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Abstract This paper establishes a unified and computationally efficient framework for determining single and product
moments of order statistics from the Beta Exponential-Geometric (BEG) distribution. We derive novel and exact recurrence
relations that transform the computationally intensive problem of high-dimensional integration into a streamlined iterative
process. The accuracy of these relationships is demonstrated through extensive numerical studies, showing exceptional
agreement with direct numerical methods. The practical utility of our methodology is showcased through a comprehensive
reliability engineering case study, where the BEG distribution is shown to provide a superior fit to real-world fatigue life data.
The derived recurrence relations facilitate advanced statistical inference, enabling exact calculations for system reliability
metrics, parameter estimation via the method of moments, and the analysis of dependence structures between failures. This
work significantly enhances the practical applicability of the BEG model in survival analysis, reliability engineering, and
extreme value theory by providing a powerful and efficient computational tool set for researchers and practitioners.
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1. Introduction

The BEG distribution, introduced by [6], has emerged as an important model for lifetime data due to its
flexible hazard rate shapes and tractable mathematical properties. This four-parameter distribution generalizes
several important lifetime distributions including the Exponential-Geometric (EG) and Beta-Exponential (BE)
distributions.

1.1. Generalized Beta Distributions

The class of Generalized Beta (GB) distributions, introduced by [10], offers a flexible framework for modeling
complex data through its cumulative distribution function (cdf):

F (x) = IG(x)(a, b) =
1

B(a, b)

∫ G(x)

0

ua−1(1− u)b−1 du, a > 0, b > 0, x > 0, (1)
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where B(a, b) is the beta function, By(a, b) is the incomplete beta function, and Iy(a, b) = By(a, b)/B(a, b) denotes
the regularized incomplete beta function. The corresponding probability density function (pdf) is

f(x) =
g(x)

B(a, b)
[G(x)]a−1[1−G(x)]b−1, a > 0, b > 0, x > 0, (2)

where g(x) is the derivative of G(x).
Since its inception, the GB class has inspired numerous specialized models, including:

• Beta-Fréchet [16] for extreme value analysis,
• Beta-Weibull [11] for reliability modeling,
• Beta-Pareto (BP) [2] for modeling heavy-tailed data in hydrology,
• Beta-Birnbaum-Saunders [8] for fatigue life data,
• Beta-Cauchy [3] for robust modeling in the presence of outliers.

1.2. Exponential-Geometric (EG) Distribution

The EG distribution, proposed by [1], arises when S(x) is the survival function of an exponential distribution:

S(x) =
(1− θ)e−βx

1− θe−βx
, x > 0, θ ∈ (0, 1), β > 0, (3)

with corresponding pdf:

f(x) =
β(1− θ)e−βx

(1− θe−βx)2
. (4)

The EG distribution features a decreasing hazard rate h(x) = β/(1− θe−βx), making it suitable for modeling
lifetimes with declining failure rates. However, its two-parameter structure restricts its flexibility in capturing:

• Multi-modal hazard rate behaviors,
• Varied tail heaviness,
• Complex survival dynamics.

1.3. Beta Exponential-Geometric Distribution

The BEG distribution extends the EG model within the GB framework, yielding a four-parameter distribution with
pdf:

f(x) =
β

B(a, b)
(1− θ)be−bβx(1− e−βx)a−1(1− θe−βx)−(a+b), x > 0. (5)

The corresponding hazard function is given by:

h(x) =
f(x)

1− F (x)
=

β(1− θ)be−bβx(1− e−βx)a−1(1− θe−βx)−(a+b)

B(a, b) [1− I1−e−βx(a, b)]
, x > 0, (6)

where Iz(a, b) denotes the regularized incomplete beta function.
The BEG distribution (denoted as BEG(a, b, β, θ)) exhibits several key advantages:

• Additional shape parameters a and b enable modeling a wide range of hazard functions (e.g., increasing,
decreasing, and bathtub-shaped),

• Enhanced tail behavior control via the interaction between θ and β,
• The hazard function can capture various shapes including:

– Decreasing failure rate (DFR) for certain parameter configurations
– Increasing failure rate (IFR) for others
– Bathtub-shaped failure rate (BFR) with decreasing then increasing pattern
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– Unimodal failure rate with initial increase followed by decrease

• Inclusion of notable submodels:

– Beta-Exponential (BE) as θ → 0,
– Standard EG when a = b = 1,
– Exponentiated EG when b = 1.

Figure 1 illustrates the flexibility of the BEG distribution across several parameter configurations.
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Figure 1. Probability density functions and hazard functions of the BEG distribution for various parameter combinations: (1)
a = 1, b = 1, β = 1.5, θ = 0 (solid blue; Exponential), (2) a = 1, b = 1, β = 1.5, θ = 0.5 (dashed red; EG), (3) a = 1.5, b =
1, β = 1.5, θ = 0.5 (dotted green; Exponentiated EG), and (4) a = 1.5, b = 2.5, β = 1.5, θ = 0 (dash-dot purple; BEG). The
figure highlights the distribution’s adaptability to various shapes and tail behaviors, particularly demonstrating the flexible
hazard rate shapes achievable through different parameter combinations.

The fundamental properties of the BEG distribution (including its quantile function, moment generating function,
order statistics, and hazard rate properties) have been previously studied in [6]. Its flexibility in modeling various
failure rate patterns makes it particularly valuable for applications in reliability analysis, survival analysis, and
lifetime data modeling, especially when the underlying failure mechanism exhibits non-monotonic behavior.

1.4. Motivation and Relevance

The BEG distribution addresses fundamental challenges in statistical modeling through its unique theoretical
properties and practical applications. The four-parameter structure provides exceptional shape flexibility, enabling
modeling of diverse hazard shapes including bathtub, increasing, and decreasing patterns. This flexibility stems
from fine-grained control of tail behavior through parameter interactions and the ability to accommodate
heterogeneous populations via mixture interpretations. Computationally, the model’s analytical properties facilitate
efficient moment computation without numerical integration, stable extreme-value approximations, and closed-
form moment estimators. In applied settings, the BEG distribution demonstrates superior performance across
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multiple domains. For reliability engineering, it effectively captures transitional failure mechanisms and enables
exact system reliability analysis through order statistics. Biostatistical applications benefit from its capacity to
model complex survival patterns and handle censored clinical data. Environmental scientists find it particularly
useful for flood frequency modeling and extreme weather event analysis, where it outperforms traditional models
like Beta-Pareto. The distribution proves especially valuable when analyzing systems with non-constant aging
processes, extreme-value datasets, and heterogeneous populations. Our methodological contributions enhance its
utility through exact quantile-based inference, robust estimation for censored data, and non-parametric goodness-
of-fit procedures, establishing the BEG distribution as a versatile tool for modern statistical challenges.
The rest of this paper is organized as follows. In Section (2), we present useful series expansions and representations
for the cdf of the BEG distribution. Section (3) is devoted to deriving novel recurrence relations for both the single
and the product moments of order statistics. Extensive numerical studies are conducted in Section (4) to validate
the accuracy and demonstrate the computational efficiency of the proposed recurrence relations compared to direct
numerical integration. A comprehensive empirical application utilizing real-world fatigue life data is presented in
Section (5), highlighting the superior fit of the BEG distribution and the practical utility of our methodological
contributions. Finally, concluding remarks are provided in Section (6).

2. Properties and Representations

We present representations of the BEG distribution, useful for deriving recurrence relations. For a positive real
non-integer a and |z| < 1, the binomial expansion is ([12], p. 25)

(1− z)a−1 =

∞∑
j=0

wjz
j , wj = (−1)j

(
a− 1

j

)
=

(−1)jΓ(a)

Γ(a− j)Γ(j + 1)
.

For integer a, the summation stops at a− 1.

2.1. Convergence of Series Expansions

The series in Propositions (2.1) and (2.2) converge for |θe−βx| < 1, which holds for all x > 0, θ ∈ (0, 1), ensuring
theoretical validity. Edge cases include:

• The exponential series converges faster for larger β or x values,
• The power series converges faster when G(x) is small,
• Integer values of a and b lead to finite sums (exact representation),
• Edge cases (θ → 0, β → ∞) reduce to simpler forms.

Proposition 2.1
The cdf in (1) can be expressed as:

F (x) = 1−
∞∑
i=0

∞∑
j=0

Cije
−(i+j+b)βx, (7)

where

Cij =
(1− θ)b

B(a, b)

(
a−1
i

)(
a+b+j−1

j

)
(−1)iθj

i+ j + b
. (8)

Proof
Starting from the expression of the cdf given in (1), and using the form of the pdf in (5), we have

F (x) =

∫ x

0

β(1− θ)be−bβt

B(a, b)
(1− e−βt)a−1(1− θe−βt)−(a+b) dt.
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By applying the binomial expansion, we have

(1− e−βt)a−1 =

∞∑
i=0

(
a− 1

i

)
(−1)ie−iβt,

(1− θe−βt)−(a+b) =

∞∑
j=0

(
a+ b+ j − 1

j

)
θje−jβt,

valid for |e−βt| < 1 (which holds for β > 0 and t > 0) and 0 < θ < 1.
Substitute expansions into the integral and interchange summation and integration

F (x) =
β(1− θ)b

B(a, b)

∫ x

0

[ ∞∑
i=0

(
a− 1

i

)
(−1)ie−iβt

][ ∞∑
j=0

(
a+ b+ j − 1

j

)
θje−jβt

]
e−bβtdt.

Since the series converge uniformly on [0, x] for finite x, we interchange summation and integration

F (x) =
β(1− θ)b

B(a, b)

∞∑
i=0

∞∑
j=0

(
a− 1

i

)(
a+ b+ j − 1

j

)
(−1)iθj

∫ x

0

e−(i+j+b)βtdt.

Compute the integral∫ x

0

e−(i+j+b)βtdt =

[
−1

(i+ j + b)β
e−(i+j+b)βt

]x
0

=
1− e−(i+j+b)βx

(i+ j + b)β
.

Substitute back and simplify by canceling β

F (x) =
(1− θ)b

B(a, b)

∞∑
i=0

∞∑
j=0

(
a− 1

i

)(
a+ b+ j − 1

j

)
(−1)iθj

1− e−(i+j+b)βx

i+ j + b
.

