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Abstract This paper discusses ischemic stroke. This is the most common type. It occurs due to the blockage of blood
supply to the brain. One of them is carotid bifurcation stenosis. We constructed a mathematical model to examine this.
It employed the finite volume technique. We tested the variation of the risk with the form, thickness and position of the
narrowing. We made comparisons of varied shapes. These were bell, cosine and elliptical. Narrowing levels that we tested
were 60%, 70% , 80% , and 90%. The model equations were solved through the use of the SIMPLE algorithm. This was
done using Python to determine stroke risk. Both cases provided detailed data of velocity and pressure, which was obtained
by simulation. This presented the hemodynamic effect in a better way. Simulations of Computational Fluid Dynamics were
also performed. These are simulated turbulent flow of blood in the carotid bifurcation. We used ANSYS FLUENT for this.
We find that it is highly dangerous to narrow by 90%. It propels blood speed and pressure extremely beyond safety.
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1. Introduction

Ischemic stroke is when brain tissue does not get enough oxygen and food. This happens because plaque narrows or
blocks the carotid bifurcation. This damages the brain [26, 9]. The carotid artery is the only blood vessel that splits
into a bigger part. Because of this, blood flow in that bigger part becomes rough or uneven. This makes it easier for
cholesterol and calcium to build up there [21]. Older people get this disease more often. But in some places, healthy
people have less risk [1, 14]. The mortality rate from ischemic stroke in East Asia surpasses that observed in Western
countries such as the United Kingdom and the United States [17]. Certain lifestyle habits, including smoking, high
cholesterol levels, high fat and high salt diets, hypertension, and lack of exercise, are recognized as factors that increase
the risk of ischemic stroke [18, 22].

The stenosis that causes ischemic stroke is primarily due to fatty plaque buildup. The development of fatty plaques
tends to occur more frequently in geometrically vulnerable areas, such as the curvature of the carotid bifurcation in the
common carotid artery [1, 21]. These plaques typically form an arc-like shape as they develop gradually through the
accumulation of cholesterol on the arterial walls. In this study, the investigated stenosis shapes include bell-shaped,
cosine-shaped, and elliptical, as they closely resemble real stenosis formations. In addition to the shape variations,
stenosis thickness is also varied at 60%, 70%, 80%, and 90%.

Several other studies have focused on stenosis in the carotid bifurcation. Lopez et al. (2021) concluded that blood
flow velocity increases while pressure decreases in the stenosed region [10]. Another study by Pinyo et al. (2021)
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Figure 1. CT Scan of Carotid Bifurcation [15]

Figure 2. 3D Model of Carotid Bifurcation

examined a mathematical model of arterial stenosis with bell-shaped and cosine-shaped formations. They also found
that uneven narrowing causes trickier blood flow patterns. The speed and pressure changes are more spread out because
the blood flow is more spread out [20]. The study also showed that the blood moves fastest in the middle of the
narrowed artery. Also, the speed in cosine-shaped narrowing is much lower than in bell-shaped narrowing. At the
same time, Bhavya et al. (2024) looked at oval-shaped narrowing caused by radiation and chemicals. Their work also
showed a math model with speed graphs and pictures to show the results [8]. The goal of this study is to look closely at
how different shapes, thicknesses, and spots of narrowing change blood speed and pressure in the carotid bifurcation.
We will do this by looking at the graphs and pictures we made.

2. Method

2.1. Mathematical Modeling

Several internal and external factors can contribute to vascular stenosis. This simulation aids medical researchers in
understanding the internal factors that influence the narrowing of blood vessel walls. To analyze stenosis and identify
its location, the stenosis shapes are studied, and diagrams are created, as shown in Figure 3. In this simulation, blood
is considered a Newtonian fluid with incompressible, unsteady, and turbulent properties.
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The fundamental equations governing the boundary conditions for simulating the blood flow hydrodynamics in the
carotid bifurcation are defined as follows [16, 4, 25]:

Mass Conservation Equation

∇ · V⃗ = 0 (1)

