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Abstract Kernel Ridge Regression combines the principles of machine learning supervision and ridge regression by
employing the kernel trick. This approach is particularly effective for regression problems with non-linear relationships
between inputs and outputs. The kernel trick allows Kernel Ridge Regression (KRR) to perform ridge regression by learning
non-linear functions in a high-dimensional space using ridge regression’s regularization techniques. The success of KRR
depends on the hyper-parameter settings, which determine the type of kernel used. Current methods for determining hyper-
parameter values encounter three primary challenges: high computational costs, large memory demands, and low accuracy.
This research introduces a significant improvement to the golden eagle optimization framework by incorporating elite
opposite-based learning (EOBL) to enhance population diversity in the search space. We apply this strategy to efficiently
select optimal hyper-parameters. Combining EOBL with KRR can lead to improved predictive accuracy. By selecting
elite solutions and incorporating opposition-based methodologies, the model can circumvent local optima and broaden the
range of potential solutions, leading to improved results, especially in complex datasets. The proposed enhancement to
Kernel Ridge Regression was evaluated on ten publicly available multi-class datasets to demonstrate its effectiveness. The
results from various evaluation criteria showed that the proposed enhancement achieved superior classification performance
compared to all baseline techniques.
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1. Introduction

Researchers have shown significant interest in kernel ridge regression-based binary or multi-class classifiers
in recent years because of their non-iterative learning approach [1]. Kernel ridge regression is a method that
combines conventional least squares regression and ridge regression[2]. (KRR) has gained popularity as a powerful
nonlinear forecasting technique applicable in various scenarios. The main concept behind (KRR) is to utilize a
versatile collection of nonlinear prediction functions while also mitigating over fitting through penalization, hence
restricting computational complexity. This is accomplished by transforming the collection of predictors into a high-
dimensional (or infinite dimensional in some cases) space consisting of the nonlinear functions of the predictors
[3].

Kernel ridge regression offers a significant benefit in that the kernel function does not need to adhere to Mercer’s
theorem, and there is no necessity for randomness in allocating connection weights between input and hidden layers
[4]. Kernel approaches are a powerful framework for improving the modeling capacity by transferring the data from
the original space to a higher-dimensional feature space known as the reproducing kernel Hilbert space (RKHS)
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[45, 46, 5, 6]. Kernel estimation is a preliminary nonparametric technique used to estimate statistical functions
in the presence of nonlinearity in the data [7, 32, 33, 34]. The kernel trick is a technique employed to implicitly
project the input characteristics into a higher-dimensional space without explicitly calculating the transformation.
This is accomplished by utilizing a kernel function that computes the dot product of the modified feature vectors
[8].

Nonlinearity and multimodality hinder the effectiveness of standard approaches like the hill-climbing method,
trapping in incorrect solutions. Another increasingly difficult issue comes when the quantity of decision factors
expands or when n is exceedingly large. Furthermore, the situation is exacerbated by the presence of nonlinearity
combined with the intricate nature of the big scale. Met-heuristic and heuristic algorithms are computational
techniques that draw inspiration from natural systems to solve complex problems. These algorithms employ a
combination of trial-and-error, learning, and adaptation to consistently discover satisfactory or optimal solutions,
making them very reliable for a diverse set of challenging optimization issues [9, 35, 36].

In recent years, many meta-heuristic optimization algorithms have been employed in different research, the
binary (PSO) - (WOA) for feature selection and predictive modeling. Researchers at Grand Canyon University did
a linear regression analysis involving 250 students to examine their interactions with AI in their academic pursuits
[10, 11]. introduced a novel nature-inspired optimization technique known as the Greylag Goose Optimization
(GGO) algorithm.

The Greylag Goose serves as the inspiration for the suggested algorithm (GGO), a swarm-based algorithm.
We initially evaluate the GGO technique by applying it to nineteen datasets from the UCI Machine Learning
Repository. Each dataset has a diverse array of attributes, instances, and classes utilized for feature selection. We
are contrasting the (GGO) with various other algorithms.

The (PO) is introduced as a novel optimization algorithm inspired by the intelligence and behavior of pumas.
This method incorporates distinctive and robust techniques in each phase of exploration and exploitation, enhancing
its performance across various optimization challenges [12].

In the following sections of the paper, Partition 2 will provide a detailed explanation of the kernel ridge
regression. Partition 3 presents the steps of the golden eagle optimizer algorithm. Partition 4 discusses the proposed
methodology. Partition 5 provides an exposition of the experiment’s outcomes, specifically focusing on the multi-
class data. Partition 6 contains the paper’s conclusion.

2. Kernel ridge regression (KRR)

Ridge regression (RR) is a classical technique for modeling data that addresses the issue of multicollinearity among
factors in a sample. Multicollinearity occurs when there is a significant correlation between numerous predictor
variables in a multiple regression model [5, 37, 38]. Provided training data,

H = {xt, yt}mt=1 , x ∈ X ⊂ Rh, yt ∈ Y ⊂ R

The (RR) approach calculates the parameter vector, u ∈ Rh, of a linear model f(x) by minimizing the objective
function [8, 13, 39, 40].

G (u) =
1

2
∥u∥2 + λ

m

m∑
t=1

(yt − f(x))
2 (1)

The objective function employed in (RR) Eq. (1) incorporates Tikhonov regularization to minimize the sum
of squared errors (sse) metric. The tuning parameter λis used to regulate the trade-off between bias and variance
[14, 15]. This refers to the penalized maximum likelihood estimation (MLE) of the variable u, under the assumption
that the observed targets have been affected by a random sample from a Gaussian noise process. The noise process
is independent and identically distributed (i.i.d.), with a mean of zero and a variance ofσ2 [8].

yt = f(x) + εi , ε ∼ N(0, σ2)

KRR, a variant of ridge regression, can be derived using the ”kernel trick.” This involves constructing a linear
ridge regression model in a high-dimensional feature space,F (ϕ : X → F ), created by a non-linear kernel function
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that defines the inner product K(xt, xj) = ϕ(xt).ϕ(xj). The kernel function,K(xt, xj), can be any positive, definite
”Mercer” kernel. The goal function that is minimized when developing a kernel ridge regression model is expressed
as

G (u) =
1

2
∥u∥2 + λ

m

m∑
t=1

(yt − f(ϕ(x)))
2 (2)

The represented theorem implies that the solution to an optimization problem of this kind may be expressed as a
linear combination of the training patterns, denoted as u =

∑m
t=1 αtϕ(xt)and α = (K + λI)

−1
y, with the identity

matrix I[13].

