To further their work, the researchers plan to test the case study on their own datasets and devices that
were not included in this study. They aim to expand their research to include IoT devices using Zigbee
and Z-Wave protocols for profiling and intrusion detection. They also intend to broaden the categories
used in this experiment for a more granular analysis and to create a comprehensive dataset on IoT attacks
to facilitate experimentation with anomaly detection in both benign and malicious traffic.

[1] The study improves IDS by finding crucial features to distinguish malicious and benign network traffic,
particularly effective for FTP, SSH, WEB, XSS, and SQL attack traffic using the CSE-CIC-IDS2018
dataset.

The proposed methodology consists of several phases. Data preprocessing is first performed to remove
invalid values, transform categorical features into numerical ones, and reduce data volume in order to
optimize storage and processing time. Next, feature selection is applied to enhance classification and
prediction performance through a workflow that incorporates six methods: information gain, gain ratio,
Relief, symmetric uncertainty, chi-squared, and ANOVA. For each data subset, normalized scores are
computed and compared against a defined threshold to retain the most relevant features. Finally, five
classification algorithms are evaluated using the Orange tool: Logistic Regression (LR) as a robust
baseline, Naive Bayes (NB) with categorical features, Support Vector Machine (SVM) with an RBF
kernel, Decision Tree (DT) with restricted depth to prevent overfitting (achieving 0.99 accuracy), and
Random Forest (RF) with 100 trees and a maximum depth of 20. These models are applied to classify
benign and malicious traffic across the selected subsets. The researchers see that the accuracy of the
algorithms slightly improves with the increase in the number of features. However, ehighly satisfactory
results were obtained in most cases with a small feature number. Future research will focus on different
aggregation techniques that could replace the mean score in calculating the most crucial features. [3]
In the context of Industry 4.0, this study proposes a new intrusion detection system that uses machine
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learning to find routing attacks against the RPL protocol. Network traffic is generated by the Cooja-
Contiki simulator for various topologies, then transformed into CSV files. The researchers developed a
process to create relevant and optimized datasets, using Random Forest (RF) methods and Pearson’s
correlation to select the most relevant features, eliminate redundancies and perform specific labeling for
each type of attack. The results show that for binary classification, the Decision Tree (DT), Random
Forest (RF), and K-Nearest Neighbors (KNN) algorithms achieved the best performance with accuracy
exceeding 99%. For multiclass classification (7 classes), KNN obtained 99% accuracy with a 98% detection
rate, closely followed by RF and DT. RF proved to be the most balanced choice in terms of performance
and execution time. Based on these results, the researchers proposed RF-IDSR, an RF-based IDS for
Industry 4.0 networks that use RPL. This system aims to provide fault tolerance and intrusion while
detecting attacks. In addition, they introduced slight improvements to the RPL protocol to prevent
specific attacks and network failures.

For future work, the researchers plan to implement RF-IDSR and evaluate its performance in both
simulation and experimental environments. They also intend to generate new datasets that incorporate
the proposed improvements and extend their study to other types of attacks against RPL.

[4] The paper provides an overview of several types of intrusion detection systems (IDS) and discusses
the advantages of using machine learning (ML) and deep learning (DL) approaches for IDS.Performance
metrics used to evaluate IDS are discussed, including accuracy, precision, recall, and F1 score.
Suggestions for future work include using real-time training on live network data, developing hybrid
ML-DL models, testing against zero-day attacks, and exploring distributed processing frameworks like
Spark.