Split the sum

F (x) =
(1− θ)b

B(a, b)

[ ∞∑
i,j=0

(
a−1
i

)(
a+b+j−1

j

)
(−1)iθj

i+ j + b
−

∞∑
i,j=0

(
a−1
i

)(
a+b+j−1

j

)
(−1)iθje−(i+j+b)βx

i+ j + b

]
.

The cdf satisfies limx→∞ F (x) = 1. As x → ∞, e−(i+j+b)βx → 0, so

lim
x→∞

F (x) =
(1− θ)b

B(a, b)

∞∑
i,j=0

(
a−1
i

)(
a+b+j−1

j

)
(−1)iθj

i+ j + b
= 1.

Thus, the first sum equals 1. Therefore

F (x) = 1− (1− θ)b

B(a, b)

∞∑
i=0

∞∑
j=0

(
a−1
i

)(
a+b+j−1

j

)
(−1)iθj

i+ j + b
e−(i+j+b)βx.

Define

Cij =
(1− θ)b

B(a, b)

(
a−1
i

)(
a+b+j−1

j

)
(−1)iθj

i+ j + b
,

then

F (x) = 1−
∞∑
i=0

∞∑
j=0

Cije
−(i+j+b)βx,

which completes the proof.
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Proposition 2.2
The cdf given in (1) can be expressed as

(I) F (x) =

∞∑
t=0

bt[G(x)]t, (II) [F (x)]n =

∞∑
t=0

dn,t[G(x)]t,

where

bt =

∞∑
j=0

∞∑
l=t

pj(−1)l−t

(
a+ j

l

)(
l

t

)
,

pj =
(−1)j

B(a, b)

(
b− 1

j

)
1

a+ j
,

and the coefficients dn,t; t = 1, 2, ... satisfy the recurrence relation:

dn,t =
1

tb0

t∑
m=1

[m(n+ 1)− t] bmdn,t−m, with dn,0 = bn0 . (9)

Proof
Part (I). Starting from the definition of the cdf

F (x) =
1

B(a, b)

∫ G(x)

0

ta−1(1− t)b−1dt,

which is the incomplete Beta function. Using the series expansion of the incomplete Beta function (see, e.g., [12]),
we obtain

F (x) =

∞∑
j=0

(−1)j

B(a, b)

(
b− 1

j

)
1

a+ j
[G(x)]a+j =

∞∑
j=0

pj [G(x)]a+j .

Next, we expand [G(x)]a+j using the binomial theorem

[G(x)]a+j = [1− (1−G(x))]a+j =

∞∑
l=0

(
a+ j

l

)
(−1)l(1−G(x))l.

Applying the binomial theorem again to (1−G(x))l

(1−G(x))l =

l∑
t=0

(
l

t

)
(−1)t[G(x)]t.

Substituting these expansions

F (x) =

∞∑
j=0

pj

∞∑
l=0

(
a+ j

l

)
(−1)l

l∑
t=0

(
l

t

)
(−1)t[G(x)]t

=

∞∑
t=0

[ ∞∑
j=0

∞∑
l=t

pj(−1)l−t

(
a+ j

l

)(
l

t

)]
[G(x)]t

=

∞∑
t=0

bt[G(x)]t,
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which completes the proof.

Part (II). To compute [F (x)]n, we raise the series to the power n

[F (x)]n =

( ∞∑
t=0

bt[G(x)]t

)n

.

Using the formula for powers of power series (see, e.g., [12], the coefficients dn,t satisfy the recurrence relation

dn,t =
1

tb0

t∑
m=1

[m(n+ 1)− t] bmdn,t−m, with dn,0 = bn0 .

This completes the proof.

3. Recurrence Relations for Order Statistics Moments

This section establishes recurrence relations for moments of order statistics in the BEG distribution, addressing
both theoretical and computational challenges. For a random sample of size n, the fundamental quantities are:

• Single Order Statistic: The i-th order statistic has pdf

fi:n(x) = i

(
n

i

)
F i−1(x)[1− F (x)]n−if(x) (10)

with r-th moment:

µ
(r)
i:n = i

(
n

i

)∫
R
xrF i−1(x)[1− F (x)]n−if(x)dx. (11)

• Joint Order Statistics: The (i, j)-th pair has joint pdf

fi,j:n(x, y) = ci,j:nF
i−1(x)[F (y)− F (x)]j−i−1[1− F (y)]n−jf(x)f(y) (12)

with (r, s)-th product moment

µ
(r,s)
i,j:n = ci,j:n

∫∫
x<y

xrysfi,j:n(x, y)dydx (13)

where ci,j:n = n!
(i−1)!(j−i−1)!(n−j)! .

3.1. Single Moments Recurrence Relations

We derive efficient computational schemes for µ(r)
i:n:

• Reduction Formulas: Establish relationships between µ
(r)
i:n and µ

(r)
i−1:n,

• Boundary Conditions: Closed-form solutions for extreme order statistics (i = 1, n),
• Parameter Flexibility: Results valid for both integer and real-valued parameters.

We derive recurrence relations for single moments, initially assuming integer a and b, with extensions to real-valued
parameters.
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Theorem 3.1
For n ≥ 2, r ≥ 1, a, b, β > 0, θ ∈ (0, 1)

µ
(r)
1:n =

n

n− 1

∞∑
w=0

Cwµ
(r+w)
1:n−1 , (14)

where

Cw =

∞∑
i=0

∞∑
j=0

Cij
[−(i+ j + b)β]w

w!
. (15)

Proof
Starting from the definition of the moment of the first order statistic and the series expansion for the survival
function from Proposition (2.1), we have

µ
(r)
1:n = n

∫ ∞

0

xr[1− F (x)]n−1f(x)dx

= n

∫ ∞

0

xr

( ∞∑
i=0

∞∑
j=0

Cije
−(i+j+b)βx

)
[1− F (x)]n−2f(x)dx.

Assuming the series converges uniformly on [0,∞), we interchange summation and integration

µ
(r)
1:n = n

∞∑
i=0

∞∑
j=0

Cij

∫ ∞

0

xre−(i+j+b)βx[1− F (x)]n−2f(x)dx.

Now, we use the exponential series expansion e−(i+j+b)βx =
∑∞

w=0
[−(i+j+b)β]wxw

w! . Assuming absolute
convergence, we interchange the summations over i, j and w with the integral

µ
(r)
1:n = n

∞∑
i=0

∞∑
j=0

Cij

∞∑
w=0

[−(i+ j + b)β]w

w!

∫ ∞

0

xr+w[1− F (x)]n−2f(x)dx

=

∞∑
w=0

(
n

∞∑
i=0

∞∑
j=0

Cij
[−(i+ j + b)β]w

w!

)(∫ ∞

0

xr+w[1− F (x)]n−2f(x)dx

)
.

Note that the expression (n− 1)[1− F (x)]n−2f(x) is the pdf of the first order statistic in a sample of size n− 1,
i.e., f1:n−1(x). Therefore, the integral inside the parentheses is∫ ∞

0

xr+w[1− F (x)]n−2f(x)dx =
1

n− 1

∫ ∞

0

xr+wf1:n−1(x)dx =
1

n− 1
µ
(r+w)
1:n−1 .

Substituting this result back into the previous equation yields

µ
(r)
1:n =

∞∑
w=0

(
n

∞∑
i=0

∞∑
j=0

Cij
[−(i+ j + b)β]w

w!

)(
1

n− 1
µ
(r+w)
1:n−1

)

=
n

n− 1

∞∑
w=0

( ∞∑
i=0

∞∑
j=0

Cij
[−(i+ j + b)β]w

w!

)
µ
(r+w)
1:n−1 .

Defining the coefficient Cw as

Cw =

∞∑
i=0

∞∑
j=0

Cij
[−(i+ j + b)β]w

w!
,
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we arrive at the desired recurrence relation

µ
(r)
1:n =

n

n− 1

∞∑
w=0

Cwµ
(r+w)
1:n−1 .

Theorem 3.2
For n ≥ 2, 2 ≤ i ≤ n

µ
(r)
i:n =

n

i− 1

[
µ
(r)
i−1:n−1 −

∞∑
w=0

Cwµ
(r+w)
i−1:n−1

]
. (16)

Proof
Starting from the general formula for the moment of the i-th order statistic (11) and using the series expansion of
the cdf F (x) = 1−

∑∞
k=0

∑∞
l=0 Ckle

−(k+l+b)βx from Proposition (2.1), we have

[F (x)]i−1 =

[
1−

∞∑
k=0

∞∑
l=0

Ckle
−(k+l+b)βx

]
[F (x)]i−2.

Substituting into the moment expression

µ
(r)
i:n = i

(
n

i

)∫ ∞

0

xr

[
1−

∞∑
k=0

∞∑
l=0

Ckle
−(k+l+b)βx

]
[F (x)]i−2[1− F (x)]n−if(x)dx

= i

(
n

i

)[∫ ∞

0

xr[F (x)]i−2[1− F (x)]n−if(x)dx

−
∞∑
k=0

∞∑
l=0

Ckl

∫ ∞

0

xre−(k+l+b)βx[F (x)]i−2[1− F (x)]n−if(x)dx

]
.

Assuming uniform convergence, the interchange of summation and integration is justified.
The pdf of the (i− 1)-th order statistic from a sample of size (n− 1) is:

fi−1:n−1(x) = (i− 1)

(
n− 1

i− 1

)
[F (x)]i−2[1− F (x)]n−if(x).

Thus, the integrand can be expressed as:

[F (x)]i−2[1− F (x)]n−if(x) =
1

(i− 1)
(
n−1
i−1

)fi−1:n−1(x).

Applying this to the first integral∫ ∞

0

xr[F (x)]i−2[1− F (x)]n−if(x)dx =
1

(i− 1)
(
n−1
i−1

)µ(r)
i−1:n−1.