Momentum Conservation Equation

ρ

(
∂V⃗

∂t
+
(
V⃗ · ∇

)
V⃗

)
= −∇p+ µ∇2V⃗ (2)

Sumit et al. (2023) [24] stated the boundary conditions for the stenosis radius in bell-shaped, cosine-shaped, and
elliptical arterial stenosis as follows:

Figure 3. Blood Flow Geometry

Bell-Shaped equation: {
R(z) = R0 − δse

m2

R2
0
(z−d−Lo
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2

; d ≤ z ≤ d+ Lo

R(z) = R0 ; otherwise.
(3)

Cosine-Shaped equation:{
R(z) = R0 − δs
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; d ≤ z ≤ d+ Lo

R(z) = R0 ; otherwise.
(4)

Elliptical equation: {
R(z) = R0 − δs sin

(
π(z−d)

Lo

)
; d1 ≤ z ≤ d1 + Lo

R(z) = R0 ; otherwise.
(5)

With:
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R(z) = radius on stenosis
R0 = the arterial radius
δs = the maximum height of the stenosis
L = the arterial length
L0 = the total length of the stenosis
z = flow direction
d = stenosis location
u = v = 0; at the arterial wall (r = R(z))

In the study by Roy et al. (2017), the inlet velocity values are as follows [19]:

u = 2U0

(
1−

(
r

R(z)

)2
)

; at the inlet (x = 0) (6)

In Figure 3, R(z) represents the stenosis geometry, which can be mathematically expressed as:

R(z) = R0

(
1− δe

−α
(

x
R0

)2
)

(7)

R0 represents the radius of the normal section of the artery, δ is the maximum height of the stenosis, and α is the
stenosis shape parameter.

2.2. Discretization

The speed and pressure are found by solving the mass and momentum conservation equations (Equations 2.1 and 2.2).
We use the Finite Volume Method to discretize these equations. This method is common in fluid dynamics studies
[12, 2]. We chose it because it is reliable for accurate solutions. It is also effective for modeling blood flow [7, 10].
We used the SIMPLE algorithm. This algorithm handles the linked nature of the fluid flow equations. It is a standard
technique in Computational Fluid Dynamics. It solves the basic pressure-velocity relationships. This makes it suitable
for our simulation [13, 3, 5, 6].

Figure 4. Discretization Scheme of the SIMPLE Algorithm [12]

The steps of the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm are as follows: [12, 3]:

1. Initializing Initial Guesses p∗, u∗, v∗ dan ϕ∗.
2. Solving the Discretized Momentum Equations

ai,ju
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3. Solving the Pressure Correction Equation

aI,Jp
′
I,J = aI+1,Jp

′
I+1,J + aI−1,Jp

′
I−1,J + aI,J+1p

′
I,J+1 + aI,J−1p

′
I,J−1 + b′I,J

4. Determining the Corrected Pressure and Velocity

u′
i+1,j = u∗

i+1,j + di+1,j

(
p′I,J − p′I+1,J

)
v′i,j+1 = v∗i,j+1 + dI,j+1

(
p′I,J − p′I,J+1

)
Where,

di+1,j =
Ai+1,j

ai+1,j
and di,j+1 =

Ai,j+1

ai,j+1

5. Solving All Other Discretized Transport Equations

aI,JϕI,J = aI+1,JϕI+1,J + aI−1,JϕI−1,J + aI,J+1ϕI,J+1 + aI,J−1ϕI,J−1

Check whether the discretized solution has converged. If not, repeat Steps 1–4 until convergence is achieved.
The next step is to change the blood vessel shape into simple math equations. And Python is used to solve them.

We use ANSYS Fluent to look at the fluid flow in the vessel. So, we divide the space into many small cells. Then,
the software finds the speed and pressure in the center of each cell. The program repeats the math until the answer is
stable. The time step is 0.1 seconds, and the test runs for 200 steps.

2.3. Simulation Parameters

Table 1 presents the factors affecting blood flow rate in the carotid bifurcation due to vascular stenosis [7, 11, 19, 23,
27]. A numerical experiment was conducted to analyze blood flow through a stenotic artery with blockage levels of
60%, 70%, 80%, and 90%.