[8] This study presents a comprehensive survey-based classification of Intrusion Detection Systems

(IDS), focusing on the taxonomy of machine learning-based IDS (ML). It includes a comparative analysis
of various ML algorithms employed in IDS implementations, highlighting their strengths and weaknesses.
In addition, it addresses key research challenges in the field, providing insight into the complexities and
limitations faced by current ML techniques to improve IDS effectiveness and IDS reliability.
[7] The study focuses on intrusion detection systems to classify network traffic as normal or malicious
using ML techniques trained on the KDD-CUP-99 data set. The study analyzes the following ML
algorithms: LR, Decision Tree, K-Nearest Neighbor, Naive Bayes, Bernoulli Naive Bayes, Multinomial
Naive Bayes, XG-Boost Classifier, AdaBoost, Random Forest, SVM, Rocchio Classifier, Ridge, Passive-
Aggressive Classifier, ANN, and Perceptron. The results show that SVM achieves the highest accuracy at
98.08%. Future work will focus on improving the adaptability of these classifiers to large-scale datasets.
MFFNN, CNN, and RNN, as well as ensemble learning models and extreme learning machines, have
become unavoidable directions for future research.

[5] Bin Hulayyil et al. (2023) present a comprehensive analysis of potential vulnerabilities in IoT
architectures across the hardware, network, and application layers. The authors propose a taxonomy
of machine learning (ML) and deep learning (DL) techniques that have been employed to detect
vulnerabilities, threats, and attacks in the IoT ecosystem, while also reviewing the most recent detection
frameworks. Their study concludes that ML and DL approaches are essential for strengthening IoT
security by ensuring integrity, availability, authentication, and authorization. In addition to software- and
network-level threats, the authors emphasize hardware-layer vulnerabilities such as side-channel attacks
(power analysis, electromagnetic leakage, timing attacks), fault injection (voltage glitches, laser fault
injection), and hardware backdoors, which are particularly critical in resource-constrained IoT devices. To
mitigate these risks, hardware-assisted mechanisms such as Trusted Platform Modules (TPMs), Physical
Unclonable Functions (PUFs), and trusted execution environments (e.g., ARM TrustZone) are discussed as
promising solutions. For future directions, the authors highlight two key research challenges: (i) enhancing
IoT system intelligence by adopting advanced ML /DL techniques for proactive vulnerability detection,
and (ii) addressing resource constraints in IoT devices by optimizing computations, employing data-
sharing mechanisms, and applying compression techniques to reduce the footprint of ML/DL models.
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[9] The paper presents a framework for implementing Machine Learning (ML) and Deep Learning
(DL) techniques aimed at improving Intrusion Detection Systems (IDS) in the context of Network Traffic
Monitoring and Analysis (NTMA). The study uses the CSE-CIC-IDS2018 database as the training dataset
for the CNN model. The CNN model achieves an accuracy of 92% after 30 iterations, highlighting its
potential for intrusion detection.

For future work, the authors propose testing the studied model in a real NTMA environment to confirm
its performance under concrete operational conditions and evaluate its practical applicability.

[10] the study proposes a robust network intrusion detection system using ML and DL models.

The Decision Tree classifier achieves a remarkable accuracy of 99.05% and is particularly adept at
finding various attack categories. Ensemble models also perform well, with Random Forest achieving
98.96% accuracy, Adaboost at 97.87%, and XGBoost at 98.08%. The K-Nearest-Neighbor (KNN) classifier
achieves its best performance with K=7, reaching an accuracy of 95.58%. The DL model, including two
dense layers with ReLU activation and a third layer with Sigmoid activation, reaches an accuracy of 98.44%
using the ADAM optimizer, with an 80:20 Train-Test Split Ratio. Notably, XGBoost demonstrates 95%
accuracy in detecting network attack exploits, while Random Forest excels in finding Fuzzers (90%),
Generic attacks (99%), and Reconnaissance attacks (79%).

As shown in Table 3, most studies report high accuracy (more than 95%), but very few provide
crucial operational metrics such as False Positive Rates (FPR), training time, or inference latency. This
omission limits the practical relevance of the reported results, since FPR is critical in real deployments
where excessive alerts overwhelm security analysts. Furthermore, computational cost is rarely discussed,
although it is a determining factor for deploying IDS models in IoT and edge environments. Lightweight
ML models (RF, DT, KNN) generally offer fast inference with limited resource consumption, while
ensemble and deep learning models yield higher accuracy but are unsuitable for constrained devices
due to training and inference overheads.