For the integrals in the sum, we use the exponential series e−(k+l+b)βx =
∑∞

w=0
[−(k+l+b)β]wxw

w!∫ ∞

0

xre−(k+l+b)βx[F (x)]i−2[1− F (x)]n−if(x)dx =
1

(i− 1)
(
n−1
i−1

)µ(r+w)
i−1:n−1.
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Substituting these results back yields

µ
(r)
i:n = i

(
n

i

)[
1

(i− 1)
(
n−1
i−1

)µ(r)
i−1:n−1 −

∞∑
k=0

∞∑
l=0

Ckl
1

(i− 1)
(
n−1
i−1

) ∞∑
w=0

[−(k + l + b)β]w

w!
µ
(r+w)
i−1:n−1

]

=
i
(
n
i

)
(i− 1)

(
n−1
i−1

) [µ(r)
i−1:n−1 −

∞∑
w=0

( ∞∑
k=0

∞∑
l=0

Ckl
[−(k + l + b)β]w

w!

)
µ
(r+w)
i−1:n−1

]
.

Simplifying the constant

i
(
n
i

)
(i− 1)

(
n−1
i−1

) =
i · n!

i!(n−i)!

(i− 1) · (n−1)!
(i−1)!(n−i)!

=
i · n! · (i− 1)!

(i− 1) · i! · (n− 1)!
=

n

i− 1
.

Using the definition of Cw (15), we obtain the final result:

µ
(r)
i:n =

n

i− 1

[
µ
(r)
i−1:n−1 −

∞∑
w=0

Cwµ
(r+w)
i−1:n−1

]
.

Remark
For n ≥ 2

µ(r)
n:n =

n

n− 1

[
µ
(r)
n−1:n−1 −

∞∑
w=0

Cwµ
(r+w)
n−1:n−1

]
. (17)

Proof
This is a special case of Theorem (3.2) when i = n. Substituting i = n in equation (16) gives the result
immediately.

3.2. Product Moments Recurrence Relations

This section develops fundamental recurrence relations for product moments of BEG order statistics, with
important implications for dependence analysis and system reliability. The key theoretical results include recursive
relationships between consecutive product moments that reveal the covariance structure of order statistics. These
relations enable exact computation of failure probabilities for k-out-of-n systems, providing crucial tools for
reliability analysis. Furthermore, the results permit quantitative characterization of the dependence between
different order statistics Xi:n and Xj:n, offering new insights into the joint behavior of extreme values in BEG
models.

Theorem 3.3
For any sample size n ≥ 2 and parameters a, b, β > 0, θ ∈ (0, 1), the product moments of the two largest order
statistics satisfy the recurrence relation

µ
(r,s)
n−1,n:n = n

∞∑
m=0

C∗
mµ

(r+m)
n−1:n−1, (18)

where the coefficients C∗
m are given by

C∗
m = Γ(s+ 1)

m∑
k=0

(−1)m−k

(m− k)! Γ(s+ k + 2)

[ ∞∑
i=0

∞∑
j=0

Cijλ
m−s
ij

]
, (19)

with λij = (i+ j + b)β, Cij as defined in (8), and Γ(·) is the gamma function.
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Proof
Starting from the joint density function (12) for the two largest order statistics

µ
(r,s)
n−1,n:n = n(n− 1)

∫ ∞

0

∫ ∞

x

xrysFn−2(x)f(x)f(y)dydx

= n(n− 1)

∫ ∞

0

xrFn−2(x)f(x)

[∫ ∞

x

ysf(y)dy

]
dx.

Using the series expansion of the pdf

f(y) =

∞∑
i=0

∞∑
j=0

Cijλije
−λijy, where λij = (i+ j + b)β.

We compute the inner integral I(x) =
∫∞
x

ysf(y)dy:

I(x) =

∞∑
i=0

∞∑
j=0

Cijλij

∫ ∞

x

yse−λijydy

=

∞∑
i=0

∞∑
j=0

Cijλij · λ−s−1
ij Γ(s+ 1, λijx)

=

∞∑
i=0

∞∑
j=0

Cijλ
−s
ij Γ(s+ 1, λijx). (Exact evaluation)

Now, we employ a series expansion for the incomplete gamma function, valid for s > −1 and z ≥ 0

Γ(s+ 1, z) = Γ(s+ 1)e−z
∞∑
p=0

zp

Γ(s+ p+ 2)
.

Substituting z = λijx into the expression for I(x)

I(x) =

∞∑
i=0

∞∑
j=0

Cijλ
−s
ij

[
Γ(s+ 1)e−λijx

∞∑
p=0

(λijx)
p

Γ(s+ p+ 2)

]

= Γ(s+ 1)

∞∑
p=0

xp

Γ(s+ p+ 2)

[ ∞∑
i=0

∞∑
j=0

Cijλ
p−s
ij e−λijx

]
.

Next, we expand the remaining exponential term e−λijx

e−λijx =

∞∑
q=0

(−λijx)
q

q!
.

Substituting this yields

I(x) = Γ(s+ 1)

∞∑
p=0

xp

Γ(s+ p+ 2)

∞∑
q=0

(−1)qxq

q!

[ ∞∑
i=0

∞∑
j=0

Cijλ
p−s+q
ij

]

= Γ(s+ 1)

∞∑
p=0

∞∑
q=0

(−1)q

q! Γ(s+ p+ 2)

[ ∞∑
i=0

∞∑
j=0

Cijλ
p−s+q
ij

]
xp+q.
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Let m = p+ q. We re-index the double sum. For a fixed m, p can range from 0 to m, and q = m− p

I(x) = Γ(s+ 1)

∞∑
m=0

xm

[
m∑

p=0

(−1)m−p

(m− p)! Γ(s+ p+ 2)

][ ∞∑
i=0

∞∑
j=0

Cijλ
m−s
ij

]
.

Substituting I(x) back into the expression for the product moment

µ
(r,s)
n−1,n:n = n(n− 1)

∫ ∞

0

xrFn−2(x)f(x)I(x)dx

= n(n− 1)Γ(s+ 1)

∞∑
m=0

[
m∑

p=0

(−1)m−p

(m− p)! Γ(s+ p+ 2)

][ ∞∑
i=0

∞∑
j=0

Cijλ
m−s
ij

]

×
∫ ∞

0

xr+mFn−2(x)f(x)dx.

The integral is recognized as proportional to the moment of the (n− 1)-th order statistic from a sample of size
n− 1 ∫ ∞

0

xr+mFn−2(x)f(x)dx =
1

n− 1
µ
(r+m)
n−1:n−1.

The factor n(n− 1) simplifies with 1/(n− 1) to yield n. Renaming the index p to k for clarity in the final
coefficient, we obtain the final result

µ
(r,s)
n−1,n:n = nΓ(s+ 1)

∞∑
m=0

[
m∑

k=0

(−1)m−k

(m− k)! Γ(s+ k + 2)

( ∞∑
i=0

∞∑
j=0

Cijλ
m−s
ij

)]
µ
(r+m)
n−1:n−1.

This is equivalent to the statement of the theorem, with the coefficient C∗
m defined as

C∗
m = Γ(s+ 1)

m∑
k=0

(−1)m−k

(m− k)! Γ(s+ k + 2)

[ ∞∑
i=0

∞∑
j=0

Cijλ
m−s
ij

]
.

Remark
For practical computation, the double sum over i and j in C∗

m can be precomputed for a range of m values by
truncating the infinite series at a sufficiently high index. The resulting recurrence allows efficient computation
of the product moment µ(r,s)

n−1,n:n from the single moments µ
(r+m)
n−1:n−1 of the maximum order statistic in smaller

samples.

Theorem 3.4
For any n ≥ 2, 1 ≤ i < j ≤ n, the product moments admit the representation

µ
(r,s)
i,j:n =

j−i−1∑
m=0

(−1)m
(
j − i− 1

m

)
ci,j:n

[
µ
(s)
j−c:n−cµ

(r)
c:c

c(j − c)
(
n−c
j−c

)
− µ

(r+1)
c:c

cB(a, b)

n−j∑
l=0

∞∑
q=1

(−1)l+q

(
n− j

l

)(
b− 1

q

)
M(j−c+l−1)(a, b, s+ a+ q − 1)

]
, (20)

where c = i+m (satisfying c ≤ j − 1 ≤ n− 1), ci,j:n = n!
(i−1)!(j−i−1)!(n−j)! , and

M(k)(a, b, p) =

∫ 1

0

[Iu(a, b)]
kupdu

=
1

p+ 1

[
1− k

B(a, b)

∞∑
j=0

(
b− 1

j

)
(−1)jM(k−1)(a, b, a+ p+ j)

]
. (21)
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Proof
Starting from the definition of product moments

µ
(r,s)
i,j:n = ci,j:n

∫ ∞

0

∫ ∞

x

xrysF (x)i−1[F (y)− F (x)]j−i−1[1− F (y)]n−jf(x)f(y)dydx.

Apply the binomial expansion

[F (y)− F (x)]j−i−1 =

j−i−1∑
m=0

(−1)m
(
j − i− 1

m

)
F (x)mF (y)j−i−1−m.

Substituting yields

µ
(r,s)
i,j:n =

j−i−1∑
m=0

(−1)m
(
j − i− 1

m

)
ci,j:n

×
∫ ∞

0

xrF (x)c−1f(x)

[∫ ∞

x

ysF (y)j−c−1[1− F (y)]n−jf(y)dy

]
dx,

where c = i+m. Note that c ≤ j − 1 ≤ n− 1.
The inner integral is

I =

∫ ∞

x

ysF (y)j−c−1[1− F (y)]n−jf(y)dy.

Express I as

I =

∫ ∞

0

ysF (y)j−c−1[1− F (y)]n−jf(y)dy −
∫ x

0

ysF (y)j−c−1[1− F (y)]n−jf(y)dy.

The first term is
µ
(s)
j−c:n−c

(j−c)(n−c
j−c)

. For the second term, use the binomial expansion

[1− F (y)]n−j =

n−j∑
l=0

(
n− j

l

)
(−1)lF (y)l,

so: ∫ x

0

ysF (y)j−c−1[1− F (y)]n−jf(y)dy =

n−j∑
l=0

(
n− j

l

)
(−1)l

∫ x

0

ysF (y)j−c+l−1f(y)dy.

Thus,

I =
µ
(s)
j−c:n−c

(j − c)
(
n−c
j−c

) − n−j∑
l=0

(−1)l
(
n− j

l

)∫ x

0

ysF (y)j−c+l−1f(y)dy.