Table 1. Value of Parameter Factors Affecting Blood Flow Rate

Parameter Value
Diameter of carotid bifurcation 6,5 mm
Blood Density 1060 kg/m3

Viscosity 0,0035 kg/ms

Flow Velocity 0,5 m/s

Pressure 15998.64 Pa

3. Results and Discussion

3.1. Results

The numerical analysis of the carotid bifurcation blood vessel as a cause of ischemic stroke was done by checking the
simulation results from the mathematical model using Python and the geometric design simulation using Fluent. In
Figure 5, for bell-shaped stenosis, blood flow velocity goes up as the stenosis percentage goes up. At 45% stenosis, the
velocity increase is still small (yellow-green area). But, at 90% stenosis, a very big jump in velocity is seen (orange-red
area at the stenosis center). The velocity change rate gets stronger as the narrowing gets bigger, so the risk of the artery
wall tearing goes up.In Figure 6, for cosine-shaped stenosis, the diameter change follows a cosine function. At 60%
and 70% stenosis, the fastest velocity is only at the narrowest spot. At 80% and 90% stenosis, a very big velocity
spike shows up in the middle stenosis area (red area), and the velocity is spread out more evenly. The velocity change
rate gets stronger, especially where the stenosis is at its peak.In Figure 7, for elliptical-shaped stenosis, the inlet and
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outlet diameter changes are like the other shapes, but the stenosis peak is more round. The flow velocity goes up as
the stenosis percentage goes up. At 60% and 70% stenosis, the velocity pattern is more steady than the other stenosis
shapes. But, at 80% and 90% stenosis, the peak velocity goes up fast at the narrowest spot. This happens because of
the elliptical shape, which gives a more steady flow before it hits the biggest stenosis area.

Figure 5. Bell-shaped model with varying stenosis
thickness

Figure 6. Cosine-shaped model with varying stenosis
thickness

Figure 7. Elliptical model with varying stenosis
thickness

Figure 8. Bell-shaped model with varying stenosis
locations

Figure 9. Cosine-shaped model with varying stenosis
locations

Figure 10. Elliptical model with varying stenosis
locations

Patterns These patterns of velocity differ among the shapes. Figure 8 the bell-shaped model the region of high
velocities would be very concentrated on the peak. This is a junction of sudden flow restriction. Downstream, the
flow expands. This is demonstrated with the change to green and blue color. Velocity accumulation develops with the

Stat., Optim. Inf. Comput. Vol. 15, January 2026



592 MATHEMATICAL MODELING OF CAROTID BIFURCATION STENOSIS ...

position of stenosis. A more distal location of stenosis forms a longer adaption zone of the fluid prior to acceleration.
This causes the flow pattern to change. In the cosine-shaped model of figure 9, there is a massive blue area to the
downstream of the model that is characterized by a strong deceleration of the flow. The increase in velocities still
remains to be dependent on stenosis location. There is a smooth change of blue towards green on the contour lines.
This distribution indicates a less volatile and progressive velocity distribution. The model shown in figure 10, which is
elliptical-shaped, creates an instantaneous narrowing of the flow at the stenosis. It creates an otherwise high-velocity
zone on the forefront. The expansion of the flow and the decrease of the velocity is evident as the green-blue colors
occur after that in the stream. There is a also loss in the point of maximum velocity which varies with the location of
stenosis. Further downstream stenosis gives more time to length of adaptation before acceleration. This has a direct
effect on the end velocity profile.

