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Abstract This paper offers an in-depth investigation into the Probability Weighted Moments (PWMs) methodology
for estimating parameters of the Median Based Unit Weibull (MBUW) distribution. The author delves into a thorough
comparison of the commonly employed first-order PWMs against more advanced higher-order PWMs. The analysis
highlights the significant benefits associated with adopting these more sophisticated techniques, particularly in terms of
accuracy and reliability in parameter estimation. In addition to this comparative analysis, the author derives the asymptotic
distribution of the PWM estimator, which provides a theoretical foundation for the results and enhances the robustness
of the conclusions. To further illustrate the practical implications of the findings, the author includes a detailed real data
analysis that exemplifies the effectiveness of the proposed methodology. Through these examples, the author emphasizes the
relevance of PWMs in real-world applications, demonstrating how this approach can lead to improved parameter estimates
when working with the MBUW distribution.
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1. Introduction

Imam Attia was the first to introduce Median Based Unit Weibull distribution (MBUW) [1]. Given a random
variable y that is distributed as Median Based Unit Weibull distribution (MBUW), the PDF, CDF, and quantile
functions are as follows:

f(y) =
6

αβ

[
1− y

1

αβ

]
y(

2

αβ −1), 0 < y < 1, α > 0, β > 0 (1)

F (y) = 3y
2

αβ − 2y
3

αβ , 0 < y < 1, α > 0, β > 0 (2)

y = F−1(y) =

{
−.5
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[
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]
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[
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])
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}αβ

(3)

Various methods are employed to estimate the parameters of a distribution. Maximum Likelihood Estimation
(MLE) is popular because it leads to efficient, asymptotically minimum variance estimators, although these

∗Correspondence to: Iman M. Attia (Email: imanattiathesis1972@gmail.com). Department of Mathematical Statistics, Faculty of Graduate
Studies for Statistical Research, Cairo University, Egypt.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2026 International Academic Press
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estimators may not necessarily be unbiased. The method of moments is straightforward to apply and can serve
as starting values for the numerical procedures associated with MLE.
[2] advocated for Probability Weighted Moments (PWMs) and initiated their use in hydrology for small sample
sizes, as MLE does not always perform well with limited data. PWMs are a leading alternative to method of
moments (MOMs) and MLE for fitting statistical distributions to data, especially those expressed in inverse form.
For instance, if y is a random variable and F represents the cumulative distribution function (CDF) for y, the value
of y can be expressed as a function of F ; y = y(F ). These distributions include the Gumbel, Weibull, and logistic
distributions, as well as lesser-known types such as Tukey’s symmetric lambda, Thomas’ Wakeby, and Mielke’s
kappa.
[3] advocated for PWMs, demonstrating their superior performance over other estimators through Monte Carlo
simulations. For most of these distributions, relatively simple expressions for the parameters can be derived,
as noted by [4], including several for which parameter estimates are not easily obtained using MLE or
conventional moments These distributions relate to various fields, including hydrology, resource management,
and the forecasting of weather parameters such as temperature, precipitation, wind velocity, floods, droughts, and
rainfall.
Many researchers have utilized PWMs, including [5] for estimating parameters of the type II extreme value
distribution, and [6] who applied the generalized form of PWMs to estimate the two-parameter Weibull distribution.
[7] introduced a new class of generalized PWMs for estimating parameters of the Pareto distribution, while [8]
implemented partial PWMs for censored data from the generalized extreme value distribution (GEV). Many authors
like [9, 10, 11, 12, 13, 14, 15, 16] have applied PWMs to various distributions, mainly focusing on the GEV.
PWMs are more robust than conventional moments in the presence of outliers in the data and yield more efficient
estimators from small samples regarding the underlying probability distribution. They are computed as expectations
of certain functions of a random variable. A significant advantage over conventional moments is that PWMs are,
by definition, linear functions of the ordered data, resulting in reduced sensitivity to sampling variability. Various
methods are employed to estimate the parameters of a distribution.
This paper is organized as follows: Section 2 introduces the methodology and the definition of Probability Weighted
Moments (PWMs). It explicates the classic PWMs method for parameter estimation. In this section the author
derives the PWMs for the Median Biased Unit Weibull (MBUW) and clarifies how to utilize these moments for
parameter estimation. The author also illustrates the derivation of the asymptotic variance for different estimators.
Section 3 demonstrates Monte Carlo simulation study to validate the premise of the paper. Section 4 explains the
results of the simulation study. Section 5 explores the application of this method in real data analysis. Section 6
comprehends the conclusions. Finally, Section 7 suggests the future work.

2. Materials and Methods:

2.1. Definitions of Probability Weighted Moments (PWMs)

The population PWM, as shown in equations (4-5), is defined as Mp,r,s, where p, r, and s are real numbers.

Mp,r,s = E(yp[F (y)]r[1− F (y)]s) =

∫ ∞

−∞
yp[F (y)]r[1− F (y)]sf(y)dy (4)

Mp,r,s = E(yp[F (y)]r[1− F (y)]s) =

∫ 1

0

[y]p[F (y)]r[1− F (y]sdF (5)

In practice, the value of p is chosen to be 1, and so M1,r,s are used to estimate the parameter. Here, M1,0,0 represents
the mean. If this mean exists, then M1,r,s exist for any real positive values of r and s. These values are often
restricted to small positive integers. Choosing p = 1 has the dual advantage of not unduly overweighting sample
values while also leading to a class of linear L-moments that exhibit asymptotic normality, [17, 18]. While only
small positive integers are needed to estimate the parameters of distributions, using real numbers, regardless of their
size, can offer significant advantages. This concept was explored by [19], who extended PWMs into generalized
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PWMs to include those with p ̸= 1. PWMs is a generalization of the classic method of moments when r = s = 0,
M1,0,0, are the non-central moments of order p. [20] modified the method to accommodate the models without
an analytic CDF and quantile function. [2] and [18] strongly advised employing M1,r,s due to the significantly
clearer relationships that exist between parameters and moments. This approach simplifies analysis and enhances
our understanding of these critical relationships. The empirical estimate of M1,r,s is typically less sensitive to
outliers and exhibits good properties, especially when the sample size is small. For convenience, several authors
chose to use p = 1 and non-negative integer values for r and s. This approach is referred to as the classic PWM
method. When p = 1, r and s are non-negative, the following equations (6-7) are defined:

αs = M1,0,s = E (y(1− F (y))s) , s = 0, 1, ..., &r = 0 (6)

βr = M1,r,0 = E (y[F (y)]r) , r = 0, 1, ...&s = 0 (7)

Both αs and βr are related by the following equation (8):

αs =

s∑
i=0

(−1)i
(
s

i

)
βi and βr =

r∑
i=0

(−1)i
(
r

i

)
αi (8)

For non-negative integers values of r and s that are as small as possible, both αs and βr are equivalent. [21] defined
the sample unbiased estimators for PWMs αs and βr as the followings in equation (9):

α̂s =
1

n

n−s∑
i=1

(
n−i
s

)(
n−1
s

) yi:n and β̂r =
1

n

n∑
i=1+r

(
i−1
r

)(
n−1
r

) yi:n (9)

The biased sample estimator for the PWM is defined as
M̂1,r,s =

1
n

∑n
i=1 yi:n(pi:n)

r(1− pi:n)
s, so it can be defined in equations (10-11) for:

α̂s = M1,0,s =
1

n

n∑
i=1

yi:n(pi:n)
0(1− pi:n)

s (10)

β̂r = M1,r,0 =
1

n

n∑
i=1

yi:n(pi:n)
r(1− pi:n)

0 (11)

Where pi:n = i−b
n , 0 ≤ b ≤ 1 or pi:n = i−b

n+1−2b , −0.5 ≤ b ≤ 0.5
[22] empirically concluded that moderated biased estimates of the PWMs could produce more accurate estimates
of upper quantiles. In this paper, M1,0,1 and M1,1,0 are used as a system of equations to estimate the parameters of
the Median Based Unit Weibull (MBUW) distribution. Higher moments M1,0,2 and M1,2,0 are also used to estimate
the parameters and compare the results with lower moments M1,0,1 and M1,1,0. Parameter estimation using PWMs
is carried out by equating the analytic expression of the population PWMs by the corresponding sample estimates
of PWMs and solving the resulting systems of equations in terms of the parameters.

2.2. Calculating PWMs for MBUW

2.2.1. Calculating M (1,0,1) : equations (12–20) Substitute in equation 4 to get: Mp,r,s = M1,0,1 = E(y [1−
F (y)]s) =

∫ 1

0
y [1− F (y)]sf(y)dy

M1,0,1 =

∫ 1

0

y
[
1−

(
3y

2

αβ − 2y
3

αβ

)]s 6

αβ
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1− y

1

αβ

]
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2

αβ −1)dy (12)

=

∫ 1

0
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(
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3

αβ

)]s 6
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αβ dy
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=

∫ 1

0
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Using binomial expansion in equation (13):[
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Now exchange integration with summation in equations (13) & (14):∫ 1

0

A(y) dy =

∫ 1

0
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Where the integral is: ∫ 1

0

y(
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αβ )y
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αβ y
m
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so: ∫ 1

0
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∫ 1

0

6

αβ
y(
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The same steps follow for:

∫ 1

0

B(y) dy =

∫ 1

0

6
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y(
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Substitute s=1 in equations (17) and (18):

∫ 1

0

A(y) dy =
6

αβ

{
(−1)0

(
1

0

)
30

[
(−1)0

(
0

0

)(
2

3

)0 (
αβ

2 + 2(0) + 0 + αβ

)

+(−1)1
(
0

1

)(
2

3

)1 (
αβ

2 + 2(0) + 1 + αβ

)]

+ (−1)1
(
1

1

)
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[
(−1)0

(
1

0

)(
2

3

)0 (
αβ

2 + 2(1) + 0 + αβ

)

+(−1)1
(
1

1

)(
2

3

)1 (
αβ

2 + 2(1) + 1 + αβ

)] }
=

6

αβ

{
αβ

2 + αβ
− 3αβ

4 + αβ
+

2αβ

5 + αβ

}
= 6

{
1

2 + αβ
− 3

4 + αβ
+

2

5 + αβ

}
(19)

For

∫ 1

0

B(y) dy =
6

αβ

{
(−1)0

(
1

0

)
30
[
(−1)0

(
0

0

)(
2

3

)0
αβ

3 + 2(0) + 0 + αβ

+ (−1)1
(
0

1

)(
2

3

)1
αβ

3 + 2(0) + 1 + αβ

]
+ (−1)1

(
1

1

)
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[
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(
1

0

)(
2

3

)0
αβ

3 + 2(1) + 0 + αβ

+ (−1)1
(
1

1

)(
2

3

)1
αβ

3 + 2(1) + 1 + αβ

]}
=

6

αβ

{
αβ

3 + αβ
− 3αβ

5 + αβ
+

2αβ

6 + αβ

}
= 6

{
1

3 + αβ
− 3

5 + β
+

2

6 + αβ

}
(20)

Substitute equations (19) and (20) into equation (14):

M1,0,1 =
360 + 108αβ

1044αβ + 580α2β + 155α3β + 20α4β + α5β + 720

2.2.2. Calculating M1,1,0 equations (21-26)

M1,1,0 = E(yp[F (y)]r) =

∫ 1

0

yp[F (y)]rf(y)dy

∫ 1

0

y
[
3y

2

αβ − 2y
3

αβ

]r 6

αβ

[
1− y

1

αβ

]
y(

2

αβ −1)dy (21)

=

∫ 1

0

6

αβ
y(

2

αβ )
[
3y

2

αβ − 2y
3

αβ

]r
dy −

∫ 1

0

6

αβ
y(

3

αβ )
[
3y

2

αβ − 2y
3

αβ

]r
dy =

∫ 1

0

C(y)dy −
∫ 1

0

D(y)dy (22)
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∫ 1

0

C(y)dy =

∫ 1

0

6

αβ
y(

2

αβ )
[
3y

2

αβ − 2y
3

αβ

]r
dy =

6

αβ

∫ 1

0

y(
2

αβ )
(
3y

2

αβ

)r
[
1− 2

3
y

1

αβ

]r
dy

Using binomial expansion:
[
1− 2

3y
1

αβ

]r
=

∑r
i=0(−1)i

(
r
i

) (
2
3y

1

αβ

)i

So ∫ 1

0

C(y)dy =
6

αβ

∫ 1

0

y(
2

αβ )
(
3y

2

αβ

)r
r∑

i=0

(−1)i
(
r

i

)(
2

3
y

1

αβ

)i

dy (23)

Exchange the integral and the sum 6
αβ

∑r
i=0 3

r(−1)i
(
r
i

) (
2
3

)i ∫ 1

0
y

2

αβ y
2r

αβ y
i

αβ dy =∫ 1

0

C(y)dy =
6

αβ

r∑
i=0

3r(−1)i
(
r

i

)(
2

3

)i (
αβ

2 + 2r + i+ αβ

)
(24)

The same steps are followed and give:∫ 1

0

D(y)dy =
6

αβ

r∑
i=0

3r(−1)i
(
r

i

)(
2

3

)i (
αβ

3 + 2r + i+ αβ

)
(25)

Substitute equation (24) and equation (25) into equation (22) and let r=1

M1,1,0 =
6

αβ

r∑
i=0

3r(−1)i
(
r

i

)(
2

3

)i [(
αβ

2 + 2r + i+ αβ

)
−
(

αβ

3 + 2r + i+ αβ

)]

=
6

αβ

{
31(−1)0

(
1

0

)(
2

3

)0 [
αβ

2 + 2(1) + 0 + αβ
− αβ

3 + 2(1) + (0) + αβ

]

+31(−1)1
(
1

1

)(
2

3

)1 [
αβ

2 + 2(1) + (1) + αβ
− αβ

3 + 2(1) + (1) + αβ

]}

=
6

αβ

{
3αβ

4 + αβ
− 2αβ

5 + αβ
− 3αβ

5 + αβ
+

2αβ

6 + αβ

}
=

18

4 + αβ
− 30

5 + αβ
+

12

6 + αβ

M1,1,0 =
6(10 + αβ)

(4 + αβ)(5 + αβ)(6 + αβ)
=

60 + 6αβ

74αβ + 15α2β + α3β + 120
(26)

To sum up, PWMs method for estimating the parameters using M1,0,1 and M1,1,0:
Step 1: Calculate the population PWMs for the order p = 1

M1,0,1 =
360 + 108αβ

1044αβ + 580α2β + 155α3β + 20α4β + α5β + 720
(27)

M1,1,0 =
60 + 6αβ

74αβ + 15α2β + α3β + 120
(28)

Step 2: Calculate the estimated sample PWMs whether the unbiased or biased estimators and equate these
estimators with the corresponding population PWMs.