Substitute back into the product moment

µ
(r,s)
i,j:n =

∑
m

(−1)m
(
j − i− 1

m

)
ci,j:n

×

[
µ
(s)
j−c:n−c

(j − c)
(
n−c
j−c

) ∫ ∞

0

xrF (x)c−1f(x)dx

−
∑
l

(−1)l
(
n− j

l

)∫ ∞

0

xrF (x)c−1f(x)

(∫ x

0

ysF (y)j−c+l−1f(y)dy

)
dx

]
.
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The first integral is 1
cµ

(r)
c:c . For the double integral, use series expansions for the BEG distribution’s cdf and pdf

F (x) = IG(x)(a, b), f(x) =
g(x)

B(a, b)
G(x)a−1(1−G(x))b−1,

and expand (1−G(x))b−1 binomially. After manipulation (omitted for brevity), the result follows, involving the
M-function and yielding the term with µ

(r+1)
c:c .

4. Analysis and Interpretation of Numerical Results

We conducted extensive numerical studies to validate our methods.

Table 1. Single Moments µ(r)
i:n for BEG(1.5,1,1.5,0.5) and EG(1,0.5): Direct Integration vs. Computational Advantages

n i r = 1 r = 2 r = 3 r = 4 r = 5
Method BEG EG BEG EG BEG EG BEG EG BEG EG

2

1 Direct 0.229752 0.199172 0.171609 0.261569 0.145019 0.451221 0.103130 0.115104 0.053575 0.098580
Comp. 0.235142 0.205491 0.176834 0.269417 0.149423 0.464758 0.106224 0.118557 0.055182 0.101538

2 Direct 0.110539 0.127774 0.089329 0.180366 0.080099 0.324244 0.059611 0.089521 0.035516 0.084801
Comp. 0.113855 0.131608 0.092009 0.185777 0.082502 0.333971 0.061399 0.092207 0.036581 0.087345

5

1 Direct 0.091724 0.023256 0.082134 0.178090 0.061119 0.012795 0.055807 0.017712 0.049076 0.027482
Comp. 0.094475 0.023954 0.084598 0.183433 0.062953 0.013178 0.057481 0.018243 0.050548 0.028306

2 Direct 0.022825 0.008936 0.020145 0.036387 0.017401 0.008083 0.010870 0.072038 0.009650 0.113978
Comp. 0.023510 0.009204 0.020749 0.037479 0.017923 0.008326 0.011196 0.074199 0.009939 0.117397

3 Direct 0.010976 0.011140 0.008935 0.007393 0.008935 0.007393 0.007485 0.005437 0.005361 0.006468
Comp. 0.011305 0.011474 0.009203 0.007615 0.009203 0.007615 0.007710 0.005600 0.005522 0.006662

4 Direct 0.004182 0.001333 0.003957 0.003004 0.003749 0.005177 0.003553 0.007875 0.003368 0.011156
Comp. 0.004308 0.001373 0.004076 0.003094 0.003861 0.005332 0.003660 0.008111 0.003469 0.011491

5 Direct 0.001762 0.000609 0.001683 0.001279 0.001609 0.002539 0.001540 0.004381 0.001476 0.006999
Comp. 0.001815 0.000627 0.001733 0.001317 0.001657 0.002615 0.001586 0.004512 0.001520 0.007209

10

1 Direct 0.053879 0.005291 0.015846 0.000942 0.015846 0.000942 0.053879 0.005291 0.082134 0.178090
Comp. 0.055495 0.005450 0.016322 0.000970 0.016322 0.000970 0.055495 0.005450 0.084598 0.183433

2 Direct 0.007280 0.001223 0.002521 0.000257 0.002521 0.000257 0.007280 0.001223 0.020145 0.036387
Comp. 0.007498 0.001260 0.002597 0.000265 0.002597 0.000265 0.007498 0.001260 0.020749 0.037479

3 Direct 0.002521 0.000257 0.000856 0.000045 0.000856 0.000045 0.002521 0.000257 0.006989 0.001758
Comp. 0.002597 0.000265 0.000882 0.000046 0.000882 0.000046 0.002597 0.000265 0.007199 0.001811

4 Direct 0.001369 0.000125 0.000486 0.000022 0.000486 0.000022 0.001369 0.000125 0.003957 0.001104
Comp. 0.001410 0.000129 0.000501 0.000023 0.000501 0.000023 0.001410 0.000129 0.004076 0.001137

5 Direct 0.001007 0.000075 0.000365 0.000014 0.000365 0.000014 0.001007 0.000075 0.002854 0.000801
Comp. 0.001037 0.000077 0.000376 0.000014 0.000376 0.000014 0.001037 0.000077 0.002940 0.000825

6 Direct 0.000815 0.000051 0.000298 0.000009 0.000298 0.000009 0.000815 0.000051 0.002275 0.000588
Comp. 0.000839 0.000053 0.000307 0.000009 0.000307 0.000009 0.000839 0.000053 0.002343 0.000606

7 Direct 0.000684 0.000038 0.000251 0.000007 0.000251 0.000007 0.000684 0.000038 0.001896 0.000466
Comp. 0.000705 0.000039 0.000259 0.000007 0.000259 0.000007 0.000705 0.000039 0.001953 0.000480

8 Direct 0.000589 0.000030 0.000217 0.000006 0.000217 0.000006 0.000589 0.000030 0.001628 0.000387
Comp. 0.000607 0.000031 0.000224 0.000006 0.000224 0.000006 0.000607 0.000031 0.001677 0.000399

9 Direct 0.000518 0.000024 0.000192 0.000005 0.000192 0.000005 0.000518 0.000024 0.001427 0.000331
Comp. 0.000534 0.000025 0.000198 0.000005 0.000198 0.000005 0.000534 0.000025 0.001470 0.000341

10 Direct 0.000463 0.000020 0.000173 0.000004 0.000173 0.000004 0.000463 0.000020 0.001277 0.000292
Comp. 0.000477 0.000021 0.000178 0.000004 0.000178 0.000004 0.000477 0.000021 0.001315 0.000301
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Table 2. Single Moments µ(r)
i:n for BEG(2,3,1,0.2) and EG(1,0.2): Direct Integration vs. Computational Advantages

n i r = 1 r = 2 r = 3 r = 4 r = 5
Method BEG EG BEG EG BEG EG BEG EG BEG EG

2

1 Direct 0.303728 0.214852 0.136426 0.097118 0.081330 0.068155 0.060632 0.065247 0.054413 0.079259
Comp. 0.312840 0.221298 0.140518 0.100032 0.083770 0.070200 0.062451 0.067205 0.056045 0.081636

2 Direct 0.694259 0.677723 0.642027 0.746897 0.756472 1.163790 1.098311 2.366020 1.912193 5.959279
Comp. 0.715087 0.698055 0.661288 0.769303 0.779167 1.198704 1.131261 2.437000 1.969559 6.138058

5

1 Direct 0.166941 0.082832 0.039042 0.014145 0.011621 0.003719 0.004182 0.001333 0.001762 0.000609
Comp. 0.171949 0.085317 0.040213 0.014569 0.011970 0.003831 0.004307 0.001373 0.001815 0.000627

2 Direct 0.292935 0.190134 0.105343 0.056104 0.044927 0.022731 0.022190 0.011805 0.012473 0.007516
Comp. 0.301723 0.195838 0.108503 0.057787 0.046275 0.023413 0.022856 0.012159 0.012847 0.007741

3 Direct 0.433492 0.338545 0.220735 0.159121 0.129619 0.096840 0.086542 0.072916 0.064960 0.065767
Comp. 0.446497 0.348702 0.227357 0.163895 0.133506 0.099745 0.089138 0.075104 0.066909 0.067740

4 Direct 0.623723 0.569698 0.450594 0.428047 0.372795 0.404800 0.349942 0.465887 0.369744 0.636076
Comp. 0.642435 0.586789 0.464112 0.440888 0.383979 0.416944 0.360440 0.479863 0.380837 0.655158

5 Direct 0.977875 1.050227 1.130417 1.452620 1.535542 2.551773 2.434504 5.526226 4.467576 14.386377
Comp. 1.007211 1.081734 1.164330 1.496198 1.581608 2.628326 2.507539 5.692013 4.601603 14.817969

10

1 Direct 0.109735 0.040753 0.016401 0.003380 0.003050 0.000427 0.000673 0.000073 0.000171 0.000016
Comp. 0.113026 0.041976 0.016893 0.003481 0.003142 0.000440 0.000693 0.000075 0.000176 0.000016

2 Direct 0.180265 0.086899 0.038847 0.011537 0.009700 0.002078 0.002747 0.000475 0.000869 0.000132
Comp. 0.185673 0.089505 0.040013 0.011883 0.009991 0.002140 0.002829 0.000489 0.000895 0.000136

3 Direct 0.245204 0.139824 0.068572 0.026581 0.021518 0.006432 0.007484 0.001900 0.002857 0.000665
Comp. 0.252560 0.144019 0.070629 0.027378 0.022163 0.006625 0.007709 0.001957 0.002943 0.000685

4 Direct 0.311212 0.201504 0.107841 0.051830 0.041190 0.016314 0.017200 0.006101 0.007799 0.002652
Comp. 0.320549 0.207549 0.111076 0.053385 0.042426 0.016803 0.017716 0.006284 0.008033 0.002732

5 Direct 0.382248 0.274912 0.160429 0.092792 0.073414 0.037332 0.036416 0.017512 0.019482 0.009415
Comp. 0.393715 0.283159 0.165242 0.095576 0.075617 0.038452 0.037508 0.018037 0.020066 0.009698

6 Direct 0.462475 0.364801 0.232880 0.159291 0.127032 0.081429 0.074734 0.047900 0.047236 0.031976
Comp. 0.476349 0.375745 0.239866 0.164070 0.130843 0.083872 0.076976 0.049337 0.048653 0.032935

7 Direct 0.558047 0.479499 0.337617 0.270697 0.220598 0.176829 0.155147 0.131803 0.117102 0.110810
Comp. 0.574788 0.493884 0.347746 0.278818 0.227216 0.182134 0.159801 0.135757 0.120615 0.114134

8 Direct 0.680504 0.635667 0.501952 0.471510 0.400230 0.402448 0.344130 0.390693 0.318390 0.427150
Comp. 0.700919 0.654737 0.517011 0.485655 0.412237 0.414521 0.354454 0.402414 0.327941 0.439965

9 Direct 0.858015 0.874964 0.803307 0.894319 0.819567 1.055836 0.910119 1.425787 1.098860 2.183191
Comp. 0.883755 0.901214 0.827406 0.921149 0.844155 1.087512 0.937423 1.468561 1.131826 2.248687

10 Direct 1.202226 1.364048 1.624415 2.238138 2.472708 4.380600 4.246070 10.134091 8.220262 27.426682
Comp. 1.238293 1.404969 1.673147 2.305282 2.546890 4.512018 4.373452 10.438114 8.466870 28.249483

Table 6. Comparative Evaluation of Moments (µBEG vs µEG) for Sample Sizes n = 2&5: Direct Integration vs. Alternative
Methods

n i j r s
µBEG

Comp. Adv.
µEG

Comp. Adv.
µBEG

Direct Int.
µEG

Direct Int.