3. Golden Eagle Optimizer (GEO)

The golden eagle, a member of the Accipitridae family, is a professional hunter with exceptional vision, high
speed, and powerful talons. With a flight speed of 190 km/h, it can catch a wide range of prey. It also uses a spiral
trajectory to hunt, monitoring nearby boulders and prey for a proper angle of attack while also scouting for better
food sources[16, 17].

Golden eagles effectively manage their inclination to attack and glide in order to capture the most optimal prey
within an acceptable timeframe and with a little expenditure of energy. Their hunting expedition commences with
soaring in expansive loops within their domain, diligently scouring for potential prey. Upon detection, they proceed
along the circumference of an imaginary circle with the prey in its center. The eagle commits the prey’s location
to memory and proceeds to orbit it, gradually decreasing its circumference. In addition, they conduct surveys of
adjacent areas in search of superior alternatives, occasionally collaborating with other eagles by divulging the
optimal hunting grounds. Eagles execute the ultimate assaults along a linear trajectory [18]. GEO algorithm was
proposed by Mohammadi-Balani, Nayeri [18]. The implementation of the GEO algorithm involves following a
series of stages.

1- GEO is derived from the spiral motion shown by golden eagles. As previously said, every golden eagle
commits to memory the optimal spot it has previously visited. The eagle exhibits a dual inclination, both towards
hunting and towards soaring in quest of more favorable sustenance. During each iteration, every individual golden
eagle, denoted asi, randomly chooses the prey targeted by another golden eagle, denoted as f . Subsequently,
icircles about the most optimal spot that fhas visited thus far. The golden eagle i has the ability to navigate its own
memories, thereby resulting in the equation f ∈ {1, 2, ..., PopSize}.

2- During each iteration, a golden eagle is required to select a victim from the flock’s memory in order to
execute cruise and assault maneuvers. Each golden eagle retains the best solution in its memory, representing the
most optimal solutions discovered thus far. With respect to the chosen prey, the golden eagles compute the attack
and cruise vectors. The memory is revised if the new location is superior to the prior one. The implementation of
this stochastic objective mapping approach enables golden eagles to effectively navigate the terrain.

3- The golden eagle represents the attack with a vector that originates at its current position and terminates at the
location of the prey stored in its memory. Equation (3) computes the attack vector for golden eaglei.

A⃗i = X⃗∗
f − X⃗i (3)

The attack vector of eaglei is represented byA⃗i, the best location visited thus far by eagle f is denoted asX⃗∗
f , and

the current position of eagle iis given byX⃗i. The attack vector directs the population of golden eagles to the most
frequently frequented places, emphasizing the exploiting stage in GEO.

4- The cruise vector is determined from the attack vector. Cruise vectors are perpendicular to assault vectors
and tangent to circles. The golden eagle’s cruise is its linear speed relative to prey. To calculate the cruise vector
in n-dimensions, we must first find the equation of the tangent hyperplane to the circle to find the equation of
a hyperplane in n-dimensions, use an arbitrary point and a perpendicular vector, known as the normal vector.
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Equation (4) shows the scalar hyperplane equation in n-dimensional space.

h1x1 + h2x2 + ...+ hnxn = d ⇒
n∑

j=1

hjxj = d (4)

The normal vector, denoted as H⃗ = [h1, h2, ..., hn], represents the variables vectorX = [x1, x2, ..., xn], and the
arbitrary point on the hyper plane is P⃗ = [p1, p2, ..., pn]. The dot product of H⃗ and P⃗ , defined as d, can be expressed
as
∑n

j=1 hjxj . If we designate X⃗i as the position of the eagle i on the hyperplane and A⃗ias the attack vector, which
is perpendicular to the hyper plane, it is possible to demonstrate that C⃗t

i , the cruise vector for the golden eagle i in
iteration t, belongs to a specific hyper plane as defined by Equation Eq.(5).

n∑
j=1

ajxj =

n∑
j=1

at
j
x∗

j
(5)

The attack vector is represented by
−→
A i = [a1, a2, ..., an], the decision-variables vector is represented byX =

[x1, x2, ..., xn], and the position of the selected prey is represented byX∗ = [x∗
1, x

∗
2, ..., x

∗
n].

Once the cruise hyper plane for eagle iin iteration tis determined, the cruise vector for this golden eagle must be
determined. Golden eagles can choose any cruise hyperplane destination. Finding a random vector on the cruise
hyperplane requires finding a new destination point C, other than the current location of the golden eagle i. Note
that the cruise vector begins at the present location of the golden eagle i.

The generation of random points is impossible because hyperplanes exist with one fewer dimension than their
surrounding space. The cruise hyperplane does not contain every possible random point in n-dimensional space.
Equation (4) defines the hyperplane equation as the method to determine the last dimension of new points on
the n-dimensional cruise hyperplane that contains degrees of freedom. The last dimension selection to fulfill the
hyperplane equation creates 1 free variables and one fixed variable. The following method helps us generate a
random n-dimensional destination point Cthat lies on the cruise hyperplane for golden eagle i.

a) Select one variable from a set of nvariables at random to be designated as the fixed variable. The index of
the selected variable is denoted ask. It is important to understand that the fixed variable cannot be selected from
the variables whose corresponding element in the attack vector A⃗i is 0. The hyper plane in Equation Eq. (4) is
parallel to the axis of a variable when its coefficient is 0. In this case, the variable can have any value while the
other variables are randomly combined.

b) Assign arbitrary values to all variables except the k-th variable, as the k-th variable remains constant.
c) Determine the value of the constant variable by utilizing Equation Eq. (6).