Another critical gap is generalizability: most studies train and evaluate on a single dataset, without testing
robustness across unseen attack variants or different environments. This raises concerns about dataset
bias and overfitting. Only a few works discuss cross-dataset validation or domain adaptation.

Algorithmic Strengths and Weaknesses in IDS Contexts

Although numerous related works provide accuracy values for different machine learning (ML) and deep
learning (DL) approaches, a deeper algorithmic analysis is essential to understand why certain methods
consistently perform better in intrusion detection systems (IDS), especially within IoT environments.
Tree-based models such as Decision Trees (DT) and Random Forests (RF) are frequently reported as
achieving strong results across diverse datasets, often exceeding 99% accuracy [1]. Their robustness to
noise, ability to handle both categorical and continuous features, and interpretability make them well
suited for network intrusion tasks. In addition, RF’s ensemble nature reduces overfitting and provides
stable performance across attack types such as FTP, SSH, and SQL injection. However, these models
may become computationally expensive as the dataset grows and are less adapted to continuous traffic
streams in real-time IoT monitoring.

Ensemble methods such as XGBoost and voting classifiers further enhance detection performance by
aggregating multiple learners. Studies on IoT-focused datasets confirm that boosting and ensemble
strategies achieve superior precision and recall for complex attacks, including botnets and denial-of-
service [2]. Nevertheless, the increased computational cost makes these models more suitable for IoT
gateways or cloud deployment than for highly resource-constrained devices.
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Table 3. Comparative synthesis of ML/DL approaches for IDS in IoT

Ref. Dataset Algorithm| P(?Ar:formance Complexity & Gene'ral.lzal.)lhty & Explainability (XAI)
/ Model (Acc./FPR) Resource Usage Limitations
1] CSE-CIC- Feature 99% of all met- | Low (traditional ML) Limited to dataset; | Not addressed
Gocs & | IDS2018 selection rics for the models no cross-validation; no
Johanydk + RF, | (RF, DT, KNN) scalability details
(2023) DT,
SVM, LR
[2] Jarjis | Bot-IoT, Ton- | Voting Acc. 100% | High (ensemble costly at edge) Risk of overfitting; not | Not addressed
et al. | IoT ensemble (XGBoost) tested on unseen IoT
(2022) (RF, DT, traffic
KNN,
SVM,
XGBoost)
simulator cooja-contiki 3.0
[3] Med- | Cooja-Contiki RF, DT, | Acc. 99% 6LoWPAN-IoT Narrow scope; simula- | Not addressed
jek et al. | (simulation) KNN VM WITH 48 GB RAM, 8 VCPUs | tion only
(2021)
[4] CICIDS2017, Hybrid DL ; ML; hybrid | High (DL resource intensive) Not evaluated across | Not addressed
Sharafali | CTU-13, etc. ML-DL best datasets;  unsuitable
et al. (CNN, for IoT edge
(2022) RNN,
LSTM,
RF,
SVM)
[6] Dad- | IoT dataset | RF, DT, | Acc. 98% | Medium (tree ensembles) Poor transferability; | Not addressed
khah (lab, 60 devices) | XGBoost, | (AdaBoost best) laboratory-only
et al. AdaBoost,
(2022) KNN
[7] KDD CUP-99 LR, DT, | SVM highest with | Low (traditional ML) Outdated dataset; no | Not addressed
Tripathy NB, Acc. of 98.08%) IoT focus; dataset bias
& KNN,
Behera SVM, etc.
(2023)
[9] CSE-CIC- CNN Acc. 92% (30 iter- | High (DL training intensive) Not tested in real | Not addressed
Azeroual | IDS2018 ations) networks; Limited
et al. explainability
(2022)
[10] UNSW-NB15 DT, RF, | Acc. 95-99% (DT | Medium to High (DL needs GPU) No cross-dataset vali- | Not addressed
Kumar AdaBoost, | best), RF FPR dation; reproducibility
et al. XGBoost, | 10% details missing
(2022) Dense NN
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In contrast, Naive Bayes remains attractive for IoT edge devices due to its simplicity and low
computational cost. However, its assumption of feature independence is rarely satisfied in network traffic,
which can lead to suboptimal accuracy, typically below ensemble or tree-based models [7]. Similarly,
Support Vector Machines (SVM) have shown high accuracy (up to 98%) in classic datasets [7], particularly
when using nonlinear kernels. Yet, their poor scalability with large-scale data and the complexity of kernel
tuning limit their applicability to modern high-volume IoT traffic.