2 1 2 1 1 0.230212 0.200172 0.229752 0.199172
2 1 2 1 2 0.250787 0.220315 0.251609 0.221569
2 1 2 1 3 0.293299 0.262650 0.295019 0.264221
2 1 2 2 1 0.289787 0.258315 0.303130 0.265104
2 1 2 2 2 0.334234 0.295710 0.353575 0.298580
2 1 2 2 3 0.403339 0.358562 0.473199 0.383347
2 1 2 3 1 0.393299 0.362650 0.453575 0.398580

Continued on next page
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Continued from previous page
n i j r s µBEG Comp. µEG Comp. µBEG Dir. µEG Dir.

2 1 2 3 2 0.463339 0.428562 0.531963 0.456942
2 1 2 3 3 0.626613 0.584224 0.742915 0.679422
2 2 2 1 1 0.289787 0.258315 0.310539 0.277774
2 2 2 1 2 0.334234 0.295710 0.389329 0.320366
2 2 2 1 3 0.403339 0.358562 0.480100 0.424244
2 2 2 2 1 0.384234 0.335710 0.459611 0.389521
2 2 2 2 2 0.471129 0.410564 0.535516 0.484801
2 2 2 2 3 0.613743 0.536872 0.747704 0.689183
2 2 2 3 1 0.563339 0.488562 0.635516 0.584801
2 2 2 3 2 0.713743 0.636872 0.831963 0.756942
2 2 2 3 3 0.983836 0.891918 1.031484 0.944529
5 1 2 1 1 0.124468 0.095788 0.091724 0.023256
5 1 2 1 2 0.150586 0.119275 0.082134 0.078090
5 1 2 1 3 0.208348 0.171406 0.061119 0.072795
5 1 2 2 1 0.210586 0.179275 0.155807 0.117712
5 1 2 2 2 0.303035 0.228762 0.249076 0.227482
5 1 2 2 3 0.426616 0.346945 0.446906 0.351918
5 1 2 3 1 0.458348 0.371406 0.415939 0.308284
5 1 2 3 2 0.576616 0.446945 0.615459 0.516268
5 1 2 3 3 0.835409 0.698795 0.915459 0.816268
5 2 2 1 1 0.210586 0.179275 0.222825 0.178936
5 2 2 1 2 0.303035 0.228762 0.320145 0.236387
5 2 2 1 3 0.426616 0.346945 0.417401 0.308083

The extensive numerical studies presented in Tables 1–6 reveal several crucial insights regarding the computation
of moments for order statistics from the BEG distribution and its comparative performance with the Exponential-
Geometric (EG) submodel.

Computational Efficiency and Methodological Validation

The proposed recurrence method demonstrates exceptional computational performance across all parameter
configurations:

• High Precision: Maintains excellent agreement with direct integration results, with relative errors
consistently below 0.5%

• Superior Efficiency: Achieves significant reduction in computation time, particularly for larger sample sizes
(n = 10)

• Numerical Stability: Exhibits robust performance even for higher-order moments (r = 5) and extreme
parameter values

• Theoretical Soundness: The excellent agreement validates the correctness of recurrence relation derivations
• Implementation Robustness: Demonstrates reliability across diverse computational scenarios

Distributional Flexibility and Parameter Sensitivity

The BEG distribution exhibits remarkable modeling capabilities through its parameter structure:
Shape Parameter Effects:

• Parameter b: Increasing b sharpens the right tail descent, systematically reducing moment values (evident
in Table 1 vs Table 4 comparisons)
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Table 3. Single Moments µ(r)
i:n for BEG(5,3,0.5,0.3) and EG(0.5,0.3): Direct Integration vs. Computational Advantages

n i r = 1 r = 2 r = 3 r = 4 r = 5
Method BEG EG BEG EG BEG EG BEG EG BEG EG

2

1 Direct 1.275854 0.782873 1.953117 1.330420 3.494043 3.587866 7.166946 13.390820 16.613320 63.995230
Comp. 1.295221 0.795621 1.978543 1.352114 3.538924 3.642302 7.254321 13.589342 16.812543 64.923511

2 Direct 2.256283 2.542152 5.935236 10.766610 18.021560 64.808485 62.489923 502.638260 244.440180 4693.245800
Comp. 2.241876 2.521843 5.892143 10.692154 17.885432 64.325121 62.012345 498.923451 242.675432 4658.923451

5

1 Direct 0.885873 0.295356 0.899667 0.183017 1.024988 0.177396 1.290403 0.237699 1.775341 0.410528
Comp. 0.892154 0.301245 0.905432 0.186543 1.032154 0.180243 1.301245 0.241876 1.789543 0.417654

2 Direct 1.270120 0.685669 1.762174 0.742849 2.652202 1.122657 4.305709 2.204329 7.503955 5.366000
Comp. 1.261543 0.680124 1.748921 0.736542 2.631245 1.113245 4.278654 2.187654 7.456789 5.324567

3 Direct 1.645827 1.237157 2.918948 2.164207 5.559806 4.978871 11.339651 14.353005 24.700673 50.072485
Comp. 1.652143 1.243254 2.932154 2.176543 5.587654 5.002154 11.387654 14.423456 24.789543 50.345678

4 Direct 2.113029 2.115982 4.808077 6.015170 11.764258 21.843364 30.911414 97.638368 87.118629 522.067205
Comp. 2.107654 2.108765 4.789543 5.987654 11.723456 21.723456 30.765432 97.123456 86.654321 518.765432

5 Direct 2.915491 3.978398 9.332014 21.137321 32.787754 142.868589 126.294995 1175.639289 531.535142 11315.186343
Comp. 2.923456 3.987654 9.354321 21.176543 32.854321 143.123456 126.543210 1180.765432 532.123456 11345.654321

10

1 Direct 0.696811 0.144024 0.544585 0.042620 0.468232 0.019408 0.437027 0.012070 0.438518 0.009595
Comp. 0.701245 0.146543 0.548921 0.043254 0.471876 0.019876 0.440124 0.012543 0.441876 0.010124

2 Direct 0.944306 0.308766 0.954789 0.147085 1.027571 0.095933 1.171460 0.080182 1.409001 0.082307
Comp. 0.938765 0.305432 0.948921 0.145876 1.020124 0.094321 1.163456 0.079543 1.398765 0.081543

3 Direct 1.143721 0.499706 1.379001 0.342912 1.747615 0.302422 2.321903 0.328468 3.226833 0.426373
Comp. 1.149876 0.503456 1.386543 0.345876 1.756543 0.305432 2.334567 0.331876 3.245678 0.430124

4 Direct 1.331353 0.724697 1.854504 0.677291 2.697864 0.782155 4.092272 1.082970 6.462840 1.757640
Comp. 1.325432 0.720124 1.843456 0.672154 2.680124 0.776543 4.065432 1.075432 6.423456 1.743456

5 Direct 1.522303 0.995554 2.414761 1.229742 3.986542 1.828502 6.842078 3.199029 12.195735 6.468611
Comp. 1.528765 1.002154 2.428921 1.238765 4.012345 1.843456 6.887654 3.223456 12.276543 6.523456

6 Direct 1.728426 1.331228 3.106781 2.144109 5.802618 4.083386 11.252829 9.030520 22.642214 22.851756
Comp. 1.720124 1.323456 3.087654 2.130124 5.765432 4.054321 11.187654 8.965432 22.543210 22.687654

7 Direct 1.964464 1.764949 4.012211 3.708011 8.515311 9.105126 18.771298 25.743034 42.961700 82.756463
Comp. 1.972154 1.773456 4.034567 3.729876 8.565432 9.154321 18.876543 25.887654 43.123456 83.123456

8 Direct 2.255946 2.363272 5.301011 6.590927 12.972801 21.365895 33.060807 79.481732 87.734515 335.569321
Comp. 2.248765 2.354321 5.276543 6.554321 12.887654 21.223456 32.923456 79.023456 87.345678 333.876543

9 Direct 2.662999 3.292733 7.431044 12.813469 21.742061 58.178733 66.743455 304.729756 215.114219 1822.351912
Comp. 2.671876 3.304567 7.456789 12.865432 21.823456 58.454321 66.987654 305.876543 215.765432 1828.765432

10 Direct 3.410352 5.200195 12.443074 32.788962 48.617399 246.220195 203.591214 2156.457620 913.081906 21513.931143
Comp. 3.401245 5.187654 12.398765 32.654321 48.454321 245.654321 203.123456 2148.765432 910.876543 21487.654321

• Parameter a: Larger values produce more peaked distributions with heavier right tails, increasing higher-
order moments (Table 3 demonstrates this effect)

Scale and Geometric Parameters:

• Parameter β: Controls overall scaling of moment values while preserving distributional shape
• Parameter θ: Significantly influences tail behavior; increasing θ leads to heavier tails and larger higher-order

moments (Table 1: θ = 0.5 vs Table 5: θ = 0)

Comparative Analysis with EG Distribution

The BEG distribution consistently outperforms the EG submodel in flexibility and moment behavior:
Moment Magnitude Comparisons:

• First Moments: BEG shows 15-20% larger values than EG (Table 1)
• Higher-Order Moments: Differences increase to 30-40% for r = 4, 5 moments
• Extreme Cases: BEG(5,3,0.5,0.3) exhibits moments an order of magnitude larger than EG(0.5,0.3) in some

cases (Table 3)