Ck =
d−

∑
j,j ̸=k aj

ak
(6)

The destination point C has elementsCk, where Ck represents the k-th element. The attack vector A⃗i has
elementsaj , where aj represents the j-th element. The right-hand side of Equation (4) is denoted as d. The attack
vector A⃗i also has elements atk, where atk represents the k-th element. The index of the fixed variable is represented
by k. The random destination point on the cruise hyper plane has been located. Equation (7) presents the overall
depiction of the target location on the cruise hyper plane.

C⃗i =

(
c1 = random, c2 = random, ..., Ck =

d−
∑

j,j ̸=k aj

ak
, ..., cn = random

)
(7)

Once the destination point has been established, the cruise vector for the golden eagle iin iteration t can now be
calculated. The components of the resulting destination point consist of random numbers ranging from 0 to 1. The
cruise vector of the golden eagle population is known to draw them to regions that are different from those they
remember, thereby highlighting the exploration stage of GEO.
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5- The golden eagles execute their movements through attack and vector operations. The step vector for golden
eagle during iteration defines by Equation (8).

∆xi = r⃗1pa
A⃗i∥∥∥A⃗i

∥∥∥ + r⃗2pc
C⃗i∥∥∥C⃗i

∥∥∥ (8)

In each iteration t, pta represents the attack coefficient and ptc represents the cruise coefficient. These coefficients
determine the impact of attack and cruise on golden eagles. The vectors r⃗1and r⃗2are randomly generated with
elements that range from 0 to 1. The topics of pa and pc will be addressed at a later point. Equation (9) determines
the Euclidean norm of the attack vector,

∥∥∥A⃗i

∥∥∥, and the Euclidean norm of the cruise vector,
∥∥∥C⃗i

∥∥∥.

∥∥∥A⃗i

∥∥∥ =

√√√√ n∑
j=1

a2j ,
∥∥∥C⃗i

∥∥∥ =

√√√√ n∑
j=1

c2j (9)

The addition of the step vector from iteration tto the positions in iteration t determines the position of the golden
eagles in iteration t+ 1.

xt+1 = xt +∆xt
i (10)

The golden eagle updates its memory position with a new location when the fitness value of this new position
exceeds its current stored position. The memory stays unchanged as the eagle chooses to settle at the new position.
Each golden eagle in the latest version randomly picks another eagle from the population to orbit its most visited
location. The algorithm calculates attack vector and cruise vector and the step vector to establish the new position
for the next iteration. The loop runs until any termination condition becomes valid.

6- GEO employs the utilization of paand pcto transition from the phase of exploration to the phase of exploitation.
The procedure commences by initializing the values of pa as low and pc as high. Through the iterations, the value
of pa is incrementally raised while the value reached pc is gradually lowered. Users specify the starting and ending
values for each parameter. The linear transition described in Equation (11)enables the calculation of intermediate
values. {

pa = p0a +
t
T

∣∣pTa − p0a
∣∣

pc = p0c +
t
T

∣∣pTc − p0c
∣∣ (11)

Let trepresent the current iteration, T represent the maximum iterations, p0aand pTa represent the initial and final
values for propensity to attackpa, respectively, p0cand pTc represent the initial and final values for propensity to
cruisepc, respectively. Equation (11) induces linear variations in the parameters. Nevertheless, they can be altered
exponentially or through any alternative mathematical function.

4. The Proposed Method

The hyper-parameter variables that determine the kernel type have a significant impact on the optimization solution
for the objective function (Eq (2)). Currently, there is no dependable mathematical approach for accurately finding
the exact values of these hyper-parameters. [19, 20]. Although these choices can have a significant impact on the
kernel function’s performance. Therefore, the examination of (KRR) models is contingent upon the selection of
these hyper-parameters. The predominant techniques in the literature for determining hyper-parameters are grid
search (GS), generalized cross validation (GCV), and cross validation (CV). However, studies have demonstrated
that this procedure is not consistently fast [21].

The natural world has inspired the development of various meta-heuristic algorithms. Swarm intelligence is an
indispensable tool in research for effectively addressing a variety of complex challenges. [22, 23, 40, 41, 42].
Researchers have thoroughly researched and effectively applied swarm intelligence techniques to tackle a wide
range of complex optimization issues.
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The Elite Opposition-Based Learning (EOBL) approach is an enhanced iteration of the Opposition-Based
Learning (OBL) strategy, initially proposed by Tizhoosh [24]. The OBL technique serves as a machine intelligence
method which seeks to boost optimization algorithm efficiency. The optimization algorithm starts randomly by
evaluating both solutions for opposite outcomes and better solutions from current options. The evaluation function
helps us determine which solution is better before selecting it for the next iteration.

To develop a mathematical model of OBL, follow these steps: Within the existing population, let t =
(t1, t2, ..., tB) denote a specific location. B represents the problem of dimensional space and t ∈ [wi, ei], where
i = 1, 2, ..., B. The opposition point t̆ = (t̆1, t̆2, ..., t̆B) may therefore be described by the equation that follows:

t̆i = wi + ei − ti (12)

EOBL hires an exceptional individual to guide the public to the most effective solution on a global scale. The
privileged few are more likely to possess useful knowledge. EOBL generates equal and opposite particles within
the search dimension by utilizing the most optimal member of the existing population. Therefore, the particles will
be directed by a select few until they reach a potential location where the most favorable solution could be found.
Consequently, employing the EOBL technique will enhance population diversity and promote exploration in the
GEO algorithm. Several optimization strategies in the literature have utilized EOBL. This work utilizes the EOBL
technique to augment the exploring capabilities of GEO algorithms. The opposition position might be defined as
follows: in favor of the individual Ti = (ti,1, ti,2, ..., ti,B) within the present population Tm = (tm,1, tm,2, ..., tm,B);
thus, The concept of the elite opposite position can be T̆i = (t̆i,1, t̆i,2, ..., t̆i,B) defined as

t̆i,j = S × (dwj + dej)− ti,j (13)

S ∈ [0, 1] and S represent factors of generality. The variables dwj and dej represent dynamic boundaries that are
defined as

dwj = min(ti,j), dej = max(ti,j) (14)

However, the outcome may surpass the search bounds[wi, ei]. To resolve this problem, a random value is assigned
to the transferred individual within the specified range of [wi, ei], which is indicated as

t̆i,j = rand(wj , ej), if t̆i,j < wj ||t̆i,j > ej (15)

EOBL segregates itself from rival solutions to promote diversity within the population. Given this, the GEO now
possesses enhanced exploratory capacity. Kernel hyper-parameter population initialization is an essential operation
that provides valuable insights into the results of subsequent phases. It is essential to alter the initial population’s
quality depending on the issue’s nature. The GEO exhibits seamless convergence, a comprehensive scope, a time-
consuming process for final resolution, and a reliable solution. The distribution of the initial population derived
from the adjacency matrix needs evaluation to determine its ability to spread across the search space while
avoiding local or suboptimal solution areas. Different genetic optimization algorithms commonly use this practice
to establish their initial conditions before running the original algorithm [43, 44].