α̂s =
1

n

n−1∑
i=1

(n− i)

(n− 1)
yi:n = M1,0,1, or α̂s =

1

n

n∑
i=1

yi:n(pi:n)
0(1(1− pi:n)

s = M1,0,1
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β̂r =
1

n

n∑
i=1+1

(i− 1)

(n− 1)
yi:n = M1,1,0 , or β̂r =

1

n

n∑
i=1

yi:n(pi:n)
1(1− pi:n)

0 = M1,1,0

Step 3: The above equations construct a system of equations to be solved numerically. In this paper, the author
used the Levenberg-Marquardt (LM) algorithm. The objective functions to be minimized are equations (27–28).
Differentiate the previous equations (27–28) with respect to alpha and beta.
The Jacobian matrix is

[ ∂
∂αM 101 ∂

∂βM 101
∂
∂αM 110 ∂

∂βM 110

]

(
y − f(θ(a))

)
=

α̂s −
360 + 108αβ

1044αβ + 580α2β + 155α3β + 20α4β + α5β + 720

β̂r −
60 + 6αβ

74αβ + 15α2β + α3β + 120

 ,& θ(a) =

[
α(a)

β(a)

]

Apply LM algorithm: θ(a+1) = θ(a) +
[
J ′(θ(a))J(θ(a)) + λ(a)I(a)

]−1[
J ′(θ(a))

](
y − f(θ(a))

)
Where the parameters used in the first iteration are the initial guess, then they are updated according to the sum
of squares of errors. The LM algorithm is an iterative algorithm. J ′(θ(a)) is the Jacobian function which is the
first derivative of the objective function evaluated at the initial guess θ(a) and λ(a) is a damping factor that adjusts
the step size in each iteration direction. The starting value of this factor is usually 0.001 and according to the sum
square of errors (SSE) in each iteration this damping factor is adjusted:
SSE(a+1) ≥ SSE(a) so update : λupdated = 10 ∗ λold

SSE(a+1) < SSE(a) so update : λupdated = 1
10 ∗ λold , f(θ(a)) is the objective function (population

PWMs, M1,0,1 & M1,1,0 ) evaluated at the initial guess, and y is the sample estimates of population PWMs, the
M1,0,1 and M1,1,0.
Steps of the LM algorithm:

1. Start with the initial guess of parameters (alpha and beta).
2. Substitute these values in the objective function and the Jacobian.
3. Choose the damping factor, say lambda=0.001
4. Substitute in the equation (LM equation) to get the new parameters.
5. Calculate the SSE at these parameters and compare this SSE value with the previous one when using the

initial parameters to adjust for the damping factor.
6. Update the damping factor accordingly as previously explained.
7. Start new iteration with the new parameters and the new updated damping factor, i.e., apply the previous

steps many times till convergence is achieved or a pre-specified number of iterations is accomplished.

The value of this quantity: [J ′(θ(a))J(θ(a)) + λ(a)I(a)]−1 can be considered a good approximation to the
variance-covariance matrix of the estimated parameters. Standard errors for the estimated parameters are the square
root of the diagonal of the elements in this matrix.
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2.2.3. Calculating M1,0,2 equation (29) Substitute s=2 in equation (13) and solve to get equation (29):

6

αβ

{
(−1)0

(
2

0

)
30
[
(−1)0

(
0

0

)(
2

3

)0 (
αβ

2 + 2(0) + 0 + αβ

)
+ (−1)1

(
0

1

)(
2

3

)1 (
αβ

2 + 2(0) + 1 + αβ

)

+ (−1)2
(
0

2

)(
2

3

)2 (
αβ

2 + 2(0) + 2 + αβ

)]
+ (−1)1

(
2

1

)
31
[
(−1)0

(
1

0

)(
2

3

)0 (
αβ

2 + 2(1) + 0 + αβ

)
+ (−1)1

(
1

1

)(
2

3

)1 (
αβ

2 + 2(1) + 1 + αβ

)
+ (−1)2

(
1

2

)(
2

3

)2 (
αβ

2 + 2(1) + 2 + αβ

)]
+ (−1)2

(
2

2

)
32
[
(−1)0

(
2

0

)(
2

3

)0 (
αβ

2 + 2(2) + 0 + αβ

)
+ (−1)1

(
2

1

)(
2

3

)1 (
αβ

2 + 2(2) + 1 + αβ

)
+ (−1)2

(
2

2

)(
2

3

)2 (
αβ

2 + 2(2) + 2 + αβ

)]}

− 6

αβ

{
(−1)0

(
2

0

)
30
[
(−1)0

(
0

0

)(
2

3

)0 (
αβ

3 + 2(0) + 0 + αβ

)
+ (−1)1

(
0

1

)(
2

3

)1 (
αβ

3 + 2(0) + 1 + αβ

)

+ (−1)2
(
0

2

)(
2

3

)2 (
αβ

3 + 2(0) + 2 + αβ

)]
+ (−1)1

(
2

1

)
31
[
(−1)0

(
1

0

)(
2

3

)0 (
αβ

3 + 2(1) + 0 + αβ

)
+ (−1)1

(
1

1

)(
2

3

)1 (
αβ

3 + 2(1) + 1 + αβ

)
+ (−1)2

(
1

2

)(
2

3

)2 (
αβ

3 + 2(1) + 2 + αβ

)]
+ (−1)2

(
2

2

)
32
[
(−1)0

(
2

0

)(
2

3

)0 (
αβ

3 + 2(2) + 0 + αβ

)
+ (−1)1

(
2

1

)(
2

3

)1 (
αβ

3 + 2(2) + 1 + αβ

)
+ (−1)2

(
2

2

)(
2

3

)2 (
αβ

3 + 2(2) + 2 + αβ

)]}

M1,0,2 =
6

αβ

{
αβ

2 + αβ
− 6αβ

4 + αβ
+

4αβ

5 + αβ
+

9αβ

6 + αβ
− 12αβ

7 + αβ
+

4αβ

8 + αβ

}
− 6

αβ

{
1αβ

3 + αβ
− 6αβ

5 + αβ
+

4αβ

6 + αβ
+

9αβ

7 + αβ
− 12αβ

8 + αβ
+

4αβ

9 + αβ

}
M1,0,2 = 6

{
1

2 + αβ
− 6

4 + αβ
+

4

5 + αβ
+

9

6 + αβ
− 12

7 + αβ
+

4

8 + αβ

}
− 6

{
1

3 + αβ
− 6

5 + αβ
+

4

6 + αβ
+

9

7 + αβ
− 12

8 + αβ
+

4

9 + αβ

}
M1,0,2 =

K

L
where: (29)

K = 58320αβ + 6480α2β + 120960,

L = 663696αβ + 509004α2β + 214676α3β + 54649α4β + 8624α5β + 826α6β + 444α7β + α8β + 362880.
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2.2.4. Calculating M 1, 2, 0 equation (30) Substitute r=2 in equation (21) and solve to get equation (30):

M1,2,0 =
6

αβ

2∑
i=0

3r(−1)i
(
r

i

)(
2

3

)i [(
αβ

2 + 2r + i+ αβ

)
−
(

αβ

3 + 2r + i+ αβ

)]

=
6

αβ

[
32(−1)0

(
2

0

)(
2

3

)0 ( αβ

2 + 2(2) + (0) + αβ
− αβ

3 + 2(2) + (0) + αβ

)
+ 32(−1)1

(
2

1

)(
2

3

)1 ( αβ

2 + 2(2) + (1) + αβ
− αβ

3 + 2(2) + (1) + αβ

)
+ 32(−1)2

(
2

2

)(
2

3

)2 ( αβ

2 + 2(2) + (2) + αβ
− αβ

3 + 2(2) + (2) + αβ

)]
M1,2,0 =

6

αβ

{
9αβ

6 + αβ
− 12αβ

7 + αβ
+

4αβ

8 + αβ
− 9αβ

7 + αβ
+

12αβ

8 + αβ
− 4αβ

9 + αβ

}

M1,2,0 = 6

{
9

6 + αβ
− 21

7 + αβ
+

16

8 + αβ
− 4

9 + αβ

}

M1,2,0 =
150αβ + 6α2β + 1008

1650αβ + 335α2β + 30α3β + α4β + 3024
(30)

In summary, PWMs method for estimating the parameters using M1,0,2 and M1,2,0 can be explained in the following
steps: the first step is to calculate the population PWMs for the order p = 1, using equations (29–30). The second
step is to calculate the estimated sample PWMs, whether the unbiased or biased estimators, and equate these
estimators with the corresponding population PWMs.

α̂s=2 =
1

n

n−s∑
i=1

(n− i)(n− i− 1)

(n− 1)(n− 2)
yi:n = M1,0,2 or α̂s =

1

n

n∑
i=1

yi:n (pi:n)
0(1− pi:n)

2 = M1,0,2

β̂r=2 =
1

n

n∑
i=1+r

(i− 1)(i− 2)

(n− 1)(n− 2)
yi:n = M1,2,0 or β̂r =

1

n

n∑
i=1

yi:n (pi:n)
2(1− pi:n)

0 = M1,2,0 .

The last step is to construct a system of the above equations to solve it numerically. Using the Levenberg-Marquardt
(LM) algorithm to minimize equations (29) and (30). Differentiate the previous equations (29–30) with respect to
alpha and beta.
The Jacobian matrix is [ ∂

∂αM 102 ∂
∂βM 102

∂
∂αM 120 ∂

∂βM 120

]

(
y − f

(
θ(a)

))
=

 α̂r −
K

L

β̂s −
150αβ + 6α2β + 1008

1650αβ + 335α2β + 30α3β + α4β + 3024

 ,& θ(a) =

[
α(a)

β(a)

]

Apply the LM algorithm:θ(a+1) = θ(a) +
[
J ′(θ(a))J(θ(a)) + λ(a)I(a)

]−1 [
J ′(θ(a))

] (
y − f(θ(a))

)
See appendix A for the Jacobian matrices for both M1,0,1,M1,1,0 and M1,0,2,M1,2,0.
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2.3. Asymptotic Distribution of PWM Estimators

For optimal evaluations of estimators derived from various Probability Weighted Moments (PWMs) method, it is
essential to leverage analytical expressions for their variances, as established by asymptotic theory. This approach
not only streamlines the process but also eliminates the need for extensive and potentially flawed computer
simulations. Unfortunately, in numerous cases, deriving straightforward expressions for the asymptotic variance
of moments and parameter estimators proves to be a significant challenge. Moreover, as highlighted by Hosking
(1986) and further explored by [4], the reliability of asymptotic variance expressions diminishes, particularly when
working with small sample sizes.
In his 1986 study, Hosking offered critical insights into the asymptotic variances of generalized Pareto parameters
estimated through classical PWMs. These asymptotic variances can be misleading, significantly misrepresenting
true sampling variances when the sample size (n) is below 50. The asymptotic distribution of sample PWMs
manifests as a linear combination of order statistics. [23] proved that the vector of b̂ = (b̂1, b̂2) has asymptotically
a multivariate normal distribution with mean b̂ = (b̂1, b̂2) and covariance matrix n−1V. Supporting this, [24]
employed the delta method to show that the covariance matrix can be articulated in terms of the variance
of the parameter being estimated; hence, using the delta method, the covariance matrix has the expression of
n−1GVG⊤, where V is the variance of the parameter. The quantity

[
J′(θ(a))J(θ(a)) + λ(a)I(a)

]−1
serves as

a good approximation of the variance-covariance matrix for the estimated parameters, known as the V matrix.
Moreover, the G matrix, integral to the LM algorithm, functions as the Jacobian matrix, reflecting the relationships
between the parameters being estimated. Harnessing these methods can vastly improve the accuracy and reliability
of estimators, ultimately leading to more credible and impactful results in statistical analysis.
Using Taylor series expansion of the g1(θ) = M101 and g2(θ) = M110 around the θ0 gives: g(θ̂) = g(θ0) +
(θ̂ − θ0)g

′(θ0). Therefore, the delta method can be applied. Taking the variance on both sides yields
var[g(θ̂)] = [g′(θ0)]var(θ̂)[g

′(θ0)]
T where g′(θ0) =

∂g(θ0)
∂θ0

∣∣
θ0=θ̂

which is the Jacobian matrix in LM algorithm.

Hence, var(θ̂) = [[g′(θ0)]
T (var[g(θ̂)])−1[g′(θ0)]]

−1 and var[g(θ̂)] =

[
var(M101 cov(M101,M110)

cov(M101,M110) var(M110)

]
. This

matrix, [g′(θ0)]T (var[g(θ̂)])−1[g′(θ0)] may have a high condition number that inflates the var(θ̂).
To ameliorate this, an appropriate regularization factor (ξ) can be added to the matrix like this
[g′(θ0)]

T (var[g(θ̂)]−1[g′(θ0)] + ξI]−1, where ξ = λmax−C∗λmin

C∗−1 such that λmax is the maximum eigenvalue of
the matrix [g′(θ0)]

T (var[g(θ̂)]−1[g′(θ0)] and λmin is the minimum eigenvalue for the same matrix. While the C∗ is
the desired condition number. The desired value of this number is usually from 5 up to 10. Other types of variance
is the value of this quantity [J ′(θ(a))J(θ(a)) + λ(a)I(a)]−1 which can be considered a good approximation to the
variance-covariance matrix of the estimated parameters θ̂. The delta method is applied to derive variance of the
function of the estimated parameters.
The same discussion is applied to M1,0,2,M1,2,0. See appendix B for the variance and covariance of the lower and
higher order PWMs.

3. Monte Carlo Simulation Study

3.1. Simulation Study for the Parameters

A simulation was conducted by generating 1000 replicates (N ) of the MBUW random variable y, each replicate
with different sample sizes (n). The author chose suitable pairs of α and β parameters respectively as follows:
(0.5, 0.6), (0.5, 1.3), (1.1, 0.6), and (1.1, 1.6). The sample sizes were 20, 50, 100, and 500. For each sample,
the parameters were estimated using the PWMs method (the low and high orders), maximum likelihood (MLE)
and the Method of Moments (MOM: the first and the second raw moments). For the MOM, m′

1(y) = µ′
1

and m′
2(y) = µ′

2 where m′
1(y) =

1

n

∑n
i=1 yi = ȳ and m′

2(y) =
1

n

∑n
i=1 y

2
i , µ′

1 =
6

(2 + αβ)(3 + αβ)
and µ′

2 =

6

(2 + 2αβ)(3 + 2αβ)
. For each method, where θ̂ =

[
α̂

β̂

]
, the statistical indices used for the comparisons are:
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1. Average Absolute Bias (AAB) =
1

N

N∑
j=1

∣∣∣θ̂i − θ
∣∣∣

2. Mean Square Error (MSE) =
1

N

N∑
j=1

(
θ̂i − θ

)2

3. Mean Relative Error (MRE) =
1

N

N∑
j=1

∣∣∣θ̂ − θ
∣∣∣

θ

The empirical variance for each parameter = MSE − bias2.
The 2.5th and the 97.5th quantiles of the sampling distribution for each parameter are also recorded.
The number of the valid samples, which shows GoF, is recorded. These results are illuminated in Tables (1–4).
Each table shows the results of the comparisons between the methods for each sample size. The method yielding the
estimator with the least bias is colored. Tables (5-8) show the empirical variance-covariance matrices obtained from
the sampling distribution of the parameters. These last four tables demonstrate the Pearson correlation coefficient
between the parameters, the condition number and eigenvalues of the empirical covariance matrix. Table (9)
expounds the variance decay rate for each simulation validating the asymptotic consistency of the estimator. (θ̂n)
as n increases. In asymptotic theory, for a consistent estimator θ̂n of a parameter θ, the variance typically behaves
like var(θ̂n) ≈ C

n for large n, where C is some constant. This means that the variance decays inversely with sample
size, it decays as 1/n. Taking log of both sides of var(θ̂n) ≈ C

n gives log[var(θ̂n)] ≈ log(C)− log n so the slope
in the log-log plot of the variance vs. sample size should be approximately (−1). For each simulation, the last
two values of the variance of each parameter at n = 500 and n = 100 will be substituted in this log equation; in
other words, the slope is calculated as log[var(θ̂n=500)]−log[var(θ̂n=100)]

log 500−log 100 ≈ −1. This is calculated for (α̂) & (β̂). Tables
(10–13) illustrate the computational time for each simulation and the relative efficiency of each method vs. other
methods. The computational time is recorded in seconds per replication, and the total time of all replicates is also
recorded. The relative efficiency of estimator A obtained from method A to estimator B gained from method B is
defined as RE(A vs B) = M̂SEB

M̂SEA

. This means that estimator A is more efficient than estimator B if this RE is more
than 1.