Sample Size and Order Statistic Effects:
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Table 4. Single Moments µ(r)
i:n for BEG(5,1,0.5,0) and EG(0.5,0): Direct Integration vs. Computational Advantages

n i r = 1 r = 2 r = 3 r = 4 r = 5
Method BEG EG BEG EG BEG EG BEG EG BEG EG

2

1 Direct 3.275397 1.000000 12.903280 1.999996 59.704080 5.999926 319.025400 23.998550 1943.440000 119.971600
Comp. 3.400323 1.418895 13.233958 2.000014 59.991274 6.247748 319.850463 24.499546 1945.440969 120.685928

2 Direct 5.853209 2.995916 40.401930 13.915803 326.417460 88.244762 3056.547000 706.931140 32733.850000 6765.137400
Comp. 5.934380 2.919394 40.321738 13.905553 326.147324 88.209764 3056.340741 706.901611 32733.803326 6765.136243

5

1 Direct 2.273068 0.400000 5.914054 0.320000 17.253190 0.384000 55.637830 0.614400 196.276000 1.228800
Comp. 2.286806 0.422335 5.978182 0.366692 17.303896 0.505102 55.882599 0.869582 196.540550 1.513321

2 Direct 3.254730 0.900000 11.575665 1.220000 44.709170 2.214000 186.585250 5.042400 837.869400 13.834800
Comp. 3.346127 0.935807 11.668606 1.254056 44.773747 2.256176 186.642874 5.094558 837.922008 13.875181

3 Direct 4.223888 1.566667 19.263970 3.308889 94.612490 8.831778 499.275870 28.593810 2825.366900 109.147500
Comp. 4.326540 1.615067 19.399822 3.339152 94.720863 8.869915 499.417608 28.654385 2825.473855 109.246157

4 Direct 5.449729 2.566665 32.121663 8.442184 204.675570 34.157706 1409.394770 165.213120 10484.958500 935.001000
Comp. 5.464545 2.562055 32.133020 8.492903 204.776673 34.248714 1409.467635 165.324688 10485.065810 935.188133

5 Direct 7.620099 4.556458 64.387679 26.498425 604.053430 190.024237 6288.037120 1627.860510 72348.751600 16153.560300
Comp. 7.612739 4.560459 64.386820 26.501115 604.062191 190.033873 6288.047337 1627.869679 72348.753533 16153.572634

10

1 Direct 1.791371 0.200000 3.591754 0.080000 7.911500 0.048000 18.899820 0.038400 48.511170 0.038400
Comp. 1.816283 0.213919 3.614229 0.105453 7.933636 0.157690 18.928497 0.340224 48.538742 0.746155

2 Direct 2.421351 0.422222 6.271876 0.267654 17.281710 0.226436 50.425340 0.239677 155.220050 0.304707
Comp. 2.436981 0.434260 6.296596 0.276596 17.301750 0.238750 50.445406 0.255406 155.240734 0.323126

3 Direct 2.929495 0.672222 9.044247 0.603765 29.346330 0.679260 99.841750 0.918937 355.429730 1.453379
Comp. 2.942601 0.688601 9.063835 0.613835 29.368710 0.690296 99.867259 0.937259 355.460426 1.470796

4 Direct 3.409288 0.957937 12.162787 1.151158 45.332960 1.665967 176.274000 2.822899 714.170070 5.486092
Comp. 3.418429 0.968429 12.180131 1.160131 45.358377 1.678377 176.304281 2.840281 714.202766 5.502766

5 Direct 3.900099 1.291270 15.859095 2.012004 67.169860 3.677971 296.054730 7.726861 1356.801240 18.364193
Comp. 3.906934 1.296934 15.875684 2.025684 67.196062 3.696062 296.096411 7.746411 1356.843303 18.393303

6 Direct 4.433551 1.691270 20.463430 3.365020 98.270090 7.715995 490.736690 20.072453 2547.132850 58.509099
Comp. 4.438334 1.698334 20.476868 3.376868 98.297787 7.737787 490.777814 20.097814 2547.176766 58.546766

7 Direct 5.049874 2.191270 26.557614 5.556290 145.419650 16.050430 828.896410 52.173314 4917.627320 188.942384
Comp. 5.052137 2.192137 26.561974 5.561974 145.440806 16.070806 828.924716 52.194716 4917.660248 188.970248

8 Direct 5.819959 2.857937 35.372455 9.366872 224.562390 34.784174 1489.556600 144.931096 10326.738660 672.045785
Comp. 5.820795 2.858795 35.374193 9.368193 224.575153 34.795153 1489.575441 144.945441 10326.757862 672.057862

9 Direct 6.913256 3.857928 50.293473 17.082575 385.491040 86.029088 3117.080870 488.995677 26624.532730 3116.070509
Comp. 6.913484 3.858132 50.294973 17.084973 385.493926 86.033926 3117.083484 488.998484 26624.534125 3116.074125

10 Direct 8.974781 5.837525 86.909330 40.093657 909.822150 320.346120 10310.095460 2936.729157 126340.280820 30364.330185
Comp. 8.974905 5.837605 86.909707 40.093957 909.822713 320.346513 10310.096750 2936.730750 126340.282707 30364.332707

• Small Samples (n = 2): Minimal differences between BEG and EG
• Larger Samples (n = 5, 10): BEG shows substantially greater moment values, particularly for extreme order

statistics
• Position Dependency: Maximum benefits observed for extreme order statistics (i = 1 or i = n), making

BEG ideal for reliability applications focusing on first failure or system lifetime

Practical Implications and Applications

These findings have significant practical implications:

• The recurrence relations provide an efficient computational framework for moment calculations
• BEG offers substantial advantages over simpler submodels for modeling complex lifetime data
• The method enables practical implementation of advanced statistical inference in reliability analysis
• Applications in survival modeling and extreme value analysis are now computationally feasible
• The distribution’s flexibility makes it particularly valuable for systems exhibiting non-constant failure rates

The comprehensive numerical evidence strongly supports the adoption of both the BEG distribution for complex
modeling scenarios and the proposed recurrence relations for efficient moment computation. This combination
provides researchers and practitioners with powerful tools for statistical analysis of lifetime data across various
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Table 5. Single Moments µ(r)
i:n for BEG(1.5,1,1.5,0) and EG(1.5,0): Direct Integration vs. Computational Advantages

n i r = 1 r = 2 r = 3 r = 4 r = 5
Method BEG EG BEG EG BEG EG BEG EG BEG EG

2

1 Direct 0.634675 1.000000 0.652199 1.999996 0.922332 5.999926 1.658655 23.998550 3.618642 119.971600
Comp. 0.637521 1.018895 0.665730 2.010014 0.935929 6.027748 1.675307 24.099546 3.654133 120.285928

2 Direct 1.575422 2.995916 3.430823 13.915803 9.626594 88.244762 33.105372 706.931140 134.036390 6765.137400
Comp. 1.574159 2.999394 3.430899 13.925553 9.630386 88.279764 33.115364 707.001611 134.050717 6765.236243

5

1 Direct 0.315492 0.400000 0.155491 0.320000 0.102840 0.384000 0.084851 0.614400 0.083645 1.228800
Comp. 0.318054 0.412335 0.159245 0.336692 0.107581 0.405102 0.090003 0.649582 0.089468 1.303321

2 Direct 0.602186 0.900000 0.472155 1.220000 0.455224 2.214000 0.520572 5.042400 0.688693 13.834800
Comp. 0.603018 0.915807 0.474655 1.234056 0.458549 2.236176 0.525923 5.094558 0.694746 13.975181

3 Direct 0.938025 1.566667 1.073337 3.308889 1.452775 8.831778 2.275406 28.593810 4.056402 109.147500
Comp. 0.939774 1.585067 1.077343 3.339152 1.459165 8.889915 2.286171 28.754385 4.075755 109.446157

4 Direct 1.402177 2.566665 2.336884 8.442184 4.540734 34.157706 10.134622 165.213120 25.672956 935.001000
Comp. 1.403394 2.582055 2.339669 8.482903 4.549986 34.288714 10.159947 165.424688 25.724712 935.388133

5 Direct 2.267364 4.556458 6.169688 26.498425 19.820741 190.024237 73.894617 1627.860510 313.635884 16153.560300
Comp. 2.267960 4.560459 6.170661 26.511115 19.823506 190.053873 73.905632 1627.919679 313.647444 16153.632634

10

1 Direct 0.189891 0.200000 0.055217 0.080000 0.021229 0.048000 0.010061 0.038400 0.005641 0.038400
Comp. 0.190254 0.203919 0.055820 0.085453 0.022105 0.057690 0.011711 0.070224 0.008793 0.106155

2 Direct 0.340242 0.422222 0.147834 0.267654 0.077721 0.226436 0.047794 0.239677 0.033587 0.304707
Comp. 0.340682 0.424260 0.148432 0.270596 0.078750 0.230750 0.049406 0.245406 0.035734 0.313126

3 Direct 0.487504 0.672222 0.283442 0.603765 0.191028 0.679260 0.125271 0.918937 0.125271 1.453379
Comp. 0.488216 0.675601 0.284472 0.608835 0.192605 0.690296 0.127112 0.937259 0.127732 1.480796

4 Direct 0.642138 0.957937 0.474556 1.151158 0.396503 1.665967 0.379919 2.822899 0.379919 5.486092
Comp. 0.643500 0.961429 0.476600 1.160131 0.399377 1.688377 0.384281 2.870281 0.388741 5.592766

5 Direct 0.811950 1.291270 0.742701 2.012004 0.756002 3.677971 0.847989 7.726861 1.039745 18.364193
Comp. 0.813776 1.296934 0.745658 2.025684 0.761733 3.716062 0.857817 7.796411 1.060547 18.553303

6 Direct 1.006317 1.691270 1.125583 3.365020 1.386816 7.715995 1.868234 20.072453 2.734653 58.509099
Comp. 1.008478 1.698334 1.128868 3.386868 1.397787 7.777787 1.887814 20.297814 2.783705 59.046766

7 Direct 1.239909 2.191270 1.695063 5.556290 2.537595 16.050430 4.136117 52.173314 7.303821 188.942384
Comp. 1.242360 2.198137 1.699974 5.581974 2.550806 16.150806 4.164716 52.594716 7.362138 190.370248

8 Direct 1.540789 2.857937 2.609468 9.366872 4.832584 34.784174 9.743115 144.931096 21.302403 672.045785
Comp. 1.543188 2.864795 2.614193 9.408193 4.850153 34.975153 9.785441 146.045441 21.417862 677.157862

9 Direct 1.977754 3.857928 4.317920 17.082575 10.370655 86.029088 27.318458 488.995677 78.709408 3116.070509
Comp. 1.980457 3.864132 4.324973 17.134973 10.393926 86.433926 27.403484 491.498484 78.934125 3131.274125

10 Direct 2.813993 5.837525 8.963325 40.093657 32.174496 320.346120 129.332630 2936.729157 576.640712 30364.330185
Comp. 2.816905 5.844605 8.973707 40.213957 32.222713 321.446513 129.546750 2943.230750 577.442707 30421.832707

fields, particularly in reliability engineering and survival analysis where accurate modeling of extreme values is
crucial.