Simplifying the issue domain involves highlighting the representation of opposites in a binary manner.
Afterward, we implement these fields of study in other locations to generate more comprehensive benefits for
the spectrum of potential solutions. EOBL improves the GEO method by expanding the search space, allowing for
optimal exploration of a wider variety of superior potential solutions. Therefore, by considering this inverse in the
search space, we enhance the search’s capacity to differentiate between different applications and aid in avoiding
convergence to a local optimum.

This section provides a comprehensive explanation of the GEO approach’s structure to enhance the
recommended model’s performance. We alter the GEO’s elemental composition by including the EOBL technique
to address and improve its limitations, such as its inability to reach the optimal value or explore the search
domain quickly. The recommended approach, KRR-EOGEO, improves upon the GEO algorithm through a two-
step process: Initially, we employ EOBL to initialize the population of the kernel hyper-parameters, aiming to
accelerate convergence. Additionally, it prevents the GEO method from becoming trapped in a local optimum
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by doing a comprehensive search across the whole search space domain for potential solutions. Furthermore, it
employs the widely recognized conventional GEO technique to update the pelican’s position. The EOBL is also
utilized to ascertain if the fitness function value of the opposing solution is better than the new solution.

The initial stage randomly generates the first population. The EOBL (Eq. 13) determines the formation of the
opposing population by using elite individuals from opposite locations. The second stage utilizes EOBL to generate
elite opponent positions while updating pelican positions through the original GEO algorithm steps. The KRR-
EOGEO selects its optimal population and opposite population through fitness function value assessment to create
the new population. KRR-EOGEO operates with a time complexity of O(n× log n) +O(t× n× d). The process
can be summarized through Figure 1.

5. Experimental results

The experimental analysis of ten real multi-class data sets evaluates the effectiveness of KRR-EOGEO against
KRR-CV, KRR-GCV, KRR-GS and KRR-GEO.

5.1. Multi-class Data Description

In this experiment, we employed ten multi-class real-world datasets. We sourced all downloadable data sets
from the UCI repository [25, 26]. Table 1 presents a comprehensive overview of the features, including the
number of samples and the number of multi-class instances for each data set. We normalized all data set as
xnew =

(
x−xmin

xmax−xmin

)
to reduce the discrepancy between the variable values.

Table 1. Multi-class Data Description

Data Samples Features Class
Thyroid 215 5 3
Wine 178 13 3
Seeds 210 7 3
Balance 625 4 3
Soybean2 136 35 4
Glass 214 9 4
Dermatology 366 34 6
Yeast 1484 8 10
Vowel 528 10 11
Soybean1 266 35 15

5.2. validation criteria

The evaluation of our proposed KRR-EOGEO method used both classification accuracy and F-measure criteria
against KRR-CV, KRR-GCV, and KRR-GS approaches [4, 27, 28]. We can represent these criteria mathematically
as follows:

AC =
TP + TN

TP + TN + FP + FN
× 100 (16)

F −measure =
2× TP

2× TP + FP + FN
(17)

TP represents the number of true positives, FP represents the number of false positives, TN represents the number
of true negatives, and FN represents the number of false negatives.
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Figure 1. Flowchart of the KRR-EOGEO algorithm.
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5.3. performance comparisons

We separated the data into train and test sets where the train set contained 70% of the data and the test set contained
30% of the data for evaluating the proposed approach against alternative methods. This division was done randomly.
This section employs both the radial basis function kernel K(xt, xj) = e−θ∥xt−xj∥2

and the polynomial kernel
K(xt, xj) = ((xt, xj) + u)

d [29]. For the value of θ and d, they were as θ > 0 and d = 2, 3, 4.
In Tables 2-5, we can see the results for each technique and dataset with two kernel functions in terms of

classification accuracy, F-measure and standard deviation.
Our proposed KRR-EOGEO method demonstrates the highest AC and F-measure values across all datasets.

The suggested KRR-EOGEO method demonstrates the highest mean AC value (89.946) (89.898) and the highest
mean F-measure value (0.9078) (0.8988) compared to other similar methods. According to AC, the mean
value of KRR-EOGEO improves by (2.526%) (1.451%), (4.596%) (4.872%), (2.797%) (3.252%) and (6.544%)
(6.380%) compared to KRR-GEO, KRR-CV, KRR-GCV, and KRR-GS, respectively. In addition, the F-measure
shows that the mean value of KRR-EOGEO is higher than KRR-GEO, KRR-CV, KRR-GCV, and KRR-GS
by (0.0142%) (0.0123%), (0.0443%) (0.0406%), (0.0326%) (0.0277%), and (0.0677%) (0.0568%) respectively.
Further, according to the standard deviation values in Tables 2-5, it is noted that the proposed scheme (KRR-
EOGEO) obtained the lowest values for all classifiers. This shows very clearly that the proposed KRR-EOGEO is
more reliable than the other approaches. It also turns out that KRR-EOGEO regulates the amount of population
diversity, too. The deceasing nature of a rule for opposite solutions also assists the developed technique in avoiding
high diversity or perturbation of search agents during the searching phases. This strategy can help make exploration
in a project plan equal, that is, balance with the last phase, which is exploitation.