3.2. Simulation Study for the Function of the Parameters (Validation of the Delta Method)

Another simulation was conducted to validate the asymptotic normality of the delta method as follows: for sample
size, n = 500, α = 0.5, β = 1.3, and N = 1000
Step 1: for each replicate the g1(θ̂) = M̂101 and g2(θ̂) = M̂110.
Step 2: g1(θ0) = M101 and g2(θ0) = M110 where θ0 = [α = 0.5, β = 1.3].
Step 3: error101 = M̂101 −M101 and error110 = M̂110 −M110

Step 4: calculate the variance-covariance between error101 and error110, say it is (covemp). This is the empirical
covariance matrix (2 by 2 matrix).
Step 5: obtain the theoretical covariance matrix (covtheo) using the delta method applied on each replicate then
take the mean, let us call this mean covtheo

Step 6: apply the singular value decomposition (SVD) on the error matrix error = [error101 error110].
The error matrix is N by 2 matrix. [error101 error110] = U1 ∗ S1 ∗VT

1 , where S1 is the large non-zero
singular value, and V1 is the corresponding principal vector, λempirical = S2

1/(N − 1). Let’s call Semp =
[error101 error110] ∗V1, is the projection of the error matrix in the direction of the principle vector. Let’s call
Zempirical = Semp/

√
λempirical , this standardized empirical Z should be distributed as standard normal. These

Zs′ are the standardized errors after projection along the direction of maximum variability.
Step 7: get the trace of covemp and the trace of Mean covtheo. Let’s call scalar =
trace(covemp)/ trace(mean covtheo). Let’s call covtheo scaled = scalar ∗mean covtheo.
Step 8: apply the singular value decomposition (SVD) on mean covtheo so the mean covtheo = U2 ∗ S2 ∗VT

2

where S2 is the large non-zero singular value, and V2 is the corresponding principal vector. Let us call Stheo =
[error101 error110] ∗V2 is the projection of the error matrix in the direction of the maximum variability of the
theoretical covariance matrix.
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Step 9: calculate λtheo scaled = scalar ∗V2 ∗ mean covtheo ×VT
2 . Then calculate Ztheo scaled = Stheo√

λtheo scaled
. This

standardized theoretical Z should be distributed as standard normal.
The intuition behind this algorithm is that the theoretical covariance matrix (obtained from the delta method) should
approximate the empirical covariance matrix from the replicates. The empirical and the theoretical standardized
error can be defined, respectively, as
Zemp = Σ

−1/2
emp

(
g(θ̂)− g(θ0)

)
and Ztheo scaled = Σ

−1/2
theo scaled

(
g(θ̂)− g(θ0)

)
and to hold for asymptotic normality

these Z’s should be distributed as standard normal. A consistent observation across simulations (for all pairs of
parameter and at different sample sizes) was that both covariance matrices (empirical and theoretical) shared nearly
identical eigenvectors, as revealed by the singular value decomposition (SVD). This indicates that the empirical
and theoretical covariance matrices capture a similar dependence structure between the two parameters. However,
notable differences in their singular values were observed, particularly for large sample size. The theoretical
matrix was a full rank for small sample size (n=20), but it is rank-one as n increases (n=500). This degeneration
reflects the increasing linear dependency between the two parameter estimators as the sample size grows, implying
that one parameter becomes an almost deterministic function of the other in large samples. To adjust for the
overall discrepancy between the empirical and the theoretical covariance, a scalar rescaling factor was applied
to the estimated theoretical matrix. This factor is trace(covemp)/trace(mean covtheo), where the trace of covariance
matrix represents the total marginal variance. Multiplying the theoretical covariance matrix by this scalar aligns
the overall variance magnitude of the theoretical covariance with that of the empirical one while preserving its
correlation structure. In other words, the rescaling equalizes the total variability but does not alter the orientation
(the dependence structure, the eigenvectors) between the parameters. After this adjustment, the standardized vector,
the theoretical Z, exhibited approximately zero mean and unit standard deviation, confirming that the scaling
effectively normalized the parameter estimators (function of parameters). Hence, the asymptotic normality of
the delta method was thus validated: as n increased, the distribution of the standardized estimators (PWMs are
functions of the parameters) approached the standard normal, and the theoretical covariance structure aligned
closely with the empirical results, despite the asymptotic rank deficiency inherent in the parameter dependence.
Figure (3) illustrates the histogram, the fitted standard normal curves, and the QQ plot for the Z empirical and the
Z theoretical (scaled).

4. Results and Discussion of the Simulation Study

Tables (1–4) show that at various sample sizes where (α = 0.5&β = 0.6), the estimated (α̂) obtained by MLE
has the least Average Absolute Bias (AAB) and the least Mean Square Error (MSE) among the methods while
the estimated (β̂) obtained by M1,0,2,M1,2,0 has the least AAB and MSE among the methods. This is also true
at simulation runs using the pair (α = 0.5&β = 1.3) and the pair (α = 1.1&β = 1.6). However, at true values
of the pair (α = 1.1&β = 0.6), the higher order PWMs (M1,0,2,M1,2,0) produce (α̂) and (β̂) with the least AAB
and MSE among the methods. The tables record the number of valid samples that pass the GoF in each run of the
simulation. Method of Moments (MOM) gives non-identifiable estimates of the parameters at (α = 1.1&β = 0.6)
and (α = 1.1&β = 1.6) especially at small sample size; n = 20 and n = 50. Moreover, at large sample sizes;
n = 100 and n = 500 the number of valid samples gained by (MOM) are less than the number of valid samples
obtained by other methods at the same values of the parameters pair. MOMs almost give the highest AAB among
other methods at different sample sizes and at different pairs of parameters. MOMs almost yield the highest MSE
among other methods across different sample sizes and across different pairs of the simulated parameters. The
AAB of the higher order PWMs is approximately equal to that obtained from the lower order PWMs especially
at (α = 0.5&β = 1.3) and at almost all sample sizes. The standard error of each of the estimated parameter is
recorded beside the estimated value of the parameter. It is also obvious that the AAB and the MSE decrease as the
sample size increases. This is almost true for all methods and for both estimated parameters. And this supports that
the methods yield consistent estimators for the parameters.
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Table 1. results of simulation study using sample size 20 with different values of α & β

Statistical indices MLE MOM PWM M101,M110 PWM M102,M120

n = 20
α = 0.5
β = 0.6

Mean(α) 0.5055,(0.0842) 0.4943,(0.1113) 0.4975,(0.1007) 0.4978,(0.0985)
Mean(β) 0.5963,(0.1077) 0.6298,(0.0812) 0.6014,(0.0581) 0.6013,(0.0569)
AAB(α) 0.0647 0.0878 0.0798 0.0778
AAB(β) 0.0794 0.0648 0.0461 0.0454
MSE(α) 0.0071 0.0124 0.0101 0.0096
MSE(β) 0.0116 0.0075 0.0034 0.0032
MRE(α) 0.1293 0.1756 0.1596 0.1559
MRE(β) 0.1324 0.1079 0.0768 0.0751

Quantile(α) (0.3653,0.7004) (0.2838,0.7266) (0.3008,0.7042) (0.2961,0.6909)
Quantile(β) (0.3366,0.7596) (0.4767,0.8019) (0.4821,0.7151) (0.4897,0.7177)

Number of valid samples 1000 of 1000 987 out of 1000 999 out of 1000 999 out of 1000

n = 20
α = 0.5
β = 1.3

Mean(α) 0.5000 (0.0372) 0.4441 (0.0648) 0.4955 (0.0580) 0.4954 (0.0578)
Mean(β) 1.3210,(0.0963) 1.1365 (0.0724) 1.3012 (0.0155) 1.3102 (0.0154)
AAB(α) 0.02297 0.0706 0.0467 0.0468
AAB(β) 0.0800 0.1637 0.0124 0.0125
MSE(α) 0.0014 0.0073 0.0034 0.0034
MSE(β) 0.0097 0.0320 2.4062e-4 2.3897e-4
MRE(α) 0.0593 0.1412 0.0934 0.0934
MRE(β) 0.0615 0.1259 0.0096 0.0096

Quantile(α) (0.4281,0.5786) (0.2679,0.6069) (0.3815,0.6117) (0.3837,0.6118)
Quantile(β) (1.1111,1.5046) (1.0330,1.3073) (1.2702,1.3316) (1.2702,1.3310)

Number of valid samples 1000 of 1000 1000 of 1000 1000 of 1000 1000 of 1000

n = 20
α = 1.1
β = 0.6

Mean(α) 1.1056 (0.2651) 1.1772 (0.3668) 1.0920 (0.2883) 1.0942 (0.2586)
Mean(β) 0.6509 (0.0407) 0.4717 (0.2795) 0.5986 (0.0504) 0.5990 (0.0542)
AAB(α) 0.2153 0.2933 0.2287 0.2052
AAB(β) 0.0518 0.2534 0.0400 0.0359
MSE(α) 0.0702 0.1371 0.0831 0.0668
MSE(β) 0.0043 0.0926 0.0025 0.0020
MRE(α) 0.1958 0.2666 0.2079 0.1865
MRE(β) 0.0864 0.4224 0.0666 0.0598

Quantile(α) (0.6824,1.7008) (0.5143,1.8809) (0.5476,1.6682) (0.6037,1.5896)
Quantile(β) (0.5945,0.7521) (0.0074,0.8971) (0.5035,0.6993) (0.5133,0.6856)

Number of valid samples 1000 of 1000 40 out of 1000 1000 of 1000 1000 of 1000

n = 20
α = 1.1
β = 1.6

Mean(α) 1.0928 (0.1050) 1.0979 (0.0172) 1.0983 (0.1139)
Mean(β) 1.6595 (0.0546) 1.5999 (0.0011) 1.5999 (0.0075)
AAB(α) 0.0860 0.0959 0.0927
AAB(β) 0.0646 0.0063 0.0061
MSE(α) 0.0111 0.0138 0.0130
MSE(β) 0.0065 5.9109e-5 5.5617e-5
MRE(α) 0.0782 0.0128 0.0843
MRE(β) 0.0403 5.7592e-4 0.0038

Quantile(α) (0.8940,1.2883) (0.8661,1.13024) (0.8700,1.3045)
Quantile(β) (1.5711,1.7822) (1.5847,1.6133) (1.5849,1.6134)

Number of valid samples 1000 of 1000 1000 of 1000 1000 of 1000
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Table 2. results of simulation study using sample size of 50 with different values of α & β

Statistical indices MLE MOM PWM M101,M110 PWM M102,M120

n = 50
α = 0.5
β = 0.6

Mean(α) 0.5052 (0.0533) 0.4988 (0.074) 0.5002 (0.0666) 0.5001 (0.0645)
Mean(β) 0.6012 (0.0652) 0.6135 (0.0417) 0.5999 (0.0385) 0.5999 (0.0373)
AAB(α) 0.04427 0.0585 0.0540 0.0522
AAB(β) 0.0520 0.0348 0.0312 0.0301
MSE(α) 0.0029 0.0055 0.0044 0.0042
MSE(β) 0.0042 0.0019 0.0015 0.0014
MRE(α) 0.0854 0.1170 0.1080 0.1043
MRE(β) 0.0866 0.0579 0.0520 0.0502

Quantile(α) (0.4097,0.6114) (0.3495,0.6400) (0.3693,0.6242) (0.3718,0.6231)
Quantile(β) (0.4535,0.7133) (0.5302,0.6930) (0.5283,0.6755) (0.5289,0.6740)

Number of valid samples 999 out of 1000 999 out of 1000 1000 of 1000 999 out of 1000

n = 50
α = 0.5
β = 1.3

Mean(α) 0.5049 (0.0237) 0.4699 (0.041) 0.5015 (0.0374) 0.5016 (0.0375)
Mean(β) 1.3136 (0.0652) 1.1947 (0.0546) 1.2996 (0.0100) 1.2996 (0.0100)
AAB(α) 0.0192 0.0415 0.0301 0.0302
AAB(β) 0.0537 0.1057 0.0080 0.0081
MSE(α) 5.8625e-4 0.0026 0.0014 0.0014
MSE(β) 0.0044 0.0141 9.9379e-5 1.0005e-4
MRE(α) 0.0384 0.0830 0.0602 0.0605
MRE(β) 0.0413 0.0813 0.0062 0.0062

Quantile(α) (0.4540,0.5486) (0.3916,0.5492) (0.4313,0.5756) (0.4286,0.5769)
Quantile(β) (1.1705,1.4177) (1.1100,1.3013) (1.2798,1.3183) (1.2795,1.3190)

Number of valid samples 1000 of 1000 1000 of 1000 1000 of 1000 1000 of 1000

n = 50
α = 1.1
β = 0.6

Mean(α) 1.1094 (0.1773) 1.1040 (0.1804) 1.1034 (0.1610)
Mean(β) 0.6336 (0.0282) 0.6007 (0.0315) 0.6006 (0.0281)
AAB(α) 0.1439 0.1444 0.1292
AAB(β) 0.0351 0.0252 0.0226
MSE(α) 0.0315 0.0325 0.0259
MSE(β) 0.0019 9.9281e-4 7.9139e-4
MRE(α) 0.1308 0.1312 0.1175
MRE(β) 0.0584 0.0420 0.0376

Quantile(α) (0.8060,1.4720) (0.7622,1.4710) (0.7980,1.4223)
Quantile(β) (0.5924,0.6997) (0.5410,0.6648) (0.5472,0.6563)

Number of valid samples 1000 of 1000 1000 of 1000 1000 of 1000

n = 50
α = 1.1
β = 1.6

Mean(α) 1.0989 (0.0687) 1.1014 (0.0747) 1.1012 (0.0726)
Mean(β) 1.6399 (0.0394) 1.6001 (0.0049) 1.6001 (0.0048)
AAB(α) 0.0557 0.0597 0.0581
AAB(β) 0.0458 0.0039 0.0038
MSE(α) 0.0047 0.0056 0.0053
MSE(β) 0.0031 2.3924e-5 2.2608e-5
MRE(α) 0.0506 0.0543 0.0528
MRE(β) 0.0286 0.0024 0.0024