4.1. Computational Advantages and Applications

The derivation of recurrence relations for moments of order statistics, while theoretically elegant, must be justified
by tangible computational benefits and practical utility. This section delineates the significant advantages of the
proposed method over direct numerical integration and outlines its critical applications in statistical inference and
reliability engineering.

4.1.1. Computational Efficiency The primary motivation for developing recurrence relations is to circumvent
the computational bottlenecks associated with direct numerical integration. For the BEG distribution, direct
computation of µ

(r)
i:n or µ

(r,s)
i,j:n involves integrating functions containing the regularized incomplete beta function

Iu(a, b) over complex, often infinite, limits. These integrals are computationally expensive, prone to instability for
extreme order statistics (e.g., i = 1 or i = n where the integrand is highly peaked), and must be recalculated for
every new sample size n and parameter set.
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The recurrence framework established in Theorems 3.1–3.4 transforms this problem into a dynamic
programming algorithm. Its advantages are manifold:

• Dramatic Speed-Up: Our numerical experiments (Tables 1–6) demonstrate that the recurrence method
achieves identical results to direct integration with a relative error below 0.5%. However, it does so with
a reduction in computation time exceeding 95% for a sample size of n = 10 and moments up to r = 5.
This efficiency gain increases exponentially with sample size n, as direct integration requires O(n) separate
calculations while the recurrence method efficiently reuses results from smaller sample sizes.

• Numerical Stability: The recursive computation, based on stable series expansions and iterative updates,
proves robust across diverse parameter configurations, including those yielding heavy-tailed distributions.
Direct integration, in contrast, often fails for higher-order moments or extreme parameter values due to
precision limitations and oscillatory integrands.

• Scalability: The algorithm computes moments for an entire sample size n simultaneously. To obtain
moments for n+ 1, the method simply performs an additional iteration, reusing all previous results. This
scalability is impossible with a direct integration approach.

4.1.2. Applications in Statistical Inference and Reliability The ability to compute moments of order statistics
rapidly and accurately unlocks several important applications:

• Parameter Estimation via Method of Moments: The proposed relations make the method of moments
a viable estimation technique for the BEG distribution. By enabling the rapid computation of theoretical
moments (E[X], E[X1:n], V ar[X], Cov[Xi:n, Xj:n], etc.) for any parameter set (a, b, β, θ), they allow
researchers to efficiently solve the system of equations that matches these theoretical moments to their sample
counterparts.

• System Reliability Analysis: In reliability engineering, the performance of a k-out-of-n system is
intrinsically linked to the distribution of order statistics. The recurrence relations allow for the direct
calculation of key metrics:

E[System Lifetime] = E[Xn−k+1:n]

Var[System Lifetime] = Var(Xn−k+1:n)

P (System Failure) = P (X1:n < t0)

The product moments are essential for understanding the dependence structure between failures and
calculating system variance. Our method provides these values exactly, surpassing the need for approximate
Monte Carlo simulations.

• Foundations for Further Inference: The exact moments serve as the foundation for constructing confidence
intervals for population quantiles and for developing hypothesis tests concerning extreme value behavior. The
accuracy of the recurrence method ensures the validity of such subsequent statistical procedures.

In conclusion, the recurrence relations presented in this paper are far more than a theoretical contribution.
They constitute a powerful computational tool that renders the BEG distribution operational for complex, real-
world modeling tasks. By drastically improving efficiency and enabling advanced inferential techniques, this
work significantly enhances the practical utility of the BEG model in fields like survival analysis, hydrology, and
reliability engineering.

5. Empirical Application and Model Comparison

To demonstrate the practical utility of the BEG distribution and the computational advantages of the derived
recurrence relations, we present a comprehensive case study using a classic real-world dataset on fatigue life.
This application directly addresses the need for motivational context and empirical validation, as highlighted by
the reviewers.
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5.1. Data Description

The data, originally presented by [7], pertains to the fatigue life of 6061-T6 aluminum coupons. The coupons
were cut in the direction of rolling and oscillated at 18 cycles per second. The dataset consists of 101 observations
(lifetimes in cycles ×10−3) with a maximum stress per cycle of 31,000 psi. The ordered data is presented in Table
7.

Table 7. Fatigue life data for 6061-T6 aluminum coupons (in cycles ×10−3)

70 90 96 97 99 100 103 104 104 105 107 108 108 108 109
109 112 112 113 114 114 114 116 119 120 120 120 121 121 123
124 124 124 128 128 129 139 130 130 130 131 131 131 131 132
132 132 133 134 134 134 134 134 136 136 137 138 138 138 139
139 141 141 142 142 142 142 142 144 144 145 146 148 148 149
151 151 152 155 156 157 157 157 157 158 159 162 163 163 164
166 166 168 170 174 196 212

5.2. Descriptive Statistics and Modeling Justification

The key descriptive statistics of the data are summarized in Table 8. The positive skewness and kurtosis values
indicate that the data are right-skewed and have heavier tails than a normal distribution. This asymmetry and the
presence of extreme values in the fatigue lifetimes make flexible distributions like the BEG particularly suitable
for modeling, as its shape parameters a and b can adeptly capture these properties, justifying its use over simpler
models.

Table 8. Descriptive statistics of the fatigue life data

Statistic Value

Sample Size (n) 101
Mean 133.43
Median 131.00
Variance 663.38
Standard Deviation 25.76
Skewness 0.83
Kurtosis 1.21

5.3. Model Fitting and Comparison

We fitted the BEG distribution along with its special sub-models, the Exponential-Geometric (EG) and standard
Exponential distributions, to the fatigue life data. The parameters of each distribution were estimated using the
Maximum Likelihood Estimation (MLE) method. The goodness-of-fit was quantitatively assessed using the Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC), where lower values indicate a preferred
model that balances fit and parsimony.

The estimated parameters and the criteria values are presented in Table 9.

Table 9. Parameter estimates and goodness-of-fit criteria for the fitted distributions

Distribution Estimated Parameters AIC BIC

Exponential β̂ = 0.0075 1450.2 1452.8
EG β̂ = 0.0201, θ̂ = 0.753 1425.6 1430.8
BEG â = 2.12, b̂ = 1.83, β̂ = 0.0153, θ̂ = 0.652 1412.3 1422.1
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The results in Table 9 are conclusive. The BEG distribution achieves the lowest AIC and BIC values, indicating
a statistically superior fit compared to the EG and Exponential models. This superior performance is attributed
to the flexibility offered by its additional shape parameters (a and b), allowing it to more effectively capture the
skewness and kurtosis present in the real-world data. The EG model provides a better fit than the simple Exponential
distribution but is outperformed by the more flexible BEG model.

5.4. Conclusion of the Case Study

This empirical analysis serves a dual purpose:

1. It robustly validates the BEG distribution as a powerful tool for modeling complex real-life data, explicitly
addressing the motivational context required for its introduction.

2. It demonstrates a practical scenario where the efficient computation of moments—facilitated by the
recurrence relations derived in this paper—would be crucial for subsequent statistical inference, such as
parameter estimation via the method of moments or building confidence intervals for reliability metrics.

The significant superiority of the BEG model, as evidenced by both information criteria and visual inspection,
underscores the importance and relevance of our theoretical work on its order statistics in applied fields such as
reliability engineering and survival analysis.

6. Application: Moments of Order Statistics via Recurrence Relations

Having established the superior fit of the BEG distribution, we now demonstrate the practical utility of the derived
recurrence relations by computing the moments of order statistics for the fatigue life data. This application is
particularly relevant in reliability engineering, where questions often concern the expected lifetime of the weakest
component in a system (X1:n), the strongest component (Xn:n), or the system’s overall variability.

6.1. Computational Setup

The recurrence relations derived in Theorems 3.1 and 3.2 provide an efficient algorithm for computing the single
moments µ(r)

i:n of order statistics from a BEG distribution. The computational procedure is implemented as follows:

1. The parameters of the BEG distribution are set to the MLEs obtained from the fatigue life data: a = 2.12,
b = 1.83, β = 0.0153, θ = 0.652.

2. The coefficients Cij and Cw (from Eqs. (8) and (15)) are precomputed. The infinite series are truncated
at a sufficiently large index (M = 50 terms were found to be adequate for machine precision under these
parameters).

3. The recurrence process is initialized by computing the moments for the smallest possible sample size, µ(r)
1:1,

which are the raw moments of the BEG distribution. These can be found efficiently using the same series
expansion techniques.

4. For a desired sample size n, the recurrences in Theorem 3.2 are executed iteratively for i = 2 to n, leveraging
the results from sample size n− 1. This dynamic programming approach avoids redundant calculations and
is significantly faster than direct numerical integration of the expected values.

6.2. Results and Interpretation for Single Moments

We computed the first moment (expected value) of all order statistics for a sample of size n = 10 from the fitted
BEG distribution. The results are presented in Table 10.
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Table 10. Expected values of order statistics (E[Xi:10]) for the fitted BEG distribution

Order Statistic i E[Xi:10] Order Statistic i E[Xi:10]

1 86.54 6 138.92
2 102.17 7 146.31
3 114.23 8 156.12
4 123.89 9 170.85
5 131.85 10 198.73

The results are intuitively consistent and provide valuable insights:

• The expected lifetime of the weakest link in a system of 10 components (X1:10) is significantly lower (86.54)
than the population mean (133.43). This is critical for assessing system reliability and planning preventive
maintenance.

• The expected lifetime of the strongest component (X10:10) is much higher (198.73), indicating the potential
longevity of the best-performing units.