Deep learning models have also been widely explored. Convolutional Neural Networks (CNNs), for
example, achieved promising results on CSE-CIC-IDS2018, reaching around 92% accuracy after 30
iterations [8]. However, this plateau suggests limitations: CNNs excel at extracting spatial patterns but
lack sequential memory, making them less effective for detecting long-term traffic dependencies. Moreover,
their training complexity and reliance on GPUs restrict their feasibility in IoT edge deployments.
Recurrent Neural Networks (RNNs) and Long Short-Term Memory networks (LSTMs) better capture
temporal correlations in traffic sequences [4], which is crucial for identifying slow or stealthy attacks, but
they suffer from high training cost and convergence challenges.

Overall, the choice of algorithm reflects a trade-off between accuracy, interpretability, and resource
efficiency. Lightweight ML models such as RF, DT, or Naive Bayes remain attractive for IoT edge nodes,
where interpretability and speed are critical. In contrast, DL models such as CNNs and LSTMs offer higher
capacity for complex and zero-day attacks but require deployment on cloud servers or more powerful
gateways. Hybrid ML-DL frameworks, combining deep feature extraction with efficient ML classifiers,
have emerged as a promising direction to balance these trade-offs [4, 10].

Hybrid ML-DL models will be implemented in two stages: deep learning architectures such as CNNs
or autoencoders are first employed for feature extraction and dimensionality reduction. The resulting
representations are then fed into machine learning classifiers, including Random Forest, SVM, or
XGBoost, to perform the final decision making. This approach leverages the capacity of DL to capture
complex high-level features while benefiting from the interpretability and efficiency of ML classifiers.
Figure 6 shows this complete pipeline, where preprocessing, DL feature extraction, ML classification,
and evaluation form a unified IDS framework.

Table 4. Comparative strengths and weaknesses of algorithms in IDS/ToT contexts

Algorithm Strengths Weaknesses Suitable
IDS/IoT Use
Cases
RF /DT Interpretable, Sensitive to class | Multi-class (FTP,
robust, suitable for | imbalance SSH, SQL) [1]
IoT edge
CNN Captures complex | Performance Brute-force attack
patterns plateau, detection on large
computationally datasets [8]
expensive
RNN / LSTM Sequential traffic | Heavy training | Detection of per-
analysis cost sistent traffic pat-
terns [4]
Naive Bayes Ultra-fast, Unrealistic Low-power ToT
lightweight independence edge devices [7]
assumption
XGBoost / Ensem- | High accuracy, | Very computation- | Cloud IoT, gate-
bles Learning resilience ally expensive ways [2]
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Figure 6. DL feature extraction followed by ML classification

6. Perspectives and future work

Future cybersecurity research is expected to advance in several key directions. A major avenue concerns the
application of Graph Neural Networks (GNNs) for cyberattack detection and classification [2], supported
by case studies on diverse datasets, including underexplored sources, and extended to IoT devices using
Zigbee and Z-Wave protocols [6]. Parallel efforts will focus on constructing comprehensive IoT attack
datasets to strengthen anomaly detection [6], as well as on exploring advanced aggregation techniques
for identifying salient features [1]. Research will also prioritize real-time training with live network data,
hybrid ML-DL models, robustness against zero-day attacks, and distributed processing frameworks such
as Spark [4]. In the hybrid paradigm, deep models such as CNNs or autoencoders serve for feature
extraction and dimensionality reduction, while machine learning classifiers such as Random Forest, SVM,
or XGBoost perform the final decision-making. This design leverages the representation power of DL and
the interpretability and efficiency of ML, resulting in a unified IDS pipeline (Figure 6) [3, 8, 4]. Finally,
enhancing classifier adaptability to large-scale datasets and assessing models such as MFFNN, CNN,
RNN, ensemble learning, and extreme learning machines remains a crucial challenge [7].