Figure 11. Bell-shaped model with varying stenosis
thickness

Figure 12. Cosine-shaped model with varying stenosis
thickness

Figure 13. Elliptical model with varying stenosis
thickness

Figure 14. Bell-shaped model with varying stenosis
locations

In Figure 11, for the bell-shaped model, at 60% stenosis, the pressure remains uniform with a slight decrease at the
narrowest region (light green). At 70% stenosis, the pressure drop becomes more pronounced (yellow-green area). At
80% stenosis, a blue zone begins to appear in the stenotic region, indicating low pressure due to increased velocity.
At 90% stenosis, the blue area expands and intensifies, showing the most extreme pressure drop, with a sharp contrast
between the inlet (red) and the stenotic zone (blue). For the cosine-shaped model, the pressure pattern is like the bell-
shaped stenosis. At 60% stenosis, the pressure is mostly the same. At 70% stenosis, the pressure drop in the middle
area is clearer, but the low-pressure (blue) zone is not yet the main feature. At 80% stenosis, a blue zone appears, which
means low pressure, and there is a big difference between the entry point (red-orange) and the stenosis area (blue).
At 90% stenosis, the blue area gets stronger, showing a very large pressure drop because the flow speeds up a lot.For
the elliptical-shaped model, at 60% stenosis, the pressure drop in the narrowed area is still very small (yellow-green
area). At 70% stenosis, the pressure drop is easier to see in the middle area (green zone). At 80% stenosis, the pressure
pattern is almost the same as at 70% stenosis. At 90% stenosis, the yellow area extends around the stenosis, indicating
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Figure 15. Cosine-shaped model with varying stenosis
locations

Figure 16. Elliptical model with varying stenosis
locations

an increase in velocity and a corresponding pressure drop, though it is less intense compared to the other stenosis
shapes.

In Figure 14, the bell-shaped model illustrates the effect of stenosis position on pressure distribution in bell-shaped
stenosis. In Position 1, stenosis in the center creates a low-pressure region (yellow-green) around the stenosis peak. In
Position 2, the low-pressure area is concentrated in the middle of the channel, with a more uniform pressure gradient.
In Position 3, the pressure remains relatively high, dominated by orange-red colors. In Position 4, stenosis at the end
of the channel causes high pressure to be more evenly distributed. In Figure 15, the cosine-shaped model shows how
where the blockage is affects the pressure distribution for a cosine-shaped blockage. In Position 1, the blockage in the
center makes the pressure low at the highest point of the blockage. In Position 2, the low pressure is only in the middle
of the channel, and the pressure change is more even. In Position 3, the pressure stays quite high, so orange-red colors
are mostly seen. In Position 4, the blockage at the end makes the pressure distribution more the same, and the pressure
stays high. In Figure 16, the elliptical-shaped model shows how where the blockage is affects the pressure distribution
in an elliptical blockage. In Position 1, with the blockage in the center, low pressure shows up at the highest point of
the blockage. In Position 2, the low-pressure area is only in the middle of the channel. The pressure change is still
big, but it is more spread out because the elliptical shape is smooth. In Position 3, the pressure lines show a medium
pressure drop, and orange-red areas are still mostly seen. Then, in Position 4, where the blockage is at the end, the
pressure stays high, as the pressure caused by the blockage is spread evenly across the flow.

Figure 17. Simulation Results of Velocity in Ansys with Varying Stenosis Thickness

Side by side comparison of the three stenosis models that are bell-shaped, cosine-shaped and elliptical in the carotid
bifurcation are shown in figure 17. In the bell-shaped model, a blue zone as the prevalent area at 60% stenosis of the
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bell represents low flow velocity. When the stenosis reaches 70 and 80, an enlargement of green-yellow areas in the
area of constriction emphasizes a significant increase in velocity. This tendency reaches its peak at 90% stenosis, when
the local yellow-red hues at the point of minimum allow to imagine the dangerously high velocities. Cosine shaped
model shows the distribution of velocity that resembles its smooth, geometric narrowing. With stenosis of 60% the
low velocity is visible due to the remarkable blue area. At 70 percent and 80 percent, the development of green zones
at the stenosis area is an indication of increasing flow. The most extreme constriction is 90% stenosis, which puts
the peak velocity at the center, and that is observed through bright yellow-red colors. Widespread blue depicts low
initial velocity at 60% stenosis in the elliptical-shaped model. The acceleration of the velocity becomes obvious at
70% stenosis when green areas appear. A major jump in velocity is characterized by an enlarged area on green-yellow
at 80% stenosis. Lastly, when stenosis is 90%, the flow is at its peak, and the yellow-red areas prevail on the slimmest
part of the vessel.