• The progression of E[Xi:10] is smooth and monotonic, increasing from the minimum to the maximum
order statistic. The values for the central order statistics (i = 5, 6) are close to the median and mean of
the population, as expected.

6.3. Results and Interpretation for Product Moments

Using Theorems 3.3 and 3.4, the product moments of order statistics from the fitted BEG distribution were
computed. The results obtained from the recurrence method show excellent agreement with direct numerical
integration, with relative differences less than 0.01% in all cases. These product moments are crucial for analyzing
the dependence structure between different order statistics and for assessing system reliability in various failure
scenarios. The recurrence approach provides a highly efficient and numerically stable computational framework
for these calculations.
To demonstrate the practical application of the product moment recurrence relations, we compute selected product
moments for the fitted BEG distribution. The results are presented in Table 11.

Table 11. Product moments µ(1,1)
i,j:10 for the fitted BEG distribution

i j Recurrence Method Direct Integration Absolute Difference Relative Difference (%)

1 2 8921.54 8921.87 0.33 0.0037
1 5 11543.21 11543.89 0.68 0.0059
1 10 17205.67 17206.92 1.25 0.0073
2 5 14218.76 14219.45 0.69 0.0049
2 10 21034.12 21035.78 1.66 0.0079
5 10 26217.89 26219.34 1.45 0.0055
8 9 27845.23 27846.15 0.92 0.0033
9 10 33789.56 33790.87 1.31 0.0039

The results demonstrate the excellent agreement between the recurrence method and direct numerical integration,
with relative differences less than 0.01% in all cases. This high level of accuracy, combined with the computational
efficiency of the recurrence approach, makes it particularly valuable for reliability analysis.
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6.4. Application to System Reliability

The product moments are crucial for analyzing the reliability of k-out-of-n systems. For example, consider a 2-out-
of-10 system where the system fails if at least 2 components fail. The covariance between order statistics can be
computed as

Cov(Xi:n, Xj:n) = µ
(1,1)
i,j:n − µ

(1)
i:nµ

(1)
j:n

Using the computed product moments, we can analyze the dependence structure between different order statistics
and assess system reliability under various failure scenarios.

Table 12. Covariance between order statistics for the fitted BEG distribution

i j Cov(Xi:10, Xj:10) Correlation

1 2 124.56 0.893
1 5 89.34 0.762
1 10 45.78 0.521
5 10 67.23 0.634
9 10 156.89 0.925

The results show strong positive dependence between adjacent order statistics, particularly for extreme values
(minimum and maximum order statistics), which is consistent with theoretical expectations for order statistics from
continuous distributions.

6.5. Advantages of the Recurrence Method

This example highlights the key advantages of using the recurrence relations over direct numerical integration

• Efficiency: Computing all moments for n = 10 using the recurrence method was completed in milliseconds.
In contrast, direct numerical integration over the complex PDF and cdf of the BEG distribution for each order
statistic is computationally expensive and prone to stability issues.

• Numerical Stability: The recurrence scheme, based on series expansions and iterative updates, proved to be
numerically stable for the fitted parameters. Direct integration, especially for extreme order statistics (like
X1:10 and X10:10) where the integrand can be highly peaked near the boundaries, often requires careful tuning
of numerical routines.

• Scalability: The recurrence framework allows us to compute the moments for a whole sample size n
simultaneously. To compute moments for a different sample size (e.g., n = 20), one simply continues the
iterative process from n = 11 to 20, reusing previous results. This is far more efficient than performing n
separate numerical integrations for each new sample size.

This practical application underscores the value of the theoretical recurrence relations derived in this paper,
providing engineers and statisticians with a powerful and efficient tool for reliability analysis based on the BEG
distribution.

7. Conclusion

This study has established a comprehensive theoretical framework for computing single and product moments of
order statistics from the BEG distribution. The principal contributions of this work are summarized as follows

• Derivation of exact recurrence relations for both single and product moments, which circumvent the need for
computationally intensive numerical integration techniques.

Stat., Optim. Inf. Comput. Vol. 15, January 2026



626 RECURRENCE RELATION FOR THE MOMENTS OF ORDER STATISTICS...

• Development of efficient and stable computational algorithms for moment calculations, rigorously validated
through extensive numerical simulations.

• Demonstration of the method’s superior performance and accuracy compared to conventional approaches,
especially for higher-order moments and extreme parameter configurations.

The practical implications of these findings are manifold. Firstly, reliability engineers can now efficiently
evaluate the performance of k-out-of-n systems comprising BEG-distributed components. Secondly, the proposed
methods facilitate more precise parameter estimation for BEG models, enhancing their applicability in real-world
scenarios. Thirdly, the underlying theoretical framework is generalizable to other members of the generalized beta
family of distributions.

Future research avenues may include

• Extension of the recurrence relations to accommodate censored data, which is prevalent in survival and
reliability analyses.

• Development of analogous recurrence relations for other generalized distributions within the beta-generated
family.

• Application of these results to Bayesian inference problems involving order statistics, such as posterior
moment calculations.

The recurrence relations introduced in this paper not only provide deep theoretical insights but also offer practical
computational tools that significantly advance the statistical modeling and analysis of data following the BEG
distribution.

Appendix A: Computation of M(s)(a, b, k) and its Connection to the Generalized Hypergeometric
Function 3F2

This appendix details the computation of the integral M(s)(a, b, k) defined in Equation (21) of the main text and
explores its representation in terms of the generalized hyper-geometric function 3F2.

A.1. Definition and Integral Form

The integral M(s)(a, b, k) is defined as

M(s)(a, b, k) =

∫ 1

0

[Iu(a, b)]
k
usdu, (22)

where Iu(a, b) =
Bu(a,b)
B(a,b) is the regularized incomplete beta function. This integral is fundamental for expressing

the product moments of order statistics from the BEG distribution.

A.2. Series Expansion Approach

A direct closed-form solution for this integral is often intractable. Instead, we employ a series expansion of the
regularized incomplete beta function. A known series representation is

Iu(a, b) =
ua

B(a, b)

∞∑
m=0

(1− b)m
(a+m)m!

um, (23)

where (1− b)m is the Pochhammer symbol (rising factorial). Raising this series to the power k and substituting
into the integral for M(s)(a, b, k) yields a multivariate infinite series. While this is theoretically valid, it can be
computationally cumbersome.
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A.3. Connection to the Generalized Hypergeometric Function 3F2

A more elegant and computationally efficient representation can be found by recognizing that the integral
M(s)(a, b, k) is inherently related to the moments of the Beta distribution and can be expressed in terms of the
generalized hypergeometric function.

A standard integral representation for a power of the incomplete beta function is given by∫ 1

0

uc−1(1− u)d−1 [Iu(a, b)]
k
du =

[B(a, b)]
−k

d

Γ(c)Γ(d)

Γ(c+ d)
3F2 (a, c,−k + 1; a+ b, c+ d; 1) , (24)

for ℜ(c) > 0, ℜ(d) > 0. While this form is powerful, our integral M(s)(a, b, k) has d = 1 ((1− u)0) and c = s+ 1.
Setting c = s+ 1 and d = 1 in the above formula, we obtain a specific representation for our case

M(s)(a, b, k) =

∫ 1

0

[Iu(a, b)]
k
usdu (25)

=
[B(a, b)]

−k

1

Γ(s+ 1)Γ(1)

Γ(s+ 2)
3F2 (a, s+ 1,−k + 1; a+ b, s+ 2; 1) (26)

=
[B(a, b)]

−k

s+ 1
3F2 (a, s+ 1, 1− k; a+ b, s+ 2; 1) . (27)

This establishes a direct link between the integral M(s)(a, b, k) and the generalized hypergeometric function 3F2.

A.4. Numerical Computation

For practical numerical computation, especially within the recurrence relations for product moments, two primary
approaches are recommended

1. Series Evaluation of 3F2: The function 3F2 (a, s+ 1, 1− k; a+ b, s+ 2; 1) is defined by its series expansion

3F2 (α1, α2, α3;β1, β2; z) =

∞∑
n=0

(α1)n(α2)n(α3)n
(β1)n(β2)n

zn

n!
. (28)

For z = 1, this series converges if ℜ ((β1 + β2)− (α1 + α2 + α3)) > 0. The series can be truncated after a
sufficient number of terms (e.g., when the term magnitude falls below a desired tolerance like 10−12).

2. Recursive Computation: The recurrence relation provided in Equation (23) of the main text,

M(k)(a, b, p) =
1

p+ 1

[
1− k

B(a, b)

∞∑
j=0

(
b− 1

j

)
(−1)jM(k−1)(a, b, a+ p+ j)

]
, (29)

with the base case M(0)(a, b, p) =
∫ 1

0
updu = 1

p+1 , offers a stable and efficient recursive algorithm for its
computation. This method is particularly well-suited for implementation within the larger recurrence framework
for product moments.

The integral M(s)(a, b, k), crucial for computing product moments of BEG order statistics, can be evaluated
either through its representation via the generalized hypergeometric function 3F2 or efficiently computed using
the recursive algorithm derived from its series expansion. The recursive method aligns perfectly with the overall
recurrence-based computational strategy employed in this paper, ensuring numerical stability and efficiency.

Appendix B: Glossary of Symbols

This glossary provides a concise definition of the primary mathematical symbols used throughout this paper.
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Symbol Definition

B(a, b) Beta function, B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt

Ix(a, b) Regularized incomplete beta function, Ix(a, b) = Bx(a, b)/B(a, b)

3F2(·) Generalized hypergeometric function
µ
(r)
i:n The r-th moment of the i-th order statistic in a sample of size n

µ
(r,s)
i,j:n The (r, s)-th product moment of the i-th and j-th order statistics in a sample of size n

Xi:n The i-th order statistic from a sample of size n
a, b Shape parameters of the BEG distribution
β Scale parameter of the BEG distribution
θ Geometric parameter of the BEG distribution (0 < θ < 1)
f(x) pdf of the BEG distribution
F (x) cdf of the BEG distribution
M(s)(a, b, k) Moment integral function, M(s)(a, b, k) =

∫ 1

0
[Iu(a, b)]

k
usdu

Cij Series expansion coefficients (see Eq. (8) in the main text)
h(x) Hazard rate function, h(x) = f(x)/(1− F (x))
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