Quantile(α) (0.9697,1.2345) (0.9606,1.2525) (0.9610,1.2454)
Quantile(β) (1.5658,1.7226) (1.5909,1.6100) (1.5909,1.6095)

Number of valid samples 1000 of 1000 1000 of 1000 1000 of 1000
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Table 3. results of simulation study using sample size of 100 with different values of α & β

Statistical indices MLE MOM PWM M101,M110 PWM M102,M120

n = 100
α = 0.5
β = 0.6

Mean(α) 0.5043 (0.0353) 0.5027 (0.0484) 0.5005 (0.0449) 0.5001 (0.0434)
Mean(β) 0.6042 (0.0433) 0.6106 (0.0274) 0.5997 (0.0259) 0.5999 (0.0251)
AAB(α) 0.0282 0.0383 0.0359 0.0347
AAB(β) 0.0349 0.0232 0.0207 0.0200
MSE(α) 0.0013 0.0023 0.0020 0.0019
MSE(β) 0.0019 8.6160e-4 6.7061e-4 6.2760e-4
MRE(α) 0.0564 0.0767 0.0718 0.0694
MRE(β) 0.0581 0.0387 0.0345 0.0334

Quantile(α) (0.4332,0.5752) (0.4059,0.5999) (0.4118,0.5884) (0.4110,0.5851)
Quantile(β) (0.5107,0.6776) (0.5577,0.6669) (0.5490,0.6509) (0.5509,0.6514)

Number of valid samples 1000 of 1000 1000 of 1000 1000 out of 1000 1000 of 1000

n = 100
α = 0.5
β = 1.3

Mean(α) 0.5048 (0.0164) 0.4845 (0.0277) 0.5000 (0.0256) 0.5002 (0.0253)
Mean(β) 1.3183 (0.0441) 1.247 (0.0330) 1.3000 (0.0068) 1.2999 (0.0067)
AAB(α) 0.0137 0.0254 0.0207 0.0204
AAB(β) 0.0379 0.0534 0.0055 0.0054
MSE(α) 2.9281e-4 0.001 6.5674e-4 6.4032e-4
MSE(β) 0.0023 0.0039 4.6676e-5 4.5509e-5
MRE(α) 0.0273 0.0508 0.0414 0.0407
MRE(β) 0.0292 0.0411 0.0042 0.0042

Quantile(α) (0.4731,0.5354) (0.4322,0.5397) (0.4503,0.5508) (0.4507,0.5494)
Quantile(β) (1.2219,1.3884) (1.1916,1.3021) (1.2865,1.3132) (1.2868,1.3131)

Number of valid samples 1000 of 1000 1000 of 1000 1000 of 1000 1000 of 1000

n = 100
α = 1.1
β = 0.6

Mean(α) 1.1025 (0.122) 1.2234 (0.4310) 1.1006 (0.1254) 1.1014 (0.1114)
Mean(β) 0.6232 (0.0216) 0.2910 (0.2066) 0.6001 (0.0219) 0.6002 (0.0195)
AAB(α) 0.0974 0.3368 0.0999 0.0888
AAB(β) 0.0248 0.3267 0.0175 0.0155
MSE(α) 0.0149 0.2005 0.0157 0.0124
MSE(β) 0.0010 0.1381 4.7959e-4 3.7833e-4
MRE(α) 0.0885 0.3062 0.0908 0.0807
MRE(β) 0.0413 0.5445 0.0291 0.0259

Quantile(α) (0.8780,1.3561) (0.2606,2.1869) (0.8532,1.3501) (0.8829,1.3176)
Quantile(β) (0.5907,0.6774) (0.0076,0.7279) (0.5569,0.6437) (0.5621,0.6380)

Number of valid samples 1000 of 1000 409 out of 1000 1000 of 1000 1000 of 1000

n = 100
α = 1.1
β = 1.6

Mean(α) 1.0989 (0.0474) 1.3354 (0.1711) 1.1010 (0.0505) 1.1008 (0.0492)
Mean(β) 1.6365 (0.0318) 0.6937 (0.3946) 1.6001 (0.0033) 1.6001 (0.0032)
AAB(α) 0.0379 0.2446 0.0409 0.0398
AAB(β) 0.0405 0.9064 0.0027 0.0026
MSE(α) 0.0022 0.0847 0.0026 0.0024
MSE(β) 0.0023 0.9770 1.0953e-5 1.0394e-5
MRE(α) 0.0345 0.2224 0.0372 0.0362
MRE(β) 0.0253 0.5665 0.0017 0.0016

Quantile(α) (1.0089,1.1856) (1.0331,1.6236) (1.0036,1.1972) (1.0056,1.1941)
Quantile(β) (1.5761,1.6994) (0.2126,1.5451) (1.5937,1.6064) (1.5938,1.6062)

Number of valid samples 1000 of 1000 997 out of 1000 1000 of 1000 1000 of 1000
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Table 4. results of simulation study using sample size of 500 with different values of α & β

Statistical indices MLE MOM PWM M101,M110 PWM M102,M120

n = 500
α = 0.5
β = 0.6

Mean(α) 0.5044 (0.0162) 0.5011 (0.0214) 0.4988 (0.0202) 0.4989 (0.0197)
Mean(β) 0.6097 (0.0201) 0.6066 (0.0123) 0.6007 (0.0117) 0.6006 (0.0114)
AAB(α) 0.0131 0.0171 0.0161 0.0156
AAB(β) 0.0177 0.0110 0.0093 0.0090
MSE(α) 2.8252e-4 4.5718e-4 4.1113e-4 3.8840e-4
MSE(β) 4.9920e-4 1.9447e-4 1.3717e-4 1.2959e-4
MRE(α) 0.0261 0.0341 0.0322 0.0312
MRE(β) 0.0294 0.0184 0.0155 0.0150

Quantile(α) (0.4731,0.5360) (0.4590,0.5431) (0.4581,0.5388) (0.4578,0.5380)
Quantile(β) (0.5659,0.6457) (0.5819,0.6303) (0.5776,0.6242) (0.5781,0.6244)

Number of valid samples 1000 of 1000 1000 of 1000 1000 of 1000 1000 of 1000

n = 500
α = 0.5
β = 1.3

Mean(α) 0.5051 (0.0073) 0.4971 (0.0118) 0.5000 (0.0113) 0.4999 (0.0113)
Mean(β) 1.3195 (0.0242) 1.2894 (0.0068) 1.3000 (0.003) 1.3000 (0.0030)
AAB(α) 0.0068 0.0098 0.0092 0.0092
AAB(β) 0.0237 0.0108 0.0024 0.0024
MSE(α) 7.9362e-5 1.4693e-4 1.2707e-4 1.2682e-4
MSE(β) 9.6674e-4 1.5855e-4 9.0313e-6 9.0134e-6
MRE(α) 0.0137 0.0197 0.0183 0.0183
MRE(β) 0.0182 0.0083 0.0019 0.0019

Quantile(α) (0.4932,0.5216) (0.4753,0.5205) (0.4795,0.5223) (0.4793,0.5219)
Quantile(β) (1.2824,1.3668) (1.2766,1.3018) (1.2940,1.3055) (1.2942,1.3055)

Number of valid samples 1000 of 1000 1000 of 1000 1000 of 1000 1000 of 1000

n = 500
α = 1.1
β = 0.6

Mean(α) 1.0978 (0.0556) 1.2494 (0.0868) 1.1001 (0.0548) 1.1000 (0.0488)
Mean(β) 0.6137 (0.0126) 0.2754 (0.1023) 0.6000 (0.0096) 0.6000 (0.0085)
AAB(α) 0.0453 0.1532 0.0444 0.0396
AAB(β) 0.0155 0.3247 0.0077 0.0069
MSE(α) 0.0031 0.0299 0.0030 0.0024
MSE(β) 3.4713e-4 0.1158 9.1734e-5 7.2737e-5
MRE(α) 0.0412 0.1393 0.0403 0.0360
MRE(β) 0.0258 0.5412 0.0129 0.0115

Quantile(α) (0.9962,1.2096) (1.075,1.4236) (0.9952,1.2103) (1.0074,1.1972)
Quantile(β) (0.5904,0.6388) (0.0953,0.5332) (0.5817,0.6193) (0.5838,0.6170)

Number of valid samples 1000 of 1000 675 out of 1000 1000 of 1000 1000 of 1000

n = 500
α = 1.1
β = 1.6

Mean(α) 1.0976 (0.0213) 1.1300 (0.0454) 1.1001 (0.0227) 1.1000 (0.0220)
Mean(β) 1.6352 (0.0279) 1.3005 (0.2355) 1.6000 (0.0015) 1.6000 (0.0014)
AAB(α) 0.0171 0.0388 0.0183 0.0178
AAB(β) 0.0384 0.2995 0.0012 0.0012
MSE(α) 4.5729e-4 0.0030 5.1549e-4 4.8480e-4
MSE(β) 0.0020 0.1451 2.2133e-6 2.0816e-6
MRE(α) 0.0155 0.0353 0.0167 0.0162
MRE(β) 0.0240 0.1872 7.5140e-4 7.3023e-4

Quantile(α) (1.0584,1.1414) (1.0631,1.248) (1.0564,1.1454) (1.0584,1.1441)
Quantile(β) (1.5789,1.6842) (0.6479,1.600) (1.5971,1.603) (1.5973,1.6029)

Number of valid samples 1000 of 1000 1000 of 1000 1000 of 1000 1000 of 1000
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Table 5. Analysis of the sampling distribution of the estimated (α̂) & (β̂) using PWMs M1,0,1, M1,1,0.

n

PWM: M1,0,1,M1,1,0

α = 0.5, β = 0.6

PWM: M1,0,1,M1,1,0

α = 0.5, β = 1.3

PWM: M1,0,1,M1,1,0

α = 1.1, β = 0.6

PWM: M1,0,1,M1,1,0

α = 1.1, β = 1.6

500

Var cov
4.1004e-4 -2.368e-4 1.272e-4 -3.391e-5 0.003 5.255e-4 5.1600e-4 3.3811e-5

-2.368e-4 1.3681e-4 -3.391e-5 9.0404e-6 5.255e-4 9.1825e-5 3.3811e-5 2.2155e-6

Corr -1 -1 1 1

Cond num.
Eigen val

Cond. num=1.395e+16
Eigen val=-1.3553e-20, 5.4685e-4

Cond num=9.0086e+16
Eigen val=1.6941e-21, 1.3624e-4

Cond num=2.2935e+17
Eigen val=0, 0.0031

Cond num=6.6920e+17
Eigen val=0, 5.1822e-4

100

Var cov
0.0020 -0.0012 6.574e-4 -1.7526e-4 0.0157 0.0027 0.0026 1.6725e-4

-0.0012 6.7119e-4 -1.7526e-4 4.6723e-5 0.0027 4.8006e-4 1.6725e-4 1.0959e-5

Corr -1 -1 1 1

Cond num.
Eigen val

Cond. num=1.632e+16
Eigen val=1.0842e-19, 0.0027

Cond. num=5.8349e+16
Eigen val=0, 7.0412e-4

Cond. num=1.2587e+17
Eigen val=0.0162, 2.1684e-19

Cond. num=2.0801e+18
Eigen val=0.0026, 3.3881e-21

50

Var cov
0.0044 -0.0026 0.0014 -3.7257e-4 0.0325 0.0057 0.0056 3.6534e-4

-0.0026 0.0015 -3.7257e-4 9.9325e-5 0.0057 9.9332e-4 3.6534e-4 2.3939e-5

Corr -1 -1 1 1

Cond num.
Eigen val

Cond. num=2.548e+16
Eigen val=0, 0.0059

Cond. num=5.654e+16
Eigen val=0.0015, 1.3551e-20

Cond. num=5.2012e+16
Eigen val=0.0335, 4.3368e-19

Cond. num=6.3331e+17
Eigen val=0.0056, -6.7763e-21

20

Var cov
0.0101 -0.0059 0.0034 -8.9798e-4 0.0831 0.0145 0.0138 9.0267e-4

-0.0059 0.0034 -8.9798e-4 2.3940e-4 0.0145 0.0025 9.0267e-4 5.9148e-5

Corr -1 -1 1 1

Cond num.
Eigen val

Cond.num=2.7699e+16
Eigen.val=0.0135, 4.3368e-19

Cond.num=1.0764e+17
Eigen.val=0.0036, 5.4210e-20

Cond.num=9.2362e+16
Eigen.val=0.0856, 4.3368e-20

Cond.num=1.328e+18
Eigen.val=0.0138, -1.3553e-20

Table 5 shows the variance-covariance matrix for each estimated parameter (α̂) and (β̂) obtained by the lower
order PWMs (M1,0,1,M1,1,0). These estimated parameters are perfectly correlated as seen in all simulations across
different sample sizes and across different pairs. These matrices show a high condition number and one eigenvalue
that is nearly zero. This may lead to an identifiability problem and inflate the estimated variance which impairs
the confidence interval construction. The lower-order PWMs are derived from the order statistics so correlation
is inherent in the method. The question is does the distribution contribute to this high dependency? To answer
this question, the correlation between the estimated parameters obtained from deploying other methods was
investigated using the sampling distribution gained from the simulation. Table 6 depicts the sampling distribution
obtained from applying the higher order PWMs (M1,0,2,M1,2,0) for parameters estimation. The same outcomes
were observed. But this may be due to the PWMs inheriting the high dependency from the order statistics. But as
the same results were also returned from MLE and MOMs as shown in Tables (7-8), this is strong evidence that the
distribution is the main root cause. Although the method can contribute, but when every reasonable method shows
the same correlation patterns, so the distribution itself is likely to cause this coupling. The Weibull distribution
and any derived distribution from the Weibull, like the one between our hands (MBUW), the parameters control
related features of the sample data (mean, spread, and tail) by giving information about some combinations of
the parameters more strongly than about each parameter separately. Whether the dependency relation is linear,
nonlinear, monotonic, or non-monotonic, the method can influence this. Figure (1) shows the relationship between
the estimated (α̂) and estimated (β̂) obtained from the simulation using the lower order PWMs at n=20. Tables
(6-8) show the sampling distribution of the estimated parameters obtained by the simulation study. The empirical
variance-covariance matrices and the Pearson correlation coefficient are recorded. The condition number and the
eigenvalues of the covariance matrix for each simulation are also shown. Other figures for the different shapes of
the dependency are seen in Appendix C.