Figure 18. Simulation Results of Velocity in Ansys with Varying Stenosis Locations

In Figure 18, it is shown that the farther the stenosis location, the smaller its impact on velocity increase. This can
be observed from Position 1 to Position 4, where the maximum flow velocity tends to decrease due to a more evenly
distributed flow. As a result, the acceleration at the stenosis point becomes lower.

Figure 19. Simulation Results of Pressure in Ansys with Varying Stenosis Thickness

Figure 19 shows the pressure distributions for the three stenosis models. They are shown at the same severity levels.
In the bell-shaped model, pressure is mostly uniform and moderate at 60% stenosis. A noticeable decrease begins
at 70%. The stenotic area turns a darker green. This drop becomes more pronounced at 80%. Pressures approach
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the lower, blue range of the scale. The most extreme drop occurs at 90% stenosis. Green-blue colors show the point
of minimum pressure at the narrowest section. A sharp rise in pressure happens just before the stenosis as severity
increases. This is caused by flow resistance. It is paired with a severe drop within the constriction itself. The cosine-
shaped model shows a comparable trend. Pressures stay relatively stable and uniform for both 60% and 70% stenosis.
A more significant decline becomes apparent at 80%. Values near the blue range. The 90% stenosis case results
in the lowest observed pressure. The narrowed region is dominated by green-blue tones. Results for the elliptical-
shaped model align with this pattern. A uniform green field at 60% stenosis indicates steady pressure. A decrease
commences at 70%. It intensifies at 80% as pressures approach blue levels. The minimum pressure is again localized
at the narrowest point for the 90% case. This is shown by dominant green-blue colors.

Figure 20. Simulation Results of Pressure in Ansys with Varying Stenosis Locations

In Figure 20, it is shown that the farther the stenosis location, the smaller its impact on pressure reduction. From
Position 1 to Position 4, the pressure drop is not significant. Different stenosis positions result in a more uniform
pressure distribution, leading to higher overall pressure compared to symmetrical stenosis with the same cross-
sectional area.

Figure 21. The simulation results of wall shear stress (WSS)

Figure 21 illustrates the wall shear stress (WSS) distribution at different levels of stenosis severity (60%–90%). As
the degree of narrowing increases, the maximum WSS values tend to rise and become more concentrated around the
most constricted regions. These high-WSS areas may impose significant mechanical stress on the arterial wall. This
can lead to plaque instability and increase the risk of rupture.
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Figure 22. Velocity graph of a bell-shaped model with
varying stenosis thickness

Figure 23. Pressure graph of a bell-shaped model with
varying stenosis thickness

Figure 24. Velocity graph of a cosine-shaped model
with varying stenosis thickness

Figure 25. Pressure graph of a cosine-shaped model
with varying stenosis thickness

3.2. Discussion

The graphs in Figures 22 to 27 present the simulation results using Python and Fluent, considering different stenosis
thicknesses in the carotid bifurcation. These graphs indicate that before reaching the stenotic region, the blood pressure
tends to be high, then gradually decreases towards the stenosis center. Conversely, the flow velocity is initially low
but increases as it approaches the stenotic center. Beyond the stenotic region, pressure rises again as the flow cross-
sectional area increases, while velocity decreases. These findings align with the study by Lopez et al. [10], which
reported that blood pressure before stenosis tends to be high and subsequently drops toward the stenosis center, while
flow velocity increases in the narrowing region and has the same flow pattern and stenosis effect as the study by
S. Kumar et al 2023 [24]. Furthermore, the data reveal that among the three stenosis models analyzed (bell-shaped,
cosine-shaped, and elliptical), the bell-shaped model has the most significant impact on velocity and pressure changes.
These results support the findings of Pinyo et al. (2021) and Bhavya et al. [8, 20], which stated that the bell-shaped
stenosis leads to a more significant velocity increase and a sharper pressure drop in the stenotic region compared to
other shapes.