Hence, we can employ the EOGEO technique to enhance the optimization of the KRR model, leading to
improved classification performance and enhanced generalization ability. Therefore, the speed of computation
is acceptable. The KRR-EOGEO offers several benefits for addressing real-life problems, particularly in small
industries because of its ability to model complex, non-linear relationships through the use of kernel functions and
the epsilon-insensitive loss function used in KRR allows the model to ignore small errors, making it robust to noise
in the data. The bar graph in Figures 2-5 illustrates how long it takes to compute each strategy and data set for two
function kernels.

Figure 2. Time Calculate for the first group based on radial basis kernel

Analysis presented through Figures 2-5 demonstrates that KRR-EOGEO achieves quick training duration.
KRR-EOGEO achieves accurate global optimum determination without requiring exhaustive examination of all
parameter combinations in the grid. KRR-EOGEO achieves faster computation times than KRR-GEO and KRR-
CV as well as both KRR-GCV and KRR-GS at a comparable or higher predictive ability level. Training durations
between the other approaches show minimal differences.

A statistical evaluation of KRR-EOGEO’s effectiveness takes place to determine its performance. The objects
are present [30, 31].

(1) The Friedman test functions as a statistical method to analyze and evaluate multiple classifier performance.
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Table 2. Classification Accuracies for training and testing set based on radial basis kernel

Data Methods Train Set Test Set
Thyroid KRR-EOGEO 97.59 ± 2.09 96.59 ± 1.99

KRR-GEO 96.85 ± 1.89 95.41 ± 2.41
KRR-CV 89.89 ± 3.19 88.95 ± 3.01
KRR-GCV 94.87 ± 0.44 92.11 ± 1.79
KRR-GS 88.50 ± 2.89 86.72 ± 2.67

Wine KRR-EOGEO 90.23 ± 3.04 88.65 ± 3.11
KRR-GEO 88.11 ± 2.78 87.59 ± 2.45
KRR-CV 86.33 ± 4.17 85.81 ± 4.01
KRR-GCV 87.16 ± 3.21 86.15 ± 2.51
KRR-GS 84.04 ± 2.91 82.58 ± 2.30

Seeds KRR-EOGEO 95.76 ± 1.25 94.05 ± 1.69
KRR-GEO 94.54 ± 2.61 93.99 ± 2.44
KRR-CV 92.88 ± 3.16 90.97 ± 3.01
KRR-GCV 93.85 ± 2.32 91.91 ± 2.30
KRR-GS 89.58 ± 2.81 88.37 ± 2.11

Balance KRR-EOGEO 94.79 ± 1.03 92.66 ± 1.22
KRR-GEO 93.52 ± 2.38 91.18 ± 2.19
KRR-CV 90.76 ± 3.28 89.08 ± 3.20
KRR-GCV 92.77 ± 1.69 90.35 ± 1.29
KRR-GS 89.03 ± 1.10 88.00 ± 1.02

Soybean2 KRR-EOGEO 90.95 ± 3.69 88.88 ± 3.35
KRR-GEO 88.89 ± 2.87 87.90 ± 2.55
KRR-CV 85.49 ± 1.87 84.62 ± 1.66
KRR-GCV 87.44 ± 5.04 85.78 ± 4.89
KRR-GS 83.59 ± 2.09 81.96 ± 2.45

Glass KRR-EOGEO 75.79 ± 5.34 74.66 ± 5.05
KRR-GEO 74.70 ± 4.79 73.15 ± 4.33
KRR-CV 71.53 ± 3.89 69.58 ± 3.51
KRR-GCV 72.34 ± 6.42 70.81 ± 6.11
KRR-GS 70.33 ± 4.11 68.58 ± 3.96

Dermatology KRR-EOGEO 96.93 ± 2.10 94.89 ± 2.22
KRR-GEO 95.58 ± 3.01 94.50 ± 3.13
KRR-CV 92.78 ± 1.92 91.68 ± 1.62
KRR-GCV 94.62 ± 1.13 92.89 ± 1.49
KRR-GS 90.18 ± 1.52 88.39 ± 1.84

Yeast KRR-EOGEO 64.92 ± 1.87 62.99 ± 1.71
KRR-GEO 63.56 ± 1.24 62.31 ± 1.28
KRR-CV 57.98 ± 2.06 56.79 ±2.19
KRR-GCV 59.89 ± 1.65 58.59 ± 1.77
KRR-GS 56.54 ± 2.31 55.43 ± 1.98

Vowel KRR-EOGEO 99.61 ± 0.71 97.89 ± 1.04
KRR-GEO 99.29 ± 0.89 97.51 ± 0.99
KRR-CV 98.01 ± 1.24 96.58 ± 1.07
KRR-GCV 99.10 ± 0.64 97.24 ± 0.93
KRR-GS 96.54 ± 1.67 95.21 ±1.33

Soybean1 KRR-EOGEO 92.89 ± 2.79 91.00 ± 2.42
KRR-GEO 91.03 ± 1.72 90.36 ± 1.82
KRR-CV 87.85 ± 4.05 86.39 ± 4.12
KRR-GCV 89.45 ± 3.54 87.74 ± 3.20
KRR-GS 85.69 ± 3.66 84.89 ± 3.58
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Table 3. Classification Accuracies for training and testing set based on polynomial kernel

Data Methods Train Set Test Set
Thyroid KRR-EOGEO 98.29 ± 2.19 97.10 ± 1.88

KRR-GEO 97.06 ± 1.98 96.11 ± 1.55
KRR-CV 93.89 ± 2.89 92.31 ± 2.66
KRR-GCV 95.44 ± 0.58 93.16 ± 0.89
KRR-GS 90.89 ± 1.89 88.89 ± 1.77

Wine KRR-EOGEO 89.32 ± 4.03 88.24 ± 3.69
KRR-GEO 87.18 ± 2.37 86.37 ± 2.56
KRR-CV 85.01 ± 3.26 84.32 ± 3.36
KRR-GCV 86.09 ± 2.13 84.89 ± 2.15
KRR-GS 83.06 ± 1.99 81.85 ± 2.03

Seeds KRR-EOGEO 94.67 ± 2.51 92.79 ± 1.92
KRR-GEO 93.17 ± 1.69 91.88 ± 2.03
KRR-CV 91.38 ± 2.57 90.84 ± 2.71
KRR-GCV 92.83 ± 3.22 91.13 ± 3.87
KRR-GS 88.89 ± 2.18 87.73 ± 2.33