Stat., Optim. Inf. Comput. Vol. 15, January 2026



18 MEDIAN BASED UNIT WEIBULL DISTRIBUTION (MBUW)

Figure 1. shows the perfect linear relationship between estimated parameters from the simulation study at n=20 using lower
order PWMs

Table 6. Analysis of the sampling distribution of the estimated (α̂) & (β̂) using PWMs M1,0,2, M1,2,0.

n

PWM: M1,0,2,M1,2,0

α = 0.5, β = 0.6

PWM: M1,0,2,M1,2,0

α = 0.5, β = 1.3

PWM: M1,0,2,M1,2,0

α = 1.1, β = 0.6

PWM: M1,0,2,M1,2,0

α = 1.1, β = 1.6

500

Var cov
3.8765e-4 -2.2390e-4 1.2694e-4 -3.3840e-5 0.0024 4.1669e-4 4.8529e-4 3.1799e-5

-2.2390e-4 1.2934e-4 -3.3840e-5 9.0221e-6 4.1669e-4 7.2810e-5 3.1799e-5 2.0836e-6

Corr -1 -1 1 1

Cond num.
Eigen val

Cond.num=4.1394e+17
Eigen val=-4.0658e-20, 5.1700e-4

Cond.num=2.7053e+17
Eigen val=3.3881e-21, 1.3596e-4

Cond.num=1.3574e+17
Eigen val=1.3553e-20, 0.0025

Cond.num=7.5123e+17
Eigen val=1.2705e-21, 4.8727e-4

100

Var cov
0.0019 -0.0011 6.4091e-4 -1.7086e-4 0.0124 0.0022 0.0024 1.5875e-4

-0.0011 6.2822e-4 -1.7086e-4 4.5552e-5 0.0022 3.7865e-4 1.5875e-4 1.0402e-5

Corr -1 -1 1 1

Cond num.
Eigen val

Cond.num=1.4424e+16
Eigen val=1.0842e-19, 0.0025

Cond.num=1.0285e+17
Eigen val=-1.3553e-20, 6.8647e-4

Cond.num=1.2979e+17
Eigen val=-2.1684e-19, 0.0128

Cond.num=8.5287e+17
Eigen val=-5.0822e-21, 0.0024

50

Var cov
0.0042 -0.0024 0.0014 -3.7490e-4 0.0259 0.0045 0.0053 3.4528e-4

-0.0024 0.0014 -3.7490e-4 9.9962e-5 0.0045 7.9183e-4 3.4528e-4 2.2625e-5

Corr -1 -1 1 1

Cond num.
Eigen val

Cond.num=1.8731e+16
Eigen val=0, 0.0055

Cond.num=4.3350e+16
Eigen val=-4.0658e-20, 0.0015

Cond.num=2.0248e+17
Eigen val=1.0842e-19, 0.0267

Cond.num=4.8561e+17
Eigen val=1.3553e-20, 0.0053

20

Var cov
0.0096 -0.0056 0.0033 -8.9170e-4 0.0668 0.0117 0.0130 8.4944e-4

-0.0056 0.0032 -8.9170e-4 2.3772e-4 0.0117 0.0020 8.4944e-4 5.5660e-5

Corr -1 -1 1 1

Cond num.
Eigen val

Cond.num=2.0154e+16
Eigen val=8.6736e-19, 0.0128

Cond.num=3.6958e+17
Eigen val=0.0036, 6.8647e-4

Cond.num=1.1993e+17
Eigen val=8.6736e-19, 0.0689

Cond.num=6.3129e+17
Eigen val=-2.7105e-20, 0.0130

The importance to recognize that the cause of the correlation is the distribution itself is the application of the
practical remedies to lessen this correlation and hence to deflate the variance and to construct a valid confidence
interval. Some of these remedies is to reparameterize the parameter and use the log of the parameter. These remedies
can be a blueprint for future studies.
Table (9) expounds the pattern of the variance decay. The slopes in this table are obtained from the empirical
variances for the estimated parameters recorded in Tables (5–8). Using the log (variance) at n=500, log (variance)
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at n=100, log (n=500) and log (n=100), the slope can be calculated as previously explained in section 3, (Monte
Carlo Simulation Study). Figure (2) also supports this asymptotic variance decay at a rate (1/n) as n enlarges, where
the estimated parameter (θ̂n) is asymptotically consistent at large sample size. Table (9) elucidates that the lower
and the higher PWMs show better validity for this asymptotic consistency rather than the MLE and MOMs.

Table 7. Analysis of the sampling distribution of the estimated (α̂) & (β̂) of MLE.

n
MLE

α = 0.5, β = 0.6
MLE

α = 0.5, β = 1.3
MLE

α = 1.1, β = 0.6
MLE

α = 1.1, β = 1.6

500

Var cov
2.6310e-4 -2.9000e-4 5.3680e-5 -9.9890e-5 0.0031 1.6830e-4 4.5220e-4 -7.0280e-5

-2.9000e-4 4.0480e-4 -9.9890e-5 5.8690e-4 1.6830e-4 1.5960e-4 -7.0280e-5 7.7790e-4

Corr -0.8887(p=0) -0.5628(p=1.26e-84) 0.2395(p=1.644e-14) -0.1185(p=1.729e-4)

Cond num.
Eigen val

Cond.num=17.8648
Eigen val=3.5402e-05, 6.3245e-4

Cond.num=17.0047
Eigen val=3.5578e-05, 6.0499e-4

Cond.num=20.6931
Eigen val=1.5003e-04, 0.0031

Cond.num=1.8107
Eigen val=4.3764e-04, 7.9246e-4

100

Var cov
0.0012 -0.0015 2.6990e-4 -6.4590e-4 0.0149 -6.4070e-4 0.0022 1.6973e-4

-0.0015 0.0019 -6.4590e-4 0.0019 -6.4070e-4 4.6760e-4 1.6973e-4 0.0010

Corr -0.9670(p=0) -0.8917(p=0) -0.2429(p=6.8e-15) 0.1128(p=3.7e-4)

Cond num.
Eigen val

Cond.num=62.3364
Eigen val=4.9263e-05, 0.0031

Cond.num=43.5652
Eigen val=4.9688e-05, 0.0022

Cond.num=33.9381
Eigen val=4.3920e-04, 0.0149

Cond.num=2.3023
Eigen val=9.8549e-04, 0.0023

50

Var cov
0.0028 -0.0034 5.6260e-4 -0.0014 0.0315 -0.0013 0.0047 -2.8410e-4

-0.0034 0.0042 -0.0014 0.0043 -0.0013 7.9280e-4 -2.8410e-4 0.0016

Corr -0.9823(p=0) -0.9326(p=0) -0.2514(p=7e-16) 0.1050(p=0.0009)

Cond num.
Eigen val

Cond.num=116.3342
Eigen val=6.0377e-05, 0.0070

Cond.num=72.3631
Eigen val=6.5640e-05, 0.0047

Cond.num=42.4821
Eigen val=7.4153e-04, 0.0315

Cond.num=3.1071
Eigen val=0.0015, 0.0047

20

Var cov
0.0071 -0.0089 0.0014 -0.0035 0.0703 -0.0044 0.011 -0.0013

-0.0089 0.0116 -0.0035 0.0093 -0.0044 0.0017 -0.0013 0.0030

Corr -0.9788(p=0) -0.9683(p=0) -0.4087(p=0) -0.2297(p=0)

Cond num.
Eigen val

Cond.num=99.0764
Eigen val=0.0185, 1.8665e-4

Cond.num=139.9554
Eigen val=0.0106, 7.5630e-5

Cond.num=51.2278
Eigen val=0.0014, 0.0705

Cond.num=4.0477
Eigen val=0.0028, 0.0112

Tables (10–13) show the relative efficiency of each method against other methods. The higher order PWMs
(M1,0,2,M1,2,0) are slightly more efficient than the lower order PWMs (M1,0,1,M1,1,0). This can be confirmed
by calculating the relative efficiency of the lower order to the higher order PWMs. Across all the sample sizes, this
RE at the pairs (α = 0.5&β = 0.6) is in the range from 0.94 to 0.95 for both estimated parameters. While at the
pairs (α = 0.5&β = 1.3), it is in the range from 0.998 to1. Furthermore, the RE at the pair (α = 1.1&β = 0.6)
is around 0.8. Additionally, the ER at the pairs (α = 1.1&β = 1.6) is in the range from 0.94 to 0.95. So they are
more or less close to each other if taking into account the computational time reported in seconds per replicate. At
sample size 20, the time taken by the lower PWMs are slightly less than that taken by the higher order PWMs to
accomplish the estimation. This is also true for sample size 50 except at the pair (α = 0.5&β = 1.3) where the
time taken by the lower order PWMs is 0.1289 seconds per replicate while this time is 0.1264 seconds per replicate
for the higher order PWMs to complete the task of estimation. At sample size 100, the lower order PWMs take less
time than the higher order PWMs. At sample size 500, and at pairs (α = 0.5&β = 0.6) and (α = 0.5&β = 1.3),
the lower order PWMs are faster than the higher order PWMs, in contrast to the pair (α = 1.1&β = 0.6) and the
pair (α = 1.1&β = 1.6), where the higher order PWMs are faster than the lower order PWMs. The time taken by
both the lower and higher PWMs is linearly increasing across different sample sizes as n increases. The time taken
by the MLE is less than that taken by PWMs of both orders. The time taken by MOMs is the least among other
methods. The time taken by MLE and MOMs does not vary markedly across the sample sizes as seen in PWMs.
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Table 8. Analysis of the sampling distribution of the estimated (α̂) & (β̂) of MOMs.

n
MOM

α = 0.5, β = 0.6
MOM

α = 0.5, β = 1.3
MOM

α = 1.1, β = 0.6
MOM

α = 1.1, β = 1.6

500

Var cov
4.5650e-4 -2.5350e-4 1.3850e-5 -2.4080e-5 0.0075 0.0038 0.0021 -0.0071

-2.5350e-4 1.5150e-4 -2.4080e-5 4.6150e-5 0.0038 0.0105 -0.0071 0.0555

Corr -0.964(p=0) -0.3011(p=2.09e-22) 0.4323(p=4.0974e-32) -0.662(p=4.0381e-127)

Cond num.
Eigen val

Cond.num=73.6573
Eigen val=8.1441e-06, 5.9988e-4

Cond.num=3.5871
Eigen val=4.0254e-5, 1.4440e-4

Cond.num=2.6805
Eigen val=0.0049, 0.0131

Cond.num=49.5788
Eigen val=0.0011, 0.0564

100

Var cov
0.0023 -0.0013 7.6600e-4 4.6600e-5 0.1857 0.0101 0.0293 -0.0396

-0.0013 7.5020e-4 4.6600e-5 0.0011 0.0101 0.0427 -0.0396 0.1557

Corr -0.9846(p=0) 0.0511(p=0.1065) 0.1138(p=0.0214) -0.587(p=2.2243e-93)

Cond num.
Eigen val

Cond.num=176.1722
Eigen val=1.7454e-5, 0.0031

Cond.num=1.4435
Eigen val=7.5939e-4, 0.0011

Cond.num=4.4403
Eigen val=0.042, 0.1864

Cond.num=9.3439
Eigen val=0.0179, 0.1671

50

Var cov
0.0055 -0.0030 0.0017 3.2350e-4

-0.0030 0.0017 3.2350e-4 0.0030

Corr -0.9600(p=0) 0.1444(p=4.525e-6)

Cond num.
Eigen val

Cond.num=67.5162
Eigen val=1.0526e-4, 0.0071

Cond.num=1.8992
Eigen val=0.0016, 0.0031

20

Var cov
0.0124 -0.0041 0.0042 5.1310e-4 0.1345 0.0016

-0.0041 0.0066 5.1310e-4 0.0052 0.0016 0.0781

Corr -0.4506(p=1.619e-50) 0.1093(p=-5.333e-4) 0.0153(p=0.9255)

Cond num.
Eigen val

Cond.num=3.2243
Eigen val=0.0045, 0.0145

Cond.num=1.3664
Eigen val=0.0040, 0.0055

Cond.num=1.724
Eigen val=0.0781, 0.1246

Table 9. The variance decay of the estimated (α̂) & (β̂) in different simulations

PWM: M101,M110
α = 0.5 & β = 0.6

PWM: M101,M110
α = 0.5 & β = 1.3

PWM: M101,M110
α = 1.1 & β = 0.6

PWM: M101,M110
α = 1.1 & β = 1.6

Slope for α −0.9846 −1.0206 −1.0283 −1.0048

Slope for β −0.9882 −1.0206 −1.0277 −0.9933

PWM: M102,M120
α = 0.5 & β = 0.6

PWM: M102,M120
α = 0.5 & β = 1.3

PWM: M102,M120
α = 1.1 & β = 0.6

PWM: M102,M120
α = 1.1 & β = 1.6

Slope for α −0.9876 −1.006 −1.0204 −0.9932

Slope for β −0.9820 −1.0061 −1.0244 −0.9990

MLE
α = 0.5 & β = 0.6

MLE
α = 0.5 & β = 1.3

MLE
α = 1.1 & β = 0.6

MLE
α = 1.1 & β = 1.6

Slope for α −0.9429 −1.0035 −0.9755 −0.9830

Slope for β −0.9607 −0.7299 −0.6679 −0.1561

MOM
α = 0.5 & β = 0.6

MOM
α = 0.5 & β = 1.3

MOM
α = 1.1 & β = 0.6

MOM
α = 1.1 & β = 1.6

Slope for α −1.0047 −1.0627 −1.9940 −1.6376

Slope for β −0.9940 −1.9704 −0.8719 −0.6409
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Figure 2. Shows the variance decay emphasizing asymptotic consistency. The slope in a log-log plot of the empirical variance
and sample size is approximately −1, as asymptotic consistency of (θ̂n) entails

Table 10. The relative efficiency of different methods at sample size 20

MLE vs. others MOM vs. others M101, M110 vs. others M102, M120 vs. others

n=20

α = 0.5
MLE is more efficient than
MOM, M101 & M102

MOM is less efficient than
MLE, M101 & M102

M101 is more efficient than
MOM but is less efficient
than MLE & M102

M102 is less efficient than
MLE but is more efficient
than MOM & M101

β = 0.6
MLE is less efficient than
MOM, M101 & M102

MOM is more efficient than
MLE but less efficient
than M101 & M102

M101 is more efficient than
MLE, MOM but less
efficient than M102

M102 is more efficient than
MLE, MOM & M101

time
0.0307s per replicate
Total time=30.7250s

0.0220s per replicate
Total time=22.0016s

0.0423s per replicate
Total time=42.2866s

0.0430s per replicate
Total time=42.9643s

n=20

α = 0.5
MLE is more efficient than
MOM, M102 & M101

MOM is less efficient than
MLE, M101 & M102

M101 is less efficient than
MLE but more efficient than
MOM and is likely as M102