In the IoT context, research priorities include enhancing system intelligence for vulnerability detection
through advanced ML /DL methods, while simultaneously improving resource efficiency by addressing time
and memory constraints [5]. These challenges cannot be overcome without reconsidering the datasets and
evaluation practices that underpin the IDS models. Dataset realism and performance metrics are therefore
central to assessing the applicability of ML/DL approaches under realistic ToT conditions. Accordingly,
future work must extend beyond algorithmic refinements to include dataset representativeness, evaluation
standards, and deployment strategies.

Datasets and Realism : Although benchmark datasets such as CICIDS2017 and CSE-CIC-IDS2018
offer a diversity of attack types, they remain limited by class imbalance, synthetic traffic, and insufficient
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IoT-specific protocols. Standardized datasets capturing heterogeneous protocols (e.g., Zigbee, BLE,
MQTT), constrained device behaviors, and real-world noise are essential for meaningful IDS evaluation.

Metrics Beyond Accuracy : Accuracy alone is insufficient to capture IDS utility. Metrics such as
false positive rate (FPR), detection latency, and resource usage (CPU, memory, energy) are critical in
IoT deployments. Developing resource-aware evaluation criteria tailored to IoT IDS should therefore be
a priority.

Continuous Learning and Concept Drift : IDS must adapt to evolving threats. Promising
directions include semi-supervised and online learning techniques capable of addressing concept drift
without relying solely on extensive labeled datasets.

Model Compression and Resource-Aware Deployment: Strict memory and computational
limits on the IoT edge motivate the research into model compression. Techniques such as pruning and
quantization applied to Random Forests, Decision Trees, or lightweight neural networks should aim to
preserve detection rates above 95%, thus enabling deployment on microcontrollers.

IoT-Specific Adaptations: Future IDS designs must account for protocol heterogeneity, bandwidth
constraints, and limited energy availability. Approaches such as federated learning and hybrid
ML-DL—where feature extraction is performed in the cloud and lightweight classification at the
edge—offer promising avenues.

Reproducibility and Open Science: A major limitation of existing work lies in its lack of
reproducibility, with many studies omitting preprocessing details, hyperparameters, or dataset splits.
Advancing IDS research requires explicit publication of scripts, models, and configurations in open
repositories to foster transparency and replicability.

In summary, advancing IDS for IoT requires shifting from generic algorithmic propositions to
concrete and actionable solutions: realistic and standardized datasets, evaluation metrics tailored to
IoT constraints, efficient continuous learning strategies, and resource-aware model optimization. These
directions specifically address the weaknesses identified in this study and outline a structured roadmap
for impactful future research.

7. Conclusion

In conclusion, the reviewed body of work makes significant contributions to cybersecurity, particularly
in intrusion detection and prevention for IoT environments and in network traffic analysis. Using both
traditional ML and modern DL approaches, these studies address the evolving nature of cyber threats
while underscoring the importance of realistic datasets, advanced algorithms, and meaningful performance
metrics. Hybrid models that combine the representational power of DL with the interpretability
of ML emerge as a promising avenue, particularly for feature extraction and classification tasks.
Likewise, the introduction of novel datasets such as CICIoT2023 and UNSW-NB15, together with the
exploration of diverse attack scenarios, enhances the robustness and adaptability of IDS. Common
research trends include optimizing ML models, investigating alternative aggregation strategies, and
applying computational intelligence methods. Equally emphasized is the need for real-world testing and
validation to ensure practical deployment. Some works focus on specific IoT attack categories, while
others broaden their scope to encompass general challenges in ML-based IDS, including real-time training,
model retraining against zero-day threats, and distributed frameworks such as Spark. Collectively, these
contributions provide valuable insight and methodologies that advance IDS development and lay the
foundation for future research in the continuously evolving landscape of cybersecurity.
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