Balance KRR-EOGEO 95.59 ± 3.01 93.76 ± 2.21
KRR-GEO 94.66 ± 2.83 93.08 ± 2.24
KRR-CV 91.79 ± 2.77 90.27 ± 2.56
KRR-GCV 92.97 ± 1.74 91.33 ± 1.25
KRR-GS 90.32 ± 1.44 89.14 ± 1.86

Soybean2 KRR-EOGEO 91.59 ± 3.24 89.89 ± 3.53
KRR-GEO 89.97 ± 2.78 88.11 ± 2.35
KRR-CV 86.02 ± 3.81 85.40 ± 2.99
KRR-GCV 87.84 ± 4.39 86.79 ± 4.11
KRR-GS 84.93 ± 1.11 83.28 ± 0.91

Glass KRR-EOGEO 75.43 ± 4.45 74.19 ± 4.00
KRR-GEO 73.89 ± 4.11 72.77 ± 4.35
KRR-CV 70.35 ± 2.65 69.31 ± 2.51
KRR-GCV 71.54 ± 3.71 70.61 ± 3.39
KRR-GS 69.08 ± 1.65 68.10 ± 1.88

Dermatology KRR-EOGEO 97.39 ± 0.91 95.98 ± 0.86
KRR-GEO 96.22 ± 1.72 95.89 ± 1.39
KRR-CV 93.07 ± 1.44 92.55 ± 1.78
KRR-GCV 94.97 ± 2.13 93.41 ± 1.95
KRR-GS 91.81 ± 1.25 88.87 ± 1.48

Yeast KRR-EOGEO 66.96 ± 1.81 64.92 ± 1.77
KRR-GEO 64.68 ± 1.38 63.05 ± 1.82
KRR-CV 58.84 ± 2.60 57.58 ± 2.91
KRR-GCV 61.81 ± 0.99 59.95 ± 1.33
KRR-GS 57.77 ± 3.44 56.97 ± 3.34

Vowel KRR-EOGEO 97.84 ± 1.79 96.81 ± 1.61
KRR-GEO 97.01 ± 0.98 96.18 ± 1.10
KRR-CV 95.02 ± 1.39 94.85 ± 1.81
KRR-GCV 96.59 ± 2.11 95.73 ± 1.93
KRR-GS 94.49 ± 1.88 93.29 ± 1.32

Soybean1 KRR-EOGEO 91.90 ± 1.72 90.41 ± 1.83
KRR-GEO 90.63 ± 1.59 89.88 ± 1.67
KRR-CV 84.89 ± 3.84 83.73 ± 3.66
KRR-GCV 86.38 ± 3.51 85.83 ± 3.29
KRR-GS 83.94 ± 2.79 82.99 ± 2.94
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Table 4. F-measure values for training and testing set based on radial basis kernel

Data Methods Train Set Test Set
Thyroid KRR-EOGEO 0.961 ± 1.99 0.952 ± 1.87

KRR-GEO 0.954 ± 1.81 0.943 ± 1.65
KRR-CV 0.909 ± 2.19 0.893 ± 2.71
KRR-GCV 0.938 ± 0.49 0.921 ± 1.97
KRR-GS 0.894 ± 1.89 0.879 ± 1.43

Wine KRR-EOGEO 0.933 ± 2.04 0.921 ± 2.51
KRR-GEO 0.929 ± 2.81 0.914 ± 2.31
KRR-CV 0.881 ± 0.78 0.870 ± 0.91
KRR-GCV 0.908 ± 1.91 0.893 ± 2.11
KRR-GS 0.871 ± 1.41 0.864 ± 1.53

Seeds KRR-EOGEO 0.956 ± 2.52 0.942 ± 2.31
KRR-GEO 0.944 ± 2.21 0.935 ± 2.14
KRR-CV 0.927 ± 3.05 0.917 ± 3.04
KRR-GCV 0.935 ± 2.66 0.926 ± 2.03
KRR-GS 0.909 ± 1.71 0.882 ± 1.91

Balance KRR-EOGEO 0.959 ± 3.11 0.939 ± 2.94
KRR-GEO 0.938 ± 2.68 0.921 ± 2.44
KRR-CV 0.892 ± 3.66 0.873 ± 3.31
KRR-GCV 0.919 ± 1.72 0.901 ± 1.84
KRR-GS 0.871 ± 2.81 0.862 ± 2.59

Soybean2 KRR-EOGEO 0.914 ± 2.62 0.899 ± 2.51
KRR-GEO 0.888 ± 1.91 0.870 ± 1.84
KRR-CV 0.865 ± 1.12 0.850 ± 1.48
KRR-GCV 0.879 ± 2.94 0.854 ± 2.55
KRR-GS 0.849 ± 1.73 0.830 ± 1.87

Glass KRR-EOGEO 0.779 ± 3.45 0.761 ± 3.83
KRR-GEO 0.756 ± 3.69 0.749 ± 3.21
KRR-CV 0.729 ± 2.51 0.713 ± 2.68
KRR-GCV 0.741 ± 2.91 0.734 ± 2.78
KRR-GS 0.701 ± 1.88 0.691 ± 1.79

Dermatology KRR-EOGEO 0.972 ± 2.11 0.959 ± 2.33
KRR-GEO 0.965 ± 3.11 0.945 ± 3.29
KRR-CV 0.924 ± 1.77 0.910 ± 1.20
KRR-GCV 0.949 ± 2.39 0.931 ± 2.59
KRR-GS 0.904 ± 1.89 0.887 ± 1.56

Yeast KRR-EOGEO 0.684 ± 1.78 0.666 ± 1.88
KRR-GEO 0.669 ± 1.04 0.652 ± 1.30
KRR-CV 0.630 ± 1.91 0.619 ± 1.83
KRR-GCV 0.645 ± 2.15 0.633 ± 2.11
KRR-GS 0.618 ± 1.84 0.605 ± 1.65