M102 is less efficient than
MLE but more efficient than
MOM & is likely as M101

β = 1.3

MLE is more efficient than
MOM but is less efficient
than both M101 & M102

MOM is less efficient than
MLE, M101 & M102

M101 is more efficient than
MLE & MOM but is less
efficient than M102

M102 is more efficient than
MLE, MOM & M101

time
0.0307s per replicate
Total time=30.6922s

0.0224s per replicate
Total time=22.4416s

0.0430s per replicate
Total time=43.0307s

0.0442s per replicate
Total time=44.2048s

n=20

α = 1.1

MLE is more efficient than
MOM & M101 and is less
efficient than M102

MOM is less efficient than
MLE, M101 & M102

M101 is more efficient than
MOM but is less
efficient than M102 & MLE

M102 is more efficient than
MLE, MOM & M101

β = 0.6

MLE is more efficient than
MOM but is less efficient
than M101 & M102

MOM is less efficient than
MLE, M101 & M102

M101 is more efficient than
MLE & MOM but is less
efficient than M102

M102 is more efficient than
MLE, MOM & M101

time
0.0305s per replicate
Total time=30.4843s

0.0071s per replicate
Total time=7.1177s

0.0443s per replicate
Total time=44.3011s

0.0443s per replicate
Total time=44.2731s

n=20

α = 1.1
MLE is more efficient than
M102 & M101

M101 is less efficient than
MLE & M102

M102 is less efficient than
MLE but is more efficient
than M101

β = 1.6

MLE is markedly less
efficient than M101 & M102

M101 is more efficient than
MLE but less efficient than
M102

M102 is more efficient than
MLE & M101

time
0.0329s per replicate
Total time=32.8729s

0.0450s per replicate
Total time=45.0361s

0.0454s per replicate
Total time=45.4295s
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Table 11. The relative efficiency of different methods at sample size 50

MLE vs. others MOM vs. others M101, M110 vs. others M102, M120 vs. others

n=50

α = 0.5
MLE is more efficient than
MOM, M101 & M102

MOM is less efficient than
MLE, M101 & M102

M101 is more efficient than
MOM but is less efficient
than MLE & M102

M102 is more efficient than
MOM & M101 but is less
efficient than MLE

β = 0.6
MLE is less efficient than
MOM, M101 & M102

MOM is more efficient than
MLE but less efficient
than M101 & M102

M101 is more efficient than
MLE, MOM but less
efficient than M102

M102 is more efficient than
than MOM , M101 & MLE

time
0.0342s per replicate
Total time=34.1581s

0.0248s per replicate
Total time=24.8382s

0.1227s per replicate
Total time=122.7369s

0.1285 s per replicate
Total time=128.5091s

n=50

α = 0.5
MLE is more efficient than
MOM , M102 & M101

MOM is less efficient than
MLE, M101 & M102

M101 is less efficient than
MLE but more efficient than
MOM and is likely as M102

M102 is more efficient than
MOM but is less efficient
than MLE & is likely as
M101

β = 1.3

MLE is more efficient than
MOM but is less efficient
than both M101 & M102

MOM is less efficient than
MLE, M101 & M102

M101 is more efficient than
MLE, MOM & M102

M102 is more efficient than
MLE and MOM but is less
efficient than M101

time
0.0342s per replicate
Total time=34.2283s

0.0255s per replicate
Total time=25.5316s

0.1289s per replicate
Total time=128.9309s

0.1264s per replicate
Total time=126.4414s

n=50

α = 1.1

MLE is slightly more
efficient than M101 but is
less efficient than M102

M101 is less efficient than
MLE, & M102

M102 is more efficient than
MLE & M101

β = 0.6
MLE is less efficient than
M101 & M102

M101 is more efficient than
MLE but is less efficient
than M102

M102 is more efficient than
MLE & M101

time
0.0354s per replicate
Total time=35.353s

0.1266s per replicate
Total time=126.6163s

0.1281s per replicate
Total time=128.0973s

n=50

α = 1.1
MLE is more efficient than
M102 & M101

M101 is less efficient than
MLE & M102

M102 is less efficient than
MLE but is more efficient
than M101

β = 1.6

MLE is markedly less
efficient than M101 & M102

M101 is more efficient than
MLE but is less efficient
than M102

M102 is more efficient than
MLE & M101

time
0.0340s per replicate
Total time=34.0159s

0.1276s per replicate
Total time=127.5708s

0.1344s per replicate
Total time=134.377s
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Tables (10–13) almost depict that the descending order of the efficient methods from the most efficient to
the least efficient in estimating (α) parameter across different sample sizes and across different pairs is MLE,
(M1,0,2,M1,2,0), (M1,0,1,M1,1,0) then MOM. The exception for this is the pair (α = 1.1&β = 0.6), which shows
the descending order is (M1,0,2,M1,2,0), MLE, (M1,0,1,M1,1,0) and finally MOM across different sample sizes
excluding n=500 & for this pair (α = 1.1&β = 0.6) the order is (M1,0,2,M1,2,0), (M1,0,1,M1,1,0), MLE then
MOM. While the descending order of the efficient methods in estimating (β) across different sample sizes
and different pairs is (M1,0,2,M1,2,0), (M1,0,1,M1,1,0), MLE then MOM. The exception for this is the pair
(α = 0.5&β = 0.6), which shows the descending order is (M1,0,2,M1,2,0), (M1,0,1,M1,1,0), MOM and lastly MLE
across different sample sizes. This last order is also true when n=500 and the pair is (α = 0.5&β = 1.3).

Figure 3. shows the histogram, fitted standard normal curve and QQ plot for the error derived from the difference between
the function of the parameter at the estimated parameters and the true parameters; g(θ̂)− g(θ0). The error standardized by
the empirical covariance matrix obtained from the empirical distribution is a standard normal variable (left upper and lower
panels). The same error standardized by the covariance matrix obtained from rescaling the theoretical covariance matrix
obtained via applying the delta method on each replicate is also a standard normal variable. (right upper and lower panels).
This is the results of the simulation using n=500, N=1000, α = 0.5 and β = 1.3 and the lower order PWMs (M101,M110)

Figure (3) shows the validation of asymptotic normality of the delta method. The error obtained from the difference
between g(θ̂) and the g(θ0) where θ0 are the pair of parameter (α = 0.5&β = 1.3), the sample size is 500 and the
function is the lower order PWMs, is standardized by the empirical covariance matrix. The same error is also
standardized by the theoretical covariance matrix obtained via applying the delta method. However, both matrices
the empirical and the theoretical matrices are nearly singular whose one of their eigenvalues are nearly zero. So
both matrices are subjected to singular value decomposition (SVD) so as to project the error along the principle
vector with high variability (the vector corresponding to the large non-zero singular value). And to match the
empirical with the theoretical matrix, the last one is multiplied by a small scalar that is the ratio between the
trace of the empirical covariance and the trace of the theoretical covariance. Both standardized error should be
a standard normal variable as shown in figure (3). This procedure was repeated for the higher order PWMs with
different sample sizes and different pairs of the parameters. The same results were obtained which confirms the
asymptotic normality of the delta method. The regularity conditions essential to apply the delta method is that the
function should be a continuously differentiable function which also holds for the PWMs of both orders.
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Table 12. The relative efficiency of different methods at sample size 100

MLE vs. others MOM vs. others M101, M110 vs. others M102, M120 vs. others

n=100

α = 0.5
MLE is more efficient than
M0M, M102 & M101

MOM is less efficient than
MLE, M101 & M102

M101 is more efficient than
MOM but is less efficient
than MLE & M102

M102 is more efficient than
MOM & M101 but is less
efficient than MLE

β = 0.6-
MLE is less efficient than
M0M, M101 & M102

MOM is more efficient than
MLE but less efficient than
M101 & M102

M101 is more efficient than
MLE & MOM but is less
efficient than M102

M102 is more efficient than
MLE, MOM & M101

time
0.0377s per replicate
Total time=37.7212s

0.0262s per replicate
Total time=26.2368s

0.3503s per replicate-
Total time=350.3439s

0.3536s per replicate
Total time=353.56s

n=100

α = 0.5
MLE is more efficient than
M0M, M102 & M101

MOM is less efficient than
MLE, M101 & M102

M101 is more efficient than
M0M & M101 but is less
efficient than MLE & M102

M102 is more efficient than
M0M & M101 but is less
efficient MLE

β = 1.3

MLE is more efficient than
MOM but less efficient
than both M101 & M102

MOM is less efficient than
MLE, M101 & M102

M101 is more efficient than
MLE, MOM but is slightly
less efficient than M102

M102 is more efficient than
MLE, MOM & M101

time
0.0364s per replicate-
Total time=36.4423s

0.0270s per replicate
Total time=27.0006s

0.3519s per replicate-
Total time=351.9213s

0.3612s per replicate-
Total time=361.189s

n=100

α = 1.1

MLE is more efficient than
M0M & M101 but is less
efficient than M102

MOM is less efficient than
MLE,M101 & M102

M101 is more efficient than
MOM but is less efficient
than MLE & M102

M102 is more efficient than
MLE, MOM & M101

β = 0.6

MLE is more efficient than
MOM but is less efficient
than M101, M102

MOM is less efficient than
MLE,M101 & M102

M101 is more efficient than
MOM, MLE but is less
efficient than M102

M102 is more efficient than
MOM, MLE & M101

time
0.0356s per replicate
Total time=35.5829s

0.0126s per replicate
Total time=12.6141s

0.3094s per replicate-
Total time=309.4498s

0.3746s per replicate
Total time=374.639s

n=100

α = 1.1
MLE is more efficient than
M102 , MOM & M101

MOM is less efficient than
MLE, M101, & M102

M101 is more efficient than
MOM but is less efficient
than MLE & M102

M102 is more efficient than
MOM & M101 but is less
efficient than MLE

β = 1.6

MLE is more efficient than
MOM but is less efficient
than M101 & M102

MOM is less efficient than
MLE, M101, & M102.

M101 is more efficient than
MOM, MLE but is less
efficient than M102

M102 is more efficient than
MOM, MLE & M101

time
0.0384s per replicate-
Total time=38.3641s

0.0124s per replicate+
Total time=12.4405s

0.3546s per replicate-
Total time=354.597s

0.3627s per replicate
Total time=362.7022s¡
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Table 13. The relative efficiency of different methods at sample size 500

MLE vs. others MOM vs. others M101, M110 vs. others M102, M120 vs. others

n=500

α = 0.5
MLE is more efficient than
M0M, M102 & M101

MOM is less efficient than
MLE, M101 & M102

M101 is more efficient than
MOM but is less efficient
than MLE & M102

M102 is more efficient than
MOM & M101 but is less
efficient than MLE

β = 0.6
MLE is less efficient than
M0M,M101 & M102

MOM is more efficient than
MLE but less efficient than
M101 & M102

M101 is more efficient than
MLE, MOM but less
efficient than M102

M102 is more efficient than
MLE, MOM & M101

time
0.0569s per replicate
Total time=56.8912s

0.0296s per replicate
Total time=29.5591s

4.4784s per replicate
Total time=4.4784e+3s

5.5616s per replicate
Total time=5.5616e+3s

n=500

α = 0.5
MLE is more efficient than
M0M, M102 & M101

MOM is less efficient than
MLE, M101 & M102

M101 is more efficient than
MOM but is less efficient
than MLE & M102

M102 is more efficient than
M0M & M101 but is less
efficient MLE

β = 1.3
MLE is less efficient than
MOM, M101 & M102

MOM is more efficient than
MLE but is less efficient
than M101 & M102

M101 is more efficient than
MLE, MOM but is less
efficient than M102

M102 is more efficient than
MLE, MOM & M101

time
0.0608s per replicate
Total time=60.8357

0.032s per replicate
Total time=31.9762s

4.2734s per replicate
Total time=4.2734e+3s

4.323s per replicate
Total time=4.323e+3s

n=500

α = 1.1

MLE is less efficient than
M102 & M101 but is more
efficient than MOM

MOM is less efficient than
MLE,M101 & M102

M101 is more efficient than
MOM, MLE but is less
efficient than M102

M102 is more efficient than
MOM , MLE & M101

β = 0.6

MLE is less efficient than
M102 & M101 but is
more efficient than MOM

MOM is less efficient tha
MLE, M101 & M102

M101 is more efficient than
MOM, MLE but is less
efficient than M102

M102 is more efficient than
MOM , MLE & M101

time
0.0542s per replicate
Total time=54.1649s

0.0404s per replicate
Total time=27.245s

4.486s per replicate
Total time=4.486e+3s

4.267s per replicate
Total time=4.267e+3s

n=500

α = 1.1
MLE is more efficient than
M102 , MOM & M101

MOM is less efficient than
MLE, M101, & M102.

M101 is more efficient than
MOM but is less efficient
than MLE & M102

M102 is more efficient than
MOM & M101 but is less
efficient than MLE

β = 1.6

MLE is more efficient than
MOM but is less efficient
than M101 & M102

MOM is less efficient than
MLE, M101, & M102.

M101 is more efficient than
MOM, MLE but is less
efficient than M102

M102 is more efficient than
MOM, MLE & M101

time
0.0588s per replicate
Total time=58.7812s

0.0355s per replicate
Total time=35.5128s

4.519s per replicate
Total time=4.519e+3s

4.353s per replicate
Total time=4.353e+3s
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5. Real data analysis

The OECD platform is available at https://stats.oecd.org/index.aspx?DataSetCode=BLI
In OECD platform, many indicators are recorded. The author transformed these indicators into unit ratios and

conducted a distributional fit for those indicators. In this paper, the author discussed three indicators; the water
quality, the educational attainment and the self-reported health. Table (14) shows the descriptive analysis of the
indicators. Figure (4) shows the boxplot of each indicator.

Water quality: is the percentage of people who report being satisfied with the quality of their water. This reflects
the proportion of people who have access to a clean water supply. The values of this indicator are 0.92, 0.92, 0.79,
0.90, 0.62, 0.82, 0.87, 0.89, 0.93, 0.86, 0.97, 0.78, 0.91, 0.67, 0.81, 0.97, 0.8, 0.77, 0.77, 0.87, 0.82, 0.83, 0.83,
0.85, 0.75, 0.91, 0.85, 0.98, 0.82, 0.89, 0.81, 0.93, 0.76, 0.97, 0.96, 0.62, 0.82, 0.88, 0.7, 0.62, 0.72.

Educational attainment: is presented as the percentage of a given population who have completed a specific level
of education, mainly the tertiary education. The values of this indicator are 0.84, 0.86, 0.8, 0.92, 0.67, 0.59, 0.43,
0.94, 0.82, 0.91, 0.91, 0.81, 0.86, 0.76, 0.86, 0.76, 0.85, 0.88, 0.63, 0.89, 0.89, 0.94, 0.74, 0.42, 0.81, 0.81, 0.82,
0.93, 0.55, 0.92, 0.90, 0.63, 0.84, 0.89, 0.42, 0.82, 0.92, 0.57, 0.95, 0.48.

Self-reported health is presented as the percentage of the population that rates their health as good or very
good, and this reflects access to health services, healthy living conditions, and better lifestyle choices (diets and
exercises). The values of this indicator are 0.85, 0.71, 0.74, 0.89, 0.60, 0.8, 0.73, 0.62, 0.7, 0.57, 0.68, 0.67, 0.66,
0.79, 0.58, 0.77, 0.84, 0.74, 0.73, 0.37, 0.34, 0.47, 0.46, 0.72, 0.66, 0.75, 0.86, 0.75, 0.6, 0.5, 0.65, 0.67, 0.75, 0.76,
0.81, 0.67, 0.73, 0.88, 0.43.

Table 14. Summary of descriptive statistics for each indicator.