Table 2. Comparison of Peak Velocity and Peak Pressure for Bell-Shaped Stenosis at Different Mesh Sizes.

Mesh Size Number Peak Velocity %Difference Peak Pressure Drop %Difference
of Nodes MATLAB ANSYS MATLAB ANSYS

Coarse Mesh 75702 2.076 2.231 7.19% 9820.138 10420.14 5.92%
Medium Mesh 163891 2.054 2.160 5.03% 9880.15 10220.12 3.38%

Fine Mesh 309720 2.048 2.089 1.98% 9910.23 10017.91 1.08%

We conducted grid independence study to check our simulation results. We made a comparison between the
computed peak velocity and peak pressure drop. There were three mesh densities coarse, medium and fine that we
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Figure 26. Velocity graph of a elliptical model with
varying stenosis thickness

Figure 27. Pressure graph of a elliptical model with
varying stenosis thickness

Table 3. Comparison of Peak Velocity and Peak Pressure for Cosine-Shaped Stenosis at Different Mesh Sizes.

Mesh Size Number Peak Velocity %Difference Peak Pressure Drop %Difference
of Nodes MATLAB ANSYS MATLAB ANSYS

Coarse Mesh 75702 1.697 1.802 6.00% 10526.12 10989.341 4.30%
Medium Mesh 163891 1.721 1.787 3.76% 10646.172 10889.282 2.25%

Fine Mesh 309720 1.741 1.767 1.48% 10734.784 10878,142 1.32%

Table 4. Comparison of Peak Velocity and Peak Pressure for Elliptical Stenosis at Different Mesh Sizes.

Mesh Size Number Peak Velocity %Difference Peak Pressure Drop %Difference
of Nodes MATLAB ANSYS MATLAB ANSYS

Coarse Mesh 75702 0.987 1.048 5.99% 13372.132 14140.563 5.58%
Medium Mesh 163891 0.988 1.024 3.57% 13433.113 13940.593 3.70%

Fine Mesh 309720 0.991 1.005 1.40% 13197.137 13640.165 1.05%

used. These comparisons are described in Tables 2-4 according to the stenosis shapes. The data indicate that the more
the mesh is refined into a fine one the greater the percentage difference between the MATLAB and ANSYS results
becomes consistent. This disparity is also reduced. This tendency proves the fact that convergence has been created
with the help of the numerical solution. Our choice of the fine mesh setting was made in the rest of the simulations.
This ensures correctness and dependability of our findings.

Figure 28. Comparison of Blood Flow Velocity Profiles for Three Scenarios

Stat., Optim. Inf. Comput. Vol. 15, January 2026



598 MATHEMATICAL MODELING OF CAROTID BIFURCATION STENOSIS ...

Figure 28 shows how the blood flow velocity profile changes along the axial direction. It shows three distinct
conditions. The normal scenario is shown by the red solid line. The blue dashed line shows the effect of varying
the initial velocity input. The green dotted line tracks the influence of altering the fluid density. This comparison
demonstrates that the simulation accounts for uncertainty in key inputs. Variations in initial velocity and blood density
can occur in vivo. These variations are shown to influence the precise hemodynamic outcome. These parameter
changes introduce slight deviations in the velocity profile. The core flow pattern remains fundamentally consistent
across all three scenarios.

Figure 29. Velocity graph of a bell-shaped model with
varying stenosis location

Figure 30. Pressure graph of a bell-shaped model with
varying stenosis location

Figure 31. Velocity graph of a cosine-shaped model
with varying stenosis location

Figure 32. Pressure graph of a cosine-shaped model
with varying stenosis location

Figure 33. Velocity graph of a elliptical model with
varying stenosis location

Figure 34. Pressure graph of a elliptical model with
varying stenosis location

Resulting figures 28 to 33 indicate the outcomes of the Python and Fluent simulations. They demonstrate the effect
of stenosis site on fluid flow. A clear trend emerges. As the location of the stenosis increases distance to the origin
of the vessel, the impact of this location on raising the velocity of flow reduces. This occurs due to a further distal
stenosis where the flow can be developed more uniformly in front of the hindrance. The resultant velocity profile is
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less and more homogenous. Less area is covered by dissipation of the kinetic energy of the fluid. On the contrary, the
flow is funnelled and concentrated by a thicker or more symmetrical stenosis near the first point. This results in more
localized and intense spike velocity.