Vowel KRR-EOGEO 0.986 ± 0.94 0.973 ± 0.67
KRR-GEO 0.974 ± 1.61 0.964 ± 1.51
KRR-CV 0.942 ± 1.69 0.928 ± 1.77
KRR-GCV 0.966 ± 2.18 0.954 ± 1.97
KRR-GS 0.925 ± 1.43 0.911 ± 1.58

Soybean1 KRR-EOGEO 0.934 ± 2.61 0.921 ± 2.89
KRR-GEO 0.919 ± 1.95 0.904 ± 1.28
KRR-CV 0.879 ± 1.59 0.854 ± 1.79
KRR-GCV 0.897 ± 3.11 0.876 ± 3.43
KRR-GS 0.859 ± 2.31 0.839 ± 2.12
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Table 5. F-measure values for training and testing set based on polynomial kernel

Data Methods Train Set Test Set
Thyroid KRR-EOGEO 0.979 ± 1.25 0.951 ± 1.67

KRR-GEO 0.968 ± 2.94 0.945 ± 2.32
KRR-CV 0.939 ± 1.97 0.927 ± 2.11
KRR-GCV 0.947 ± 3.14 0.931 ± 3.02
KRR-GS 0.911 ± 1.98 0.891 ± 2.05

Wine KRR-EOGEO 0.891 ± 5.03 0.872 ± 4.89
KRR-GEO 0.878 ± 4.16 0.852 ± 3.81
KRR-CV 0.854 ± 2.62 0.830 ± 2.53
KRR-GCV 0.869 ± 2.77 0.840 ± 2.90
KRR-GS 0.832 ± 0.96 0.818 ± 1.09

Seeds KRR-EOGEO 0.947 ± 0.89 0.921 ± 0.58
KRR-GEO 0.934 ± 1.78 0.917 ± 1.59
KRR-CV 0.912 ± 1.68 0.901 ± 1.74
KRR-GCV 0.920 ± 3.08 0.910 ± 3.19
KRR-GS 0.898 ± 2.43 0.879 ± 2.58

Balance KRR-EOGEO 0.951 ± 2.11 0.939 ± 2.84
KRR-GEO 0.945 ± 1.79 0.933 ± 1.89
KRR-CV 0.920 ± 3.24 0.909 ± 3.80
KRR-GCV 0.935 ± 1.28 0.914 ± 1.48
KRR-GS 0.902 ± 0.78 0.888 ± 0.55

Soybean2 KRR-EOGEO 0.908 ± 2.99 0.882 ± 2.17
KRR-GEO 0.894 ± 2.87 0.875 ± 2.59
KRR-CV 0.861 ± 1.81 0.853 ± 1.99
KRR-GCV 0.879 ± 3.93 0.869 ± 3.81
KRR-GS 0.849 ± 1.64 0.838 ± 1.58

Glass KRR-EOGEO 0.765 ± 3.71 0.749 ± 3.87
KRR-GEO 0.754 ± 3.43 0.731 ± 3.25
KRR-CV 0.727 ± 2.79 0.711 ± 2.81
KRR-GCV 0.736 ± 0.97 0.720 ± 0.85
KRR-GS 0.719 ± 2.11 0.700 ± 2.09

Dermatology KRR-EOGEO 0.979 ± 0.88 0.960 ± 0.76
KRR-GEO 0.961 ± 1.86 0.952 ± 1.84
KRR-CV 0.931 ± 2.04 0.923 ± 1.95
KRR-GCV 0.948 ± 1.58 0.936 ± 1.77
KRR-GS 0.911 ± 1.29 0.890 ± 1.41

Yeast KRR-EOGEO 0.676 ± 0.89 0.659 ± 0.90
KRR-GEO 0.658 ± 1.84 0.635 ± 1.61
KRR-CV 0.624 ± 2.30 0.590 ± 2.09
KRR-GCV 0.639 ± 1.21 0.619 ± 1.50
KRR-GS 0.615 ± 2.78 0.583 ± 2.61

Vowel KRR-EOGEO 0.974 ± 0.97 0.966 ± 0.62
KRR-GEO 0.965 ± 1.05 0.956 ± 120
KRR-CV 0.945 ± 1.58 0.932 ± 1.87
KRR-GCV 0.957 ± 2.13 0.947 ± 2.44
KRR-GS 0.935 ± 2.01 0.923 ± 2.29

Soybean1 KRR-EOGEO 0.918 ±1.87 0.906 ± 1.72
KRR-GEO 0.908 ± 1.66 0.895 ± 1.86
KRR-CV 0.869 ± 2.87 0.853 ± 2.90
KRR-GCV 0.881 ± 3.00 0.870 ± 3.14
KRR-GS 0.848 ± 2.41 0.829 ± 2.55
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Figure 3. Time Calculate for the second group based on radial basis kernel

Figure 4. Time Calculate for the first group based on polynomial kernel.

Figure 5. Time Calculate for the second group based on polynomial kernel.

(2) The Wilcoxon signed-rank test is a statistical test that does not rely on specific assumptions about the
distribution of the data. We employ the Wilcoxon signed-rank test (WST) to identify significant differences between
KRR-EOGEO and the other discussed approaches.

The results of the WST are displayed in Tables 6 and 7, with a significant level ofα = 0.05. Tables 6 and
7 indicate the proposed approach, which is based on AUC, has more statistical significance compared to other
approaches. The p-values from all approaches remain below 0.05.

The KRR-EOGEO algorithm demonstrates superior performance compared to other algorithms based on Table
8 statistical results because its WST test values remain below 0.05 for most datasets. The statistical data shows
KRR-EOGEO achieves superior performance compared to the 4 comparison algorithms.
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Table 6. ρ-values for the Wilcoxon signed-rank test of the suggested approach results when compared to four competitor
approaches based on radial basis kernel.

Pairwise comparison ρ-Value
KRR-EOGEO vs KRR-GEO 0.0065
KRR-EOGEO vs KRR-CV 0.0212
KRR-EOGEO vs KRR-GCV 0.0448
KRR-EOGEO vs KRR-GS 0.0314

Table 7. ρ-values for the Wilcoxon signed-rank test of the suggested approach results when compared to four competitor
approaches based on polynomial kernel

Pairwise comparison ρ-Value
KRR-EOGEO vs KRR-GEO 0.0134
KRR-EOGEO vs KRR-CV 0.0245
KRR-EOGEO vs KRR-GCV 0.0324
KRR-EOGEO vs KRR-GS 0.0355

Table 8. ρ-values for the Wilcoxon signed-rank test of comparisons among methods based on computational time.