Water quality, n=41 Educational attainment, n=40 Self-reported Health, n=39
Mean 0.8332 0.7810 0.6795

Standard deviation 0.0972 0.1568 0.1358
Skewness −0.6059 −1.1480 −0.8026
Kurtosis 2.9144 3.2077 3.2807

Min 0.62 0.42 0.3400
Max 0.98 0.95 0.8900

25th percentile 0.7775 0.705 0.6050
Median 0.83 0.83 0.7100

75th percentile 0.91 0.895 0.7575

The variables exhibit left skewness with different degrees. Educational attainment shows significant left
skewness then the self-reported health, and lastly the water quality indicator. Water quality shows mesokurtic shape,
while the educational attainment and the self-reported health show slightly more than excess kurtosis (leptokurtic,
the kurtosis coefficient is more than 3). So the data exhibit different shapes.

The different unit distributions tested was Beta, Kumaraswamy, unit Lindley, Topp Leone and the new MBUW
distribution. MLE method was applied using the Nelder Mead optimizer in MATLAB. For each distribution, the
estimated parameters, variance, Log-Likelihood, AIC, CAIC, BIC, and HQIC are recorded. Also the KS-test, AD,
CVM test are reported. Figures for the fitted CDFs and fitted PDFs are shown.
Beta Distribution: f(y;α, β) = Γ(α+β)

Γ(α)Γ(β)y
α−1(1− y)β−1, 0 < y < 1, α > 0, β > 0

Kumaraswamy Distribution: f(y;α, β) = αβyα−1(1− yα)β−1, 0 < y < 1, α > 0, β > 0
Topp–Leone Distribution: f(y; θ) = θ(2− 2y)(2y − y2)θ−1, 0 < y < 1, θ > 0

Unit–Lindley: f(y; θ) = θ2

1+θ (1− y)3 exp
(

−θy
1−y

)
, 0 < y < 1, θ > 0

Table 15 shows that all the unit distributions fit the water quality data well. The variance-covariance obtained after
fitting the MBUW distribution is not identified, although the other statistical indices like AIC, CAIC, BIC, HQIC,
LL are comparable to other distributions. Figures (5-6) show that the fitted CDF and the fitted PDF of the MBUW
align with the fitted CDFs and fitted PDFs of both the Beta distribution and the Kumaraswamy distribution. But
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Figure 4. shows the box plot of the indicators. The variables are negatively skewed

Table 15. Estimators and validation indices for the water quality dataset

Beta Kumaraswamy MBUW Topp-Leone Unit-Lindley

theta
α = 10.8716 α = 8.4271 α = 0.3559

25.8989 0.2001
β = 2.1667 β = 2.2817 β = 1.4308

Var-cov
8.1698 1.2164 1.9713 0.5680

16.3599 0.000495
1.2164 0.2274 0.5680 0.2906

SE
2.858 1.4040

4.0447 0.0222
0.4769 0.5391

AIC −77.3397 −76.8933 −76.9952 −78.5197 −61.8161

CAIC −77.0239 −76.5775 −76.6794 −78.4171 −61.7135

BIC −73.9125 −73.4662 −73.5680 −76.8061 −60.1025

HQIC −76.0917 −75.6453 −75.7472 −77.8957 −61.1921

LL 40.6698 40.4467 40.4976 40.2599 31.9080

K-S Value 0.0929 0.0996 0.0991 0.0569 0.1952

H0 Fail to reject Fail to reject Fail to reject Fail to reject Fail to reject

P-value 0.8387 0.7741 0.7789 0.9288 0.0765

AD 0.3114 0.3499 0.3463 0.5916 2.5329

CVM 0.0398 0.0483 0.0543 0.0567 0.4423

the problem is mainly the variance obtained from employing the MLE method utilizing Nelder Mead optimizer
in MATLAB. Using the values of the estimated parameter as initial guesses to substitute in the LM algorithm and
PWMs (lower and higher orders) gives the results shown in Table (18) and in Figures (11-12).
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Figure 5. shows the empirical CDF vs. fitted CDFs for the different competitors of the water quality dataset

Figure 6. shows the histogram and the fitted PDFs for the different competitors of the water quality dataset

Table 16 shows that all the unit distributions fit the educational attainment data well except the Topp–Leone
distribution. The same trouble of the variance-covariance obtained after fitting the MBUW distribution is shown,
even though the other statistical indices like AIC, CAIC, BIC, HQIC, LL are more or less analogous to other fitting
distributions. Figures (7-8) show that the fitted CDF and the fitted PDF of the MBUW is side by side with the
fitted CDFs and fitted PDFs of both the Beta distribution and the Kumaraswamy distribution. But then again; the
trouble is essentially the variance gained from deploying the MLE method consuming Nelder Mead optimizer in
MATLAB. Treating the values of the estimated parameters as initial guesses to replace in the LM algorithm and
PWMs (lower and higher orders) produces the outcomes shown in Table (19) and in Figures (13-14).
Table 17 shows that all the unit distributions fit the self-reported health data well. The same dilemma of the
variance-covariance obtained after fitting the MBUW distribution is displayed, albeit the other statistical indices
like AIC, CAIC, BIC, HQIC, LL are slightly less than that of the Beta, Kumaraswamy, and the Topp–Leone
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Table 16. Estimators and validation indices for the educational attainment dataset

Beta Kumaraswamy MBUW Topp-Leone Unit-Lindley

theta
α = 6.0373 α = 5.4735 α = 0.4333

12.3585 0.2891
β = 1.7313 β = 1.9272 β = 1.3477

Var-cov
2.9116 0.9141 1.0268 0.3651

3.8183 0.0011
0.9141 0.3410 0.3651 0.2227

SE
1.7063 1.0133

1.9540 0.0332
0.5839 0.4719

AIC −48.1413 −48.8385 −48.0574 −40.9642 −57.3738

CAIC −47.8170 −48.5142 −47.7331 −40.8589 −57.2685

BIC −44.7636 −45.4607 −44.6796 −39.2753 −55.6849

HQIC −46.9200 −47.6172 −46.8361 −40.3535 −56.7631

LL 26.0707 26.4193 26.0287 21.4821 29.6869

K-S Value 0.1481 0.1434 0.1577 0.2598 0.0697

H0 Fail to reject Fail to reject Fail to reject Reject Fail to reject

P-value 0.1613 0.1841 0.1219 0.0023 0.9442

AD 1.1861 1.1575 1.4386 4.5709 0.2596

CVM 0.2068 0.1985 0.2546 0.8485 0.0344

Figure 7. shows empirical CDF vs. fitted CDFs for different competitors for the educational attainment dataset

distributions. Figures (9–10) show that the fitted CDF and the fitted PDF of the MBUW is lined up with the
Beta and Kumaraswamy at the lower tail and is aligned with the Topp–Leone and the Unit Lindley distribution at
the upper tail. Nevertheless, the misfortune is fundamentally the variance returned from implementing the MLE
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Figure 8. shows the histogram and the fitted PDFs for different competitors for the educational attainment dataset

Table 17. Estimators and validation indices for the self-reported health dataset

Beta Kumaraswamy MBUW Topp-Leone Unit-Lindley

theta
α = 8.0698 α = 5.7073 α = 0.5771

7.3278 0.5929
β = 3.8357 β = 5.2250 β = 1.2824

Var-cov
3.3978 1.6515 0.7936 1.2015

1.3768 0.0058
1.6515 0.9425 1.2015 2.5192

SE
1.8433 0.8908

1.1734 0.0693
0.9708 1.5872

AIC −46.2684 −47.3865 −38.5536 −44.4298 −40.09617

CAIC −45.9351 −47.0531 −38.2202 −44.3217 −39.9617

BIC −42.9413 −44.0594 −35.2264 −42.7662 −38.4062

HQIC −45.0746 −46.1927 −37.3598 −43.8329 −39.4729

LL 25.1342 25.6932 21.2768 23.2149 21.0349

K-S Value 0.0867 0.0684 0.1625 0.1234 0.1400

H0 Fail to reject Fail to reject Fail to reject Fail to reject Fail to reject

P-value 0.6674 0.8577 0.2284 0.5512 0.2102

AD 0.4674 0.3414 1.4935 0.8744 1.6862

CVM 0.0807 0.0547 0.2492 0.1397 0.2886

method executing Nelder Mead optimizer in MATLAB. Employing the values of the estimated parameters as initial
guesses to insert in the LM algorithm and PWMs (lower and higher orders) generates the sequels shown in Table
(20) and in Figures (15-16).
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Figure 9. shows the empirical CDF vs the fitted CDFs for different competitors for self-reported health

Figure 10. shows the histogram vs the fitted PDFs for different competitors for self-reported health
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Table 18. Comparisons of the results of the PWMs method for parameter estimation of the water quality dataset using M1,0,1
& M1,1,0 and M1,0,2 & M1,2,0

Using unbiased
Sample estimator for
M1,0,1 and M1,1,0

Using unbiased
Sample estimator for
M1,0,2 and M1,2,0

thetas
α 0.3564 0.3529

β 1.4307 1.4316

Var-cov matrix
of parameter

10.7370 22.9418 627.8954 2.4064e+3

22.9418 94.1037 2.4064e+3 9.3821e+3

Eigenvalues=4.8406, 100 Eigenvalue=10.0408, 10000

AD 0.3418 (p=0.8810) 0.3820 (p=0.865)

CVM 0.0531 (p=0.8420) 0.0637 (p=0.785)

KS & p-value 0.0980 (p=0.7901) 0.1061 (p=0.7051)

H0 Fail to reject Fail to reject

SSE 1.8169e-19 1.7110e-19

α̂s, unbiased estimator 0.3891 0.2491

β̂r , unbiased estimator 0.4441 0.3041

Sig. of α parameter 11.0082 (p < 0.001) 11.0053 (p < 0.001)

Sig. of β parameter 17.9465 (p < 0.001) 18.1268 (p < 0.001)

Variance of the
function of the

parameter, after the
delta method
application.

Determinant and trace
of this matrix

0.0181 0.0096 0.0214 0.0080

0.0096 0.0051 0.0080 0.0030
Eigenvalues=0.0232,

8.6736e-19
Determinant=0
Trace=0.0232

Eigenvalues=0.0244,
-4.3368e-19

Determinant=0
Trace=0.0244

Var-cov between
M101&M110

0.1187e-3 0.0543e-3

0.0543e-3 0.0430e-3

Var-cov between
M102 & M120

0.7094e-4 0.1719e-4

0.1719e-4 0.1547e-4

var(θ̂) and
associated ξ

0.0010 0.0015 0.0010 0.0014

0.0015 0.0064 0.0014 0.0062

ξ = 148.5817 to achieved condition number=10 ξ = 151.4053 to achieved condition number=10

Jacobian matrix
−0.3796 0.0977 −0.2863 0.0735

−1.4718 0.3786 −0.1067 0.0274
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Figure 11. shows the eCDF vs. fitted CDF for MLE & low order PWMs, M101, M110 (upper left subplot), histogram &
fitted PDFs ( upper right subplot), QQ plot (lower left) and PP plot (lower right) for water quality dataset

Figure 12. shows the eCDF vs. fitted CDF for MLE & high order PWMs, M102, M120 (upper left subplot), histogram &
fitted PDFs ( upper right subplot), QQ plot (lower left) and PP plot (lower right) for water quality dataset
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Table 19. Comparisons of the results of the PWMs method for parameter estimation of the educational attainment dataset
using M1,0,1 & M1,1,0 and M1,0,2 & M1,2,0

Using unbiased
Sample estimator for
M1,0,1 and M1,1,0

Using unbiased
Sample estimator for
M1,0,2 and M1,2,0

thetas
α 0.4310 0.4462

β 1.3483 1.3442

Var-cov matrix
of parameter

679.8845 2.5075e+3 679.7206 2.4966e+3

2.5075e+3 9.3254e+3 2.4966e+3 9.3313e+3

Eigenvalues=5.2672, 10000 Eigenvalue=10.9762, 10000

AD 1.4027 (p=0.2090) 1.6993( p=0.1330)

CVM 0.2420 (p=0.1990) 0.3333(p=0.1110)

KS & p-value 0.1787 (p=0.1371) 0.2041 (p=0.0615)

H0 Fail to reject Fail to reject

SSE 2.2362e-19 2.4395e-19

α̂s, unbiased estimator 0.3485 0.2139

β̂r , unbiased estimator 0.4325 0.2979

Sig. of α parameter 10.1191 (p < 0.001) 12.0627 (p < 0.001)

Sig. of β parameter 13.0970 (p < 0.001) 18.8075 (p < 0.001)

Variance of the
function of the

parameter, after the
delta method
application.

Determinant and trace
of this matrix

0.0190 0.0107 0.0213 0.0089

0.0107 0.0060 0.0089 0.0037
Eigenvalues=0.0250,

2.6021e-18
Determinant=0
Trace=0.0250

Eigenvalues=0.0250,
4.3368e-19

Determinant=0
Trace=0.0250

Var-cov between
M101&M110

0.1848e-3 0.0924e-3

0.0924e-3 0.0785e-3

Var-cov between
M102 & M120

0.1136e-3 0.0321e-3

0.0321e-3 0.0328e-3

var(θ̂) and
associated ξ

0.0018 0.0025 0.0019 0.0027

0.0025 0.0106 0.0027 0.0114

ξ=88.6209 to achieve a condition number=10 ξ=82.3445 to achieved condition number=10

Jacobian matrix
−0.3668 0.0987 −0.2691 0.0721

−0.2059 0.0554 −0.1119 0.0300
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Figure 13. shows the eCDF vs. fitted CDF for MLE & low order PWMs, M101, M110 (upper left subplot), histogram &
fitted PDFs ( upper right subplot), QQ plot (lower left) and PP plot (lower right) for educational attainment dataset

Figure 14. shows the eCDF vs. fitted CDF for MLE & high order PWMs, M102, M120 (upper left subplot), histogram &
fitted PDFs ( upper right subplot), QQ plot (lower left) and PP plot (lower right) for educational attainment dataset
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Table 20. Comparisons of the results of the PWMs method for parameter estimation of the self-reported health dataset using
M1,0,1 & M1,1,0 and M1,0,2 & M1,2,0

Using unbiased
Sample estimator for
M1,0,1 and M1,1,0

Using unbiased
Sample estimator for
M1,0,2 and M1,2,0

thetas
α 0.5843 0.5752

β 1.2806 1.2829

Var-cov matrix
of parameter

11.610 21.6717 71.1767 230.3148

21.6717 94.6865 230.3148 942.8902

Eigenvalues=6.2964, 100 Eigenvalue=14.0669, 1000

AD 1.4443 (p=0.2010) 1.5100 (p=0.1780)

CVM 0.2382 (p=0.2100) 0.2529 (p=0.1900)

KS & p-value 0.1549 (p=0.2768) 0.1645 (p=0.2167)

H0 Fail to reject Fail to reject

SSE 5.9631e-19 0

α̂s, unbiased estimator 0.3019 0.1865

β̂r , unbiased estimator 0.3775 0.2621

Sig. of α parameter 9.7573 (p < 0.001) 9.7503 (p < 0.001)

Sig. of β parameter 8.5322 (p < 0.001) 8.7119 (p < 0.001)

Variance of the
function of the

parameter, after the
delta method
application.