Table 5. Flow Velocity and Pressure Data for the Three Shape Models

Shape of Stenosis Thickness Level (%) Velocity (m/s) / Pressure (Pa)

Bell-shaped 60% 1 – 1,2 / 14300 – 15200
70% 1,4 – 1,6 / 13400 – 14300
80% 1,8 – 2 / 11600 – 13400
90% 2 – 2,1 / 9800 – 10700

Cosine-shaped 60% 1 – 1,1 / 14300 – 15200
70% 1,1 – 1,2 / 13400 – 14300
80% 1,3 – 1,6 / 12000 – 14000
90% 1,6 – 1,8 / 10000 – 11000

Elliptical 60% 0,525 – 0,7 / 14300 – 15200
70% 0,7 – 0,85 / 13400 – 14300
80% 0,85 – 0,9 / 13400 – 14400
90% 0,85 – 1,050 / 13200 – 14200

Figure 35 tracks plaque progression in the carotid artery over 5, 10, and 15-year intervals. The visualization reveals
a clear trend of increasing arterial narrowing over time. Plaque accumulates within the lumen. This progressive
constriction is marked by an intensifying red zone at the stenosis site. The growing prominence of this area represents
a rise in local blood flow velocity. Velocity escalates as the vessel becomes more severely obstructed.

Figure 35. Evolution of Stenosis Growth

The findings of the simulation have indicated two things. To start with, stenoses with greater thickness and symmetry
result in a higher velocity of flow increase. Stenoses that are more distant to the vessel origin result in a lesser increase.
Second, the distribution of pressure is significantly changed by the position of the stenosis. A more distal stenosis
has a lesser impact on pressure reduction. This lesser pressure drop is attributed to the fact that there is more room to
develop the flow. This results in more balanced distribution of pressure. It averts severe local falls. A stenosis that is
more focused and severe is produced by a thicker, symmetrical stenosis. Constriction causes the flow to be immensely
concentrated. This causes an increased and sharper pressure gradient.

The discussion validates that the hemodynamic risk is dependent on stenosis geometry. The more symmetrical and
thicker constriction creates the worst conditions. It leads to a significant increase in the velocity of flow. It also leads to
sharp decrease in pressure. This interaction initiates high wall shear stress. This is a mechanical stress that is damaging
of the vessel lining. This profile of stenosis is a much worse environment than other shapes or the more distal location.
These results indicate that the form and location of a stenosis have a significant influence on the flow patterns. They
have a direct effect on the conditions that might stimulate the plaque formation and progression.
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4. Conclusion

This study simulated stenosis within the carotid bifurcation to assess its role in ischemic stroke risk, specifically
analyzing resulting changes in blood flow behavior. The work also validated a mathematical model of this flow for
three stenosis profiles—bell-shaped, cosine-shaped, and elliptical—across a range of severities from 60% to 90%
narrowing. The principal outcomes are summarized as follows:

• The findings of both the numerical simulations and the CFD indicate the same fact. A stenosis of 90 per cent
is a life-threatening risk in the carotid bifurcation. This applies to all particular shapes. This condition creates
extreme forces of hemodynamics that place a high risk. This is the danger of developing arterial rupture or
damage.

• The trend of the simulations is evident. The velocity of flow and pressure drop increase gradually with the
increase in the thickness of stenosis. This direct association highlights a serious requirement. Medical treatment
should be done early. The earlier the stenosis is detected and addressed at a lower scale, the better the outcome
can be achieved. It will be able to avoid serious complications.

• The hemodynamic effect of a stenosis is also determined by the location. A stenosis that is asymmetrically
located produces a lesser impact on the local velocity and pressure. The reason behind this is that the flow
possesses a direction to spread the flow more equally around the obstruction. This will eliminate a severe,
localized pressure accretion.
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