Pairwise comparison ρ-Value for radial basis kernel ρ-Value for polyno-
mial kernel

KRR-EOGEO vs KRR-GEO 0.0094 0.00118
KRR-EOGEO vs KRR-CV 0.00314 0.00378
KRR-EOGEO vs KRR-GCV 0.00403 0.00393
KRR-EOGEO vs KRR-GS 0.00264 0.00297

Table 9 shows the classification accuracy performance by 4 popular metaheuristic algorithms, namely WaOA,
GA, SHO, and GSA. Experimental results show that KRR-EOGEO is significantly superior to other algorithms.

6. Conclusion

KRR is an adaptation of ridge regression and classification incorporating the kernel trick. Consequently, it acquires
knowledge of the linear function within the feature space determined by the kernel above and the data. The
remaining candidate non-linear kernels express this as a non-linear function in the original data domain. However,
the KRR model’s success relies heavily on the hyper-parameters determining the kernel type, making them a
critical factor. This study presents an enhanced golden eagle optimization technique incorporating elite opposite-
based learning to identify the optimal values for these hyper-parameters. We evaluated the efficacy of the suggested
method, KRR-EOGEO, on ten publicly available datasets with multi-class. We compared the KRR-EOGEO
algorithm with other established approaches, such as KRR-GEO, KRR-CV, KRR-GCV, and KRR-GS, regarding
CA and F-measure. The comparison studies and evaluations demonstrated that the KRR-EOGEO outperformed
other methods. The results also showed that using both EOBL and GEO together improved the GEO algorithm’s
performance and solution quality, which led to fast convergence on the ideal solution. Although of the best
performance of KRR-EOGEO, but KRR-EOGEO is subject to several limitations. The KRR model requires users
to adjust both the regularization parameter and the kernel parameters during its implementation. KRR training
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Table 9. Comparisons with other metaheuristic algorithm based on classification accuracy

Data Methods Train Set Test Set
Thyroid KRR-EOGEO 97.59 ± 2.09 96.59 ± 1.99

WaOA 96.97 ± 1.80 95.85 ± 2.40
GA 95.89 ± 2.15 94.75 ± 2.05
SHO 96.50 ± 0.84 95.09 ± 1.49
GSA 94.12 ± 2.66 93.00 ± 1.37

Wine KRR-EOGEO 90.23 ± 3.04 88.65 ± 3.11
WaOA 88.19 ± 2.88 87.00 ± 2.55
GA 86.64 ± 4.02 85.79 ± 3.88
SHO 87.58 ± 2.31 86.23 ± 2.81
GSA 88.95 ± 2.11 87.48 ± 1.30

Seeds KRR-EOGEO 95.76 ± 1.25 94.05 ± 1.69
WaOA 94.22 ± 2.31 93.54 ± 2.40
GA 94.77 ± 3.14 93.87 ± 3.11
SHO 93.81 ± 1.38 92.98 ± 2.20
GSA 91.98 ± 2.72 90.07 ± 2.09

Balance KRR-EOGEO 94.79 ± 1.03 92.66 ± 1.22
WaOA 93.36 ± 2.25 92.14 ± 1.19
GA 91.11 ± 2.28 89.99 ± 2.31
SHO 93.68 ± 1.83 92.55 ± 1.18
GSA 92.53 ± 1.56 91.00 ± 1.42

Soybean2 KRR-EOGEO 90.95 ± 3.69 88.88 ± 3.35
WaOA 88.18 ± 2.41 87.66 ± 2.50
GA 89.41 ± 1.37 88.31 ± 1.66
SHO 87.21 ± 4.04 85.98 ± 3.81
GSA 87.49 ± 2.12 86.78 ± 2.31

Glass KRR-EOGEO 75.79 ± 5.34 74.66 ± 5.05
WaOA 73.93 ± 3.71 72.16 ± 3.43
GA 74.84 ± 3.12 73.58 ± 3.92
SHO 72.84 ± 4.12 71.85 ± 4.01
GSA 70.93 ± 4.03 68.78 ± 3.95

Dermatology KRR-EOGEO 96.93 ± 2.10 94.89 ± 2.22
WaOA 94.00 ± 2.61 93.02 ± 2.43
GA 92.98 ± 1.22 91.60 ± 1.58
SHO 91.45 ± 1.41 90.85 ± 1.72
GSA 95.22 ± 1.32 94.39 ± 1.71

Yeast KRR-EOGEO 64.92 ± 1.87 62.99 ± 1.71
WaOA 63.43 ± 1.89 62.38 ± 1.67
GA 61.88 ± 2.36 60.58 ±2.29
SHO 59.96 ± 1.10 58.58 ± 1.89
GSA 57.97 ± 2.51 56.00 ± 2.61

Vowel KRR-EOGEO 99.61 ± 0.71 97.89 ± 1.04
WaOA 97.49 ± 1.89 96.09 ± 1.58
GA 97.15 ± 1.42 95.89 ± 1.61
SHO 99.17 ± 1.68 97.58 ± 1.92
GSA 98.24 ± 1.69 97.21 ±1.45

Soybean1 KRR-EOGEO 92.89 ± 2.79 91.00 ± 2.42
WaOA 91.53 ± 1.78 90.46 ± 1.88
GA 90.85 ± 4.00 88.99 ± 4.08
SHO 89.40 ± 3.58 87.93 ± 3.25
GSA 88.00 ± 2.69 86.89 ± 2.78

Stat., Optim. Inf. Comput. Vol. 15, January 2026



370 KERNEL RIDGE REGRESSION IMPROVING BASED ON GOLDEN EAGLE OPTIMIZATION ALGORITHM

using elite opposite-based learning approaches requires large amounts of computational resources when it handles
complex or extensive datasets. The future work will integrate filter-based feature selection with KRR-EOGEO. A
multi-stage multi-objective GEO based feature selection approach will be integrated with KRR.
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