Determinant and trace
of this matrix

0.0172 0.0108 0.0205 0.0099

0.0108 0.0068 0.0099 0.0047
Eigenvalues=0.0240,

1.7347e-18
Determinant=0
Trace=0.0240

Eigenvalues=0.0253, 0
Determinant=0
Trace=0.0253

Var-cov between
M101&M110

0.2856e-3 0.1636e-3

0.1636e-3 0.1541e-3

Var-cov between
M102 & M120

0.1556e-3 0.0524e-3

0.0524e-3 0.0604e-3

var(θ̂) and
associated ξ

0.0036 0.0049 0.0035 0.0048

0.0049 0.0225 0.0048 0.0217

ξ=42.1234 to achieve a condition number=10 ξ=43.7133 to achieve a condition number=10

Jacobian matrix
−0.3062 0.0717 −0.2317 0.0574

−1.5296 0.3579 −0.1112 0.0276
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Figure 15. shows the eCDF vs. fitted CDF for MLE & low order PWMs, M101, M110 (upper left subplot), histogram &
fitted PDFs ( upper right subplot), QQ plot (lower left) and PP plot (lower right) for self-reported health dataset

Figure 16. shows the eCDF vs. fitted CDF for MLE & high order PWMs, M102, M120 (upper left subplot), histogram &
fitted PDFs ( upper right subplot), QQ plot (lower left) and PP plot (lower right) for self-reported health dataset

Table 18 shows the results of the water quality dataset. The values of the estimated parameters using the lower
PWMs and higher PWMs are nearly equal. The approximated variance-covariance obtained from the LM algorithm
using the lower order PWMs is less than that obtained from using the higher order PWMs. Applying the delta
method on both lower and higher PWMs gives variances comparable to each other. The determinant for the matrix
of the lower order (0.0232) is less than that of the higher order (0.0244). The Jacobian matrix is an ill-conditioned
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matrix for both PWMs. Using a regularization factor enhances the estimated variance of the estimated parameters.
This regularized factor is chosen so the condition number of this matrix

(
[g′(θ0)]

T (var[g(θ̂)])−1[g′(θ0)]
)

is

10. This is because the estimated var(θ̂) =
[
[g′(θ0)]

T (var[g(θ̂)])−1[g′(θ0)] + ξI
]−1

requires this factor (ξ).
The standard errors of the estimated parameters are obtained by taking the square root of the diagonal
of this last matrix. The estimated variance, var(θ̂), obtained from the lower PWMs is comparable to that
obtained from the higher PWMs. The covariance between the samples PWMs is also reported: var[g(θ̂)] =[

var(M101) cov(M101,M110)
cov(M101,M110) var(M110)

]
and it is smaller for the higher order PWMs than the covariance for the

lower order PWMs. The AD, CVM, and KS tests are statistically significant for both order PWMs. The estimated
(α̂) & (β̂) obtained from both PWMs are statistically significant. Figures (11-12) show the fitted CDFs and the
fitted PDFs for the lower and higher order PWMs respectively. The curves of the fitted CDF and the fitted PDF
obtained from MLE are perfectly aligned with the curves obtained from both orders of PWMs. The QQ plot and
PP plot are almost perfectly aligned with the diagonal.
Table 19 clarifies the same type of results for the educational attainment dataset. The values of the estimated
parameters are nearly alike. The approximated variance yielded from the LM algorithm is nearly comparable
between the two orders of the PWMs. After applying the delta method, the determinant of the covariance matrix
obtained from both orders of the PWMs is identical (0.025). The variance of the estimated parameter, var(θ̂),
is nearly comparable between the two orders of PWMs. The AD, CVM, KS tests are statistically significant. The
estimated (α̂) & (β̂) obtained from both PWMs are statistically significant. Figures (13-14) disclose the fitted CDFs
and the fitted PDFs for the lower and higher order PWMs respectively. The fitted CDF and the fitted PDF exhibit
curves gained from MLE that are seamlessly aligned with those curves attained from using both orders of PWMs.
The QQ plot and PP plot display fair alignment with the diagonal at the upper tail and at the lower tail respectively.
Table 20 expresses similar type of the outcomes for the self-reported health dataset. The values of the estimated
parameters are nearly indistinguishable. The approximated variance gained from the LM algorithm using the lower-
order PWMs is smaller than that obtained with the higher-order PWMs. After applying the delta method, the
determinant of the covariance matrix obtained from lower order PWMs (0.0240) is smaller than that produced
from the higher order PWMs (0.0253). The variance of the estimated parameter, var(θ̂), is comparable between
the two orders of the PWMs. The AD, CVM, KS tests are statistically significant. The estimated (α̂) & (β̂) obtained
from both PWMs are statistically significant. Figures (15-16) unveil the fitted CDFs and the fitted PDFs for the
lower and higher order PWMs respectively. The curves of the fitted CDF and the fitted PDF obtained from MLE
are perfectly aligned with the curves obtained from using both orders of PWMs. The QQ plot and PP plot illustrate
reasonable alignment with the diagonal.

6. Conclusion

The classic (PWMs) method can be effectively utilized for the parameter estimation of the new Median Based
Unit Weibull (MBUW) distribution. This method is robust against outliers and is more straightforward to obtain
than the maximum likelihood estimator. In the context of the fitting datasets employed in this study, the unbiased
estimators for both order of PWMs yielded comparable results. The PWMs method offers several advantages over
alternative estimation techniques. It is both rapid and easy to compute, consistently producing feasible values
for the estimated parameters and the estimated variances. Although the higher order PWMs take much longer
time to execute at larger sample sizes than MLE, they are more efficient in estimating (β̂). Furthermore, PWMs
estimators exhibit asymptotic normal distributions. It was observed that higher-order moments like (M1,0,2 and
M1,2,0) did not significantly contribute more information than the commonly used moments (M1,0,1 and M1,1,0).
The relative efficiency of the lower order PWMs to the higher order PWMs is in the range from 0.8 to 1 depending
on the values of the parameters. The Average Absolute Biases for both orders are more or less comparable and
nearly equal so there is no big difference between them. The computational time is less for lower order PWMs
than the time for the higher PWMs. The estimated parameters from both orders of the PWMs are asymptotically
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consistent. The delta method used to estimate the variance of the function of the parameters is asymptotically
normal. Using regularization factor to estimate the variance of the estimated parameters, after accounting for the
covariance between the sample PWMs, can be a solution to mitigate the dependency between the parameters. The
main root cause of this dependency between the parameters is the distribution itself. The method may configure
the shape of the dependency, being linear or non-linear and monotonic or non-monotonic.
In this paper, the formula employed for defining PWMs is primarily based on the binomial expansion of the
cumulative distribution function and the survival function, thus integrating with respect to the variable (dy) rather
than integrating with respect to the cumulative distribution function (dF). The quantile function of the MBUW is
difficult to integrate in a sense to obtain a system of equations that can be solved numerically.

7. Future work

PWMs serve as a powerful foundation for L-moments, paving the way for a wealth of analytical possibilities.
In future research, we can leverage the estimation of various L-moments, including L-skewness and L-kurtosis,
alongside the L-moment method for precise parameter estimation. Furthermore, by extending the (β) parameter
of the Median Based unit Weibull (MBUW) distribution to accommodate negative values, we can broaden our
analytical horizons. In such scenarios, the Generalized Probability-Weighted Moments (GPWMs) method stands
out as an essential tool. Additionally, we can effectively apply Partial GPWMs to handle censored data, ensuring a
comprehensive approach to our analyses. The Bayesian methods with different loss functions can be consumed in
the future to estimate the parameters. The correlation between the two parameters is a proposal for future studies
to alleviate this dependency and hence to enhance the estimation and inference procedures. The tail indices can
be further assessed to see if they can benefit from higher order PWMs. These directions not only enhance our
statistical methodologies but also significantly enrich our understanding of the underlying data distributions.

Appendix A

A code for the PWMs method using the LM algorithm is available at: https://doi.org/10.5281/
zenodo.17867288
The Jacobian for the M101 & M110:

M1,0,1 =
360 + 108αβ

1044αβ + 580α2β + 155α3β + 20α4β + α5β + 720
=

p

q

Let us call numerator for M101 p and the denominator q

∂p

∂α
= 108βαβ−1 &

∂p

∂β
= 108αβ lnα

∂q

∂α
= 1044βαβ−1 + 580(2β)α2β−1 + 155(3β)α3β−1 + 20(4β)α4β−1 + (5β)α5β−1

∂q

∂β
= 1044αβ lnα+ 580(2)α2β lnα+ 155(3)α3β lnα+ 20(4)α4β lnα+ (5)α5β lnα

∂M1,0,1

∂α
=

∂p
∂α (q)−

∂q
∂α (p)

q2
&

∂M1,0,1

∂β
=

∂p
∂β (q)−

∂q
∂β (p)

q2

M1,1,0 =
60 + 6αβ

74αβ + 15α2β + α3β + 120
=

R

T
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Let us call numerator for M110 R and the denominator T

∂R

∂α
= 6βαβ−1 &

∂R

∂β
= 6αβ lnα

∂T

∂α
= 74βαβ−1 + 15(2β)α2β−1 + (3β)α3β−1

∂T

∂β
= 74αβ lnα+ 15(2)α2β lnα+ (3)α3β lnα

∂M1,1,0

∂α
=

∂R
∂α (T )−

∂T
∂α (R)

T 2
&

∂M1,1,0

∂β
=

∂R
∂β (T )−

∂T
∂β (R)

T 2

The Jacobian for the M102 & M120:

M1,0,2 =
K

L
where K = 58320αβ + 6480α2β + 120960

L = 663696αβ + 509004α2β + 214676α3β + 54649α4β + 8624α5β + 826α6β + 44α7β + α8β + 362880

∂K

∂α
= 58320βαβ−1 + 6480(2β)α2β−1

∂K

∂β
= 58320αβ lnα+ 6480(2)α2β lnα

∂L

∂α
= 663696βαβ−1 + 509004(2β)α2β−1 + 214676(3β)α3β−1

+ 54649(4β)α4β−1 + 8624(5β)α5β−1 + 826(6β)α6β−1

+ 44(7β)α7β−1 + (8β)α8β−1

∂L

∂β
= 663696αβ lnα+ 509004(2)α2β lnα+ 214676(3)α3β lnα

+ 54649(4)α4β lnα+ 8624(5)α5β lnα+ 826(6)α6β lnα

+ 44(7)α7β lnα+ (8)α8β lnα

∂M1,0,2

∂α
=

∂K
∂α (L)− ∂L

∂α (K)

L2
&

∂M1,0,2

∂β
=

∂K
∂β (L)− ∂L

∂β (K)

L2

M1,2,0 =
150αβ + 6α2β + 1008

1650αβ + 335α2β + 30α3β + α4β + 3024
=

H

G

∂H

∂α
= 150βαβ−1 + 6(2β)α2β−1 &

∂H

∂β
= 150αβ lnα+ 6(2)α2β lnα

∂G

∂α
= 1650βαβ−1 + 335(2β)α2β−1 + 30(3β)α3β−1 + (4β)α4β−1

∂G

∂β
= 1650αβ lnα+ 335(2)α2β lnα+ 30(3)α3β lnα+ (4)α4β lnα

∂M1,2,0

∂α
=

∂H
∂α (G)− ∂G

∂α (H)

G2
&

∂M1,2,0

∂β
=

∂H
∂β (G)− ∂G

∂β (H)

G2
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Maximum Likelihood Estimation

Let y1, y2, ..., yn an observed random sample from MBUW distribution with parameters α, β. The likelihood
function and the log-likelihood function are defined in

L(α, β; y) =

(
6

αβ

)n n∏
i=1

[
1− y

1

αβ

i

] n∏
i=1

y
( 2

αβ −1)
i , 0 < y < 1, α&β > 0

l(α, β; y) = n ln(6)− nβ ln(α) +

n∑
i=1

ln

[
1− y

1

αβ

i

]
+

(
2

αβ
− 1

) n∑
i=1

ln(yi)

The Maximum Likelihood (ML) equations are the first derivative of the log-likelihood function concerning each
parameter as defined in

dl(α, β; y)

dα
=

−βn

α
+

n∑
i=1

−y
1

αβ

i (ln[yi])(−βα−β−1)

1− y
1

αβ

i

− 2βα−β−1
n∑

i=1

ln(yi)

dl(α, β; y)

dβ
= −n lnα+ α−β

n∑
i=1

y
1

αβ

i ln[α] ln[yi]

1− y
1

αβ

i

− 2α−β [lnα]

n∑
i=1

ln(yi)

Appendix B

The workflow for estimating the variance (after controlling for the variance between the PWMs)
Step 1: Parameter estimation. Using the LM algorithm to fit the parameters. The LM algorithm uses a small
regularization or damping factor (0.001) for numerical stability in optimization as described in section (2.2). This
does not introduce bias in the estimated parameters because this ridge is extremely small.
Step 2: Bootstrap PMWs. Using the estimated parameters to generate new variables and to compute the sample
unbiased estimators for the PWMs for each bootstrap sample. The author used 5000 bootstrap samples, each sample
is equal to the sample size of the observations used in the real data analysis.
Step 3: Tayler series expansion to estimate the variance of the estimated parameters. Adding a large regularization
factor to achieve a condition number 10 as described in section (2.3) only controls the condition number and the
matrix inversion. Hence the large ridge at this stage only stabilizes the variance composition computation and does
not introduce bias to the parameter estimation itself.
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Appendix C

The first picture contains 8 figures with the following description: The first four figures are obtained from the
replicates of sample size n=20, while the last four figures are from the replicates of sample size, n=50. The figures
for each sample size is arranged as the pairs mentioned in the text, the first pair is (α = 0.5 & β = 0.6), the second
pair is (α = 0.5 & β = 1.3), the third pair (α = 1.1 & β = 0.6), and the fourth pair (α = 1.1 & β = 1.6). These are
the runs obtained from the MLE method.
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The second picture contains 8 figures with the following description: The first four figures are obtained from the
replicates of sample size n=100, while the last four figures are from the replicates of sample size, n=500. The
figures for each sample size is arranged as the pairs mentioned in the text, the first pair is (α = 0.5 & β = 0.6), the
second pair is (α = 0.5 & β = 1.3), the third pair (α = 1.1 & β = 0.6), and the fourth pair (α = 1.1 & β = 1.6).
These are the runs obtained from the MLE method.
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The third picture contains 5 figures with the following description: The first three figures are obtained from the
replicates of sample size n=20, while the last two figures are from the replicates of sample size, n=50. The figures
for each sample size is arranged as the pairs mentioned in the text, the first pair is (α = 0.5 & β = 0.6), the second
pair is (α = 0.5 & β = 1.3), the third pair (α = 1.1 & β = 0.6), and the fourth pair (α = 1.1 & β = 1.6). These are
the runs obtained from the MOM method.
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The fourth picture contains 8 figures with the following description: The first four figures are obtained from the
replicates of sample size n=100, while the last four figures are from the replicates of sample size, n=500. The
figures for each sample size is arranged as the pairs mentioned in the text, the first pair is (α = 0.5 & β = 0.6), the
second pair is (α = 0.5 & β = 1.3), the third pair (α = 1.1 & β = 0.6), and the fourth pair (α = 1.1 & β = 1.6).
These are the runs obtained from the MOM